跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳翰田
研究生(外文):Han-Tian Chen
論文名稱:氧化鋅摻鋁透明導電薄膜應用於電化學酸鹼值感測器及薄膜電晶體
論文名稱(外文):Aluminum-doped Zinc Oxide (AZO) Transparent Conductive Thin Films Applied For Electrochemical pH Sensors And Thin-film Transistors
指導教授:謝滄岩謝滄岩引用關係王志良王志良引用關係阮弼群
指導教授(外文):Tsang-Yen HsiehJyh-Liang WangPi-Chun Juan
口試委員:謝滄岩王志良阮弼群黃全洲阮全平
口試委員(外文):Tsang-Yen HsiehJyh-Liang WangPi-Chun JuanChuan-Chou HwangChuan-Ping Juan
口試日期:2012-07-19
學位類別:碩士
校院名稱:明志科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:氧化鋅掺雜鋁電化學酸鹼值感測器氧化鋅薄膜電晶體水熱法
外文關鍵詞:aluminum-doped zinc oxide (AZO)electrochemical pH sensorszinc oxide (ZnO)thin-film transistors (TFTs)hydrothermal growth (HTG)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究為利用射頻磁控式濺鍍法(radio frequency magnetron sputtering)製備薄膜,調整製程參數得到具有約0.014 Ω-cm之電阻率,以及可見光穿透率平均約80 %的氧化鋅掺雜鋁(aluminum-doped zinc oxide, AZO)透明導電薄膜,並依此條件設計並製作元件,探討結果。本論文主要分為三部分,第一部分為AZO透明導電薄膜的製作與探討。第二部分為電化學酸鹼值感測器(electrochemical pH sensors)的製備與探討。第三部分為薄膜電晶體(thin-film transistors, TFTs)的製備與探討。
在第一部分中,改變不同瓦數、時間、溫度成長薄膜,找出特性較佳的薄膜。並利用四點探針儀、紫外光可見光分光光譜儀、薄膜厚度輪廓測度儀、X光繞射分析儀等儀器分析結果。
在第二部分中,以氧化銦錫(tin-doped indium oxide, ITO)和AZO透明導電薄膜來實現電化學pH值感測器的感測端,並接上感測電路,形成完整的AZO的電化學pH值感測器,來量測分析靈敏度、線性度等物理特性、光學特性等並做相關探討
在第三部分中,以水熱法(hydrothermal growth, HTG)成長氧化鋅(zinc oxide, ZnO)主動層薄膜,搭配後續400oC氧氣氛退火處理製作ZnO TFTs,以達成具透明且性能良好之元件。並探討其物性(ZnO主動層成長情況)、光學(透光情況)、電性(電子遷移率、開/關電流比、閘極漏電流)等性質。

In this research, radio frequency (RF) magnetron sputtering method was used to prepare transparent conductive oxide (TCO) films, i.e. zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films. This research can be divided into three parts. First, the fabrication and discussion of AZO films were introduced. Second, the preparation and analysis of the electrochemical pH sensor were conducted. Third, the investigation of the transparent ZnO active layer was applied for thin-film transistors (TFTs).
In the first section, the process parameters with different power, and deposition time were studied to optimum the film characteristics. The physical analysis technologies i.e. the four-point probe, UV-visible spectrophotometer, α-Step surface profile, and X-ray diffraction analyzer were used to analyze the film properties.
In the second part, the indium-tin-oxide (ITO) and AZO films were adopted as the sensing membrane of electrochemical pH sensor, and connected to the sensing circuit to form complete electrochemical pH sensors. Then the analytical sensitivity and linearity of electrochemical pH sensors were discussed with the physical properties of sensing membrane.
In the third section, the hydrothermal growth (HTG) was considered to grow the ZnO active layer of TFTs subsequent with 400 oC oxygen atmosphere annealing. The ZnO TFTs were fabricated on glass substrate with the controlled lateral growth and formed nearly single grain boundary vertical to the channel. To explore the properties of ZnO TFTs, the physical analysis (i.e. Scanning Electron Microscope, SEM and X-ray diffractometer, XRD), optical inspection (i.e. photoluminescence and UV/VIS spectrophotometer), and electrical measurement (i.e. electronic mobility, on /off current ratio, and gate leakage current) were addressed.

