(44.192.112.123) 您好!臺灣時間:2021/03/04 06:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王名揚
研究生(外文):Wang, Ming-Yang
論文名稱:在FTO透明導電玻璃上電沉積p-Cu2O膜之光電化學性質之研究
論文名稱(外文):Photoelectrochemical properties of the p-Cu2O films electrodeposited on the FTO transparent conductive glass
指導教授:徐富勇
指導教授(外文):Hsu, Fu-Yung
口試委員:黃清安彭坤增
口試委員(外文):Huang, Ching-AnPeng, Kun-Cheng
口試日期:2011-09-23
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:電沉積氧化亞銅光電化學性質循環伏安法線性掃描伏安法
外文關鍵詞:ElectrodepositionCuprous oxidePhotoelectrochemical propertyCyclic voltammetryLinear sweep voltammetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:312
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以電化學沉積方式製備Cu2O膜於FTO導電薄膜表面,使用0.5 M Na2SO4作為電化學溶液並且添加催化劑NiSO4作為促進Cu2O膜產氫之觸媒,以三極式光電化學檢測氧化亞銅薄膜的電化學特性。試片為(111)優選取向的Cu2O膜,經150 W鹵素燈照光下於0.5 M Na2SO4溶液添加催化劑NiSO4後,進行光電化學檢測。結構分析與成分分析則使用XRD,FE-SEM 和 EDS。
實驗結果顯示Cu2O有光電化學效應。添加NiSO4催化劑進行陰極端循環掃描,有很明顯的響應電流值,與無NiSO4催化劑者比較,電流值明顯增大。Cu2O進行光電化學檢測,隨著催化劑濃度增加與照射催化反應時間越長,響應電流值也越高。根據EDS檢測結果顯示,催化劑濃度增加與照射催化反應增長,經陰極掃描會還原較高鎳成份含量至薄膜表面。根據XRD的檢測結果,鍍膜經0至-1 V陰極循環掃描後,部份Cu2O會還原成銅至鍍膜表面。

In this syudy, Cu2O films were electrodeposited on the FTO transparent conducting glass. A conventional cell of 3-electrodes was used for the photoelectrochemical testings. The water solution for the experiments consists of 0.5 M Na2SO4 and additive of NiSO4. The NiSO4 plays a role as a catalyst for the promotion of hydrogen production. All tested samples are (111) prefer-orientated. A halogen lamp of 150 W was used as the light source for the experiment of photoelectrochemical properties. Structure and composition of the films were detected by using using XRD,FE-SEM and EDS.
Experimental results show that Cu2O have photoelectrochemical effect. By the cathodic cyclic voltammetry (CV) scan, the cathodic current response for those with additive of NiSO4 catalyst was obviously higher than those without catalyst. The current increased with increasing the content of additive and the time of light exposure. According to EDS results , more additive content and longer exposure time resulted in higher composition of reduced nickel on the film surface. According to the XRD results, the Cu2O film was partly reduced and deposited on the film surface, which was scanned by using cathodic cyclic voltammetry in the range of 0 to -1 V (vs. OCP).


目 錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
明志科技大學學位論文授權書 iii
誌謝 iv
摘要 v
ABSTRACT vi
目 錄 vii
圖目錄 ix
第一章 序論 1
1.1 前言 1
1.2 研究目的 2
第二章 研究背景 3
2.1氧化亞銅簡介 3
2.1.1氧化亞銅性質 3
2.1.2 氧化亞銅光觸媒性質 4
2.1.3光觸媒的催化原理 4
2.1.4 光電化學分解水 5
2.2 鎳催化劑應用產氫研究 8
2.3 電化學沉積法 11
2.3.1 氧化亞銅之電化學沉積 11
第三章 實驗部份 16
3.1 實驗流程圖 16
3.2基板前處理 18
3.3 鍍液用化學藥品 18
3.4 電沉積氧化亞銅製程 18
3.5 電化學測試裝置與溶液配置 19
3.6氧化亞銅膜光性質 20
3.7 電化學測試 21
3.7.1循環伏安測試 22
3.7.2線性掃描伏安測試 23
3.8實驗分析檢測備 24
3.8.1 X光繞射儀 24
3.8.2場發射掃描式電子顯鏡 24
3.8.3 能量散佈光譜儀(EDS) 25
3.8.4紫外光/可見光/紅外光光譜儀 25
3.8.5輪廓儀 27
第四章 實驗結果與討論 28
4.1氧化亞銅結構分析 28
4.2氧化亞銅能隙 30
4.3氧化亞銅電化學檢測 31
4.3.1氧化亞銅開迴路測試 31
4.3.2氧化亞銅光電性質效應 34
4.3.3氧化亞銅作循環伏安測試 37
4.3.4氧化亞銅陰極端作循環伏安測試 39
4.3.5不同掃描速率對氧化亞銅在線性掃描的影響 57
4.3.6氧化亞銅作線性掃描測試 59
4.3.7 定電位掃描對氧化亞銅的影響 74
4.3.8添加催化劑對於增加電流反應之探討 82
第五章 結論 83
第六章 參考文獻 85
【1】F. Hu, K.C. Chan, T.M. Yue, Morphology and growth of electrodeposited cuprous oxide under different values of direct current density, Thin Solid Films 518, (2009) 120–125
【2】M. Ristova, R. Neskovska, V. Mircesk, Chemically deposited electrochromic cuprous oxide films for solar light modulation, Sol. Energy Mater. Sol Cells 91, (2007) 1361–1365
【3】 Y.H Lee, I.C Leu, C.L Lioa, K.Z. fung, The structural evolution and electrochemical properties of the textured Cu2O thin films,J. Alloys Compd. 436, (2007) 241–246
【4】 M. Deepa, T.K. Saxena, D.P. Singh, K.N. Sood, S.A. Agnihotry, Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties, Electrochim. Acta 51, (2006) 1974–1989
【5】R. M. Navarro, M. C. Sa´nchez-Sa´nchez, M. C. Alvarez-Galvan, F. del Valle and J. L. G. Fierro, Hydrogen production from renewable sources: biomass and photocatalytic opportunities, Energy Environ. Sci. 2, (2009) 35-54
【6】A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37.
【7】R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Ti tanium Oxides, Science 293, (2001) 269
【8】Z. Zou, J. Ye, K. Sayama and H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414, (2001) 625-627
【9】U. M. Shahed, Khan et al, Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2, Science 297, (2002) 2243
【10】 M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondoa and K. Domen, Cu2O as a photocatalyst for overall water splitting under visible light Irradiation, Chem. Commun. (1998)357-358.
【11】 S. Sashikala, C. Raman Nair Chenthamarakshan, Norma R. de Tacconi, Krishnan Rajeshwar, Photocatalytic production of hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors,International Journal of Hydrogen Energy 32, (2007) 4661 – 4669
【12】H. Zhu, J. Zhang, C. Li, F. Pan, T. Wang, B. Huang, Cu2O thin films deposited by reactive direct current magnetron sputtering, Thin Solid Films 517, (2009) 5700-5704
【13】X. Zhang, G. Wang, H. Wu, et al. , Synthesis and photocatalytic characterization of porous cuprous oxide octahedra, Mater. Lett 62, (2008) 4363–4365
【14】G. Hodes, Physical electrochemistry, Marcel Dekker 487, (1995) 40
【15】D. Lincot, Electrodeposition of semiconductors, Thin Solid Films 487, (2005) 40
【16】M. Smith, V. Gotovac, L. Aljinovic, M. Lucic-Lavcevic, An investigation of the electrochemical and photoelectrochemical properties of the cuprous oxide/liquid phase boundary, Surf. Sci, (1995) 171-176.
【17】A.E. Rakhshani, Y. Makdisi, X. Mathew, Deep energy levels and
photoelectrical properties of thin cuprous oxide films, Thin Solid Films, Mater. Lett, (1996) 69-75.
【18】L.L. Ma, J.L. Li, H.Z. Sun, et al. , Self-assembled Cu2O flowerlike architecture: Polyol synthesis, photocatalytic activity and stability under simulated solar light, Mater. Res. Bull 45, (2010) 961–968
【19】T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, Int. J. Hydrogen Energy 27, (2002) 991 – 1022
【20】陳俊吉,金屬氧化物半導體在可見光分解水製氫之研究,國立成功大學化學工程學系,碩士論文, (2005).
【21】M. Grätzel ,Photoelectrochemical cells, Nat. Prod. Sci. 414, 338-344 (15 November 2001)
【22】R. Abe,Recent Progress on Photocatalytic and Photoelectrochemical Water Splitting under Visible Light Irradiation, J. Photochem. Photobiol. (2011) Pages: 66-93
【23】V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting, Sol. Energy 78, (2005) 581–592
【24】D.R. Kim, K.W. Cho, Y.I. Choi, C.J. Park, Fabrication of porous Co–Ni–P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution, Int. J. Hydrogen Energy 34, (2009) 2622 – 2630
【25】C. Lupi, A. Dell’Era, M. Pasquali,Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media, Int. J. Hydrogen Energy , (2009) 1-6
【26】J.M. Olivares-Ramirez, M.L. Campos-Cornelio, J.U. Godinezb,
E. Borja-Arco, R.H. Castellanos, Studies on the hydrogen evolution reaction on different stainless steels, Int. J. Hydrogen Energy 32, (2007) 3170 – 3173
【27】C.F. Yao, L. Zhuang, Y.L. Cao, X.P. Ai, H.X. Yang, Hydrogen release from hydrolysis of borazane on Pt- and Ni-based alloy catalysts, Int. J. Hydrogen Energy 33, ( 2008 ) 2462 – 2467
【28】A. Kellenbergera, N. Vaszilcsina,W. Brandlb, N. Duteanua, Kinetics of hydrogen evolution reaction on skeleton nickel and nickel–titanium electrodes obtained by thermal arc spraying technique, Int. J. Hydrogen Energy 32, (2007) 3258 – 3265
【29】P.C. Chen, Y.M. Chang, P.W. Wu , Y.F. Chiu, Fabrication of Ni nanowires for hydrogen evolution reaction in a neutral electrolyte, Int. J. Hydrogen Energy 34, (2009) 6596–6602
【30】Z. Wu, S. Ge, M. Zhang, We. Li, K. Tao, Synthesis of nickel nanoparticles supported on metal oxides using electroless plating: Controlling the dispersion and size of nickel nanoparticles, J. Colloid Interface Sci. 330, (2009) 359–366
【31】F. Sun, Y. Guo, W. Song, J. Zhao, L. Tang, Z. Wang, Morphological control of Cu2O micro-nanostructure film by electrodeposition, J. Cryst. Growth 304, (2007) 425–429

【32】L.C. Wang , N.R. de Tacconi , C.R. Chenthamarakshan , K. Rajeshwar , M. Tao , Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior, Thin Solid Films 515, (2007) 3090–3095
【33】T. Mahalingam, J.S.P. Chitra, S. Rajendran, M. Jayachandran, M.J. Chockalingam, Galvanostatic deposition and characterization of cuprous oxide thin films, J. Cryst. Growth 216, (2000) 304-310
【34】 P. Poizot, C.J. Hung, M.P. Nikiforov, E.W. Bohannan, and J.A. Switzer, An Electrochemical Method for CuO Thin Film Deposition from Aqueous Solution,Electrochem. Solid-State Lett. 6 (2) C21-C25 (2003)
【35】蔡議霆,電沉積氧化亞銅於FTO玻璃之光電化學性質研究, 明志科技大學化學與材料工程研究所,碩士論文, (2010)
【36】K.A. Khan, Stability of a Cu2O photoelectrode in an electrochemical cell and the performances of the photoelectrode coated with Au and SiO thin films,Applied Energy 65 (2000) 59 – 66
【37】P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, Photoelectrochemistry of Electrodeposited Cu2O, Journal of The Electrochemical Society, 147 (2) 486-489 (2000)
【38】L. M. Abrantes, L. M. Castillo, C. Norman and L. M. Peter, J. Electroanal. Chem., 163 (1984) 209-221
【39】H. Ko, W. P. Tai, K. C. Kim, S. H. Kim, S. J. Suh, Y. S. Kim, Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering, Journal of Crystal Growth 277, (2005) 352-358
【40】V.S. Kublanovsky, G.Ya. Kolbasov, V.N. Belinskii, Photoelectrochemical kinetics on a copper electrode, Journal of Electroanalytical, Chemistry 415, (1996) 161-163
【41】T.J. Richardson ,J.L. Slack, ,M.D. Rubin, Electrochromism in copper oxide thin films, Electrochim. Acta 46, (2001) 2281–2284
【42】L. Huang, F. Peng, H. Yu, H. Wang, Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Sciences 11, (2009) 129-138
【43】盧永益,以電沉積Cu2O:Mn於透明導電玻璃基板製作p-n接面製程、結構及性質探討, 明志科技大學化學與材料工程研究所,碩士論文, (2009)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林英彥(1998), 不動產估價。台北:文笙書局。
2. 林英彥(1998), 不動產估價。台北:文笙書局。
3. 林英彥(1998), 不動產估價。台北:文笙書局。
4. 林英彥(1998), 不動產估價。台北:文笙書局。
5. 黃義良(1999)。國小兼任行政工作教師的工作壓力與調適方式之研究。國立屏東師範學院國民教育研究所碩士論文。
6. 黃義良(1999)。國小兼任行政工作教師的工作壓力與調適方式之研究。國立屏東師範學院國民教育研究所碩士論文。
7. 黃義良(1999)。國小兼任行政工作教師的工作壓力與調適方式之研究。國立屏東師範學院國民教育研究所碩士論文。
8. 黃義良(1999)。國小兼任行政工作教師的工作壓力與調適方式之研究。國立屏東師範學院國民教育研究所碩士論文。
9. 黃秋霞(2002)。探討重度及多重障礙在家教育學生的現況安置輔導問題。特教園丁季刊,第十七卷,第四期,1-7,彰化師範大學特殊教育中心印行。
10. 黃秋霞(2002)。探討重度及多重障礙在家教育學生的現況安置輔導問題。特教園丁季刊,第十七卷,第四期,1-7,彰化師範大學特殊教育中心印行。
11. 黃秋霞(2002)。探討重度及多重障礙在家教育學生的現況安置輔導問題。特教園丁季刊,第十七卷,第四期,1-7,彰化師範大學特殊教育中心印行。
12. 黃秋霞(2002)。探討重度及多重障礙在家教育學生的現況安置輔導問題。特教園丁季刊,第十七卷,第四期,1-7,彰化師範大學特殊教育中心印行。
13. 張秀敏(1995)。國小一、三、五年級優良教師班級常規之建立與維持久比較研究。國立屏東師院學報,第8期,1-42。
14. 張秀敏(1995)。國小一、三、五年級優良教師班級常規之建立與維持久比較研究。國立屏東師院學報,第8期,1-42。
15. 張秀敏(1995)。國小一、三、五年級優良教師班級常規之建立與維持久比較研究。國立屏東師院學報,第8期,1-42。
 
系統版面圖檔 系統版面圖檔