目 錄

明志科技大學碩士學位論文指導教授推薦書................i
明志科技大學碩士學位論文口試委員審定書...............ii
明志科技大學學位論文授權書........................iii
誌謝...........................................iv
中文摘要........................................vi
英文摘要......................................viii
目錄............................................x
表目錄.........................................xii
圖目錄........................................xiii
第一章 緒論.......................................1
1.1 前言...................................1
1.2 研究動機與目的...........................2
第二章 文獻回顧與理論基礎............................6
2.1 AZO透明導電薄膜..........................6
2.2 AZO薄膜應用於電化學pH值感測器.............10
2.3 水熱法成長ZnO薄膜.......................16
2.4 ZnO TFTs..............................18
第三章 實驗的步驟與方法.............................21
3.1 製作電化學pH值感測器.....................21
3.1.1 實驗流程..........................21
3.1.2 感測器製作與量測架構................23
3.2 製備ZnO TFTs..........................25
3.2.1 實驗流程..........................25
3.2.2 ZnO TFTs之元件設計與製程...........28
3.2.3 水熱法成長ZnO TFTs通道.............30
3.3 製程設備...............................34
3.3.1 磁控射頻濺鍍.......................34
3.3.2 快速退火爐........................36
3.3.3 黃光製程儀器.......................37
3.4 檢測分析儀器............................39
3.4.1 表面輪廓儀.........................39
3.4.2 X光繞射分析儀......................40
3.4.3 掃描式電子顯微鏡....................41
3.4.4 紫外光可見光分光光譜儀...............43
3.4.5 四點探針儀.........................44
3.4.6 半導體特性量測分析儀.................46
3.4.7 全光譜橢偏儀.......................46
3.4.8 實驗材料及相關儀器列表...............48
第四章 結果與討論..................................51
4.1 濺鍍AZO薄膜性質.........................51
4.1.1 濺鍍參數對AZO沉積速率之影響..........51
4.1.2 濺鍍AZO薄膜之物性量測...............55
4.1.3 濺鍍AZO薄膜之薄膜光學性質量測........56
4.1.4 濺鍍AZO薄膜之薄膜電性量測...........58
4.2 電化學pH值感測器之特性探討................58
4.2.1 操作電晶體於線性區之感測特性..........58
4.2.2 操作電晶體於飽和區之感測特性..........61
4.2.3 薄膜性質之綜合討論..................63
4.3 ZnO TFTs之特性探討......................68
4.3.1 物理性質量測.......................68
4.3.2 光學性質量測.......................73
4.3.3 元件電性量測.......................74
4.3.4 ZnO TFTs之綜合討論.................83
第五章 結論與未來展望...............................85
參考文獻.........................................87

表 目 錄

表2.1 TCO的應用....................................9
表3.1 無塵室中使用溶劑之細目表.......................48
表3.2 儀器設備規格表...............................49
表4.1 使用DC濺鍍方式沉積AZO薄膜之參數................53
表4.2 使用RF濺鍍方式沉積AZO薄膜之參數................53
表4.3 改變RF電源功率,濺鍍AZO薄膜之參數..............54
表4.4 AZO鍍膜之參數...............................55

圖 目 錄

圖2.1 Wurtzite結構示意圖.............................................................................8
圖2.2 MOSFET結構圖.................................................................................11
圖2.3 ISFET結構圖......................................................................................12
圖2.4 EGFET結構圖....................................................................................13
圖2.5 ZnO TFTs結構圖................................................................................20
圖3.1 AZO薄膜濺鍍實驗流程圖.................................................................22
圖3.2 電化學pH值感測器實驗流程圖.......................................................22
圖3.3 電化學pH值感測器感測頭製作流程圖...........................................24
圖3.4 電化學pH值感測器量測架構圖.......................................................25
圖3.5 ZnO TFTs實驗流程圖.........................................................................26
圖3.6 ZnO TFTs元件製程............................................................................29
圖3.7 以水熱法成長ZnO TFTs通道,通氧退火1小時示意圖................30
圖3.8 ZnO TFTs通道製作之流程.................................................................32
圖3.9 以水熱法成長ZnO主動層示意圖....................................................33
圖3.10 水熱ZnO主動層的橫向生長示意圖...............................................34
圖3.11 射頻磁控濺鍍機系統示意圖...........................................................35
圖3.12 射頻磁控式濺鍍機...........................................................................35
圖3.13 快速退火爐......................................................................................36
圖3.14 光阻旋佈機......................................................................................37
圖3.15 曝光機..............................................................................................38
圖3.16 平板加熱板......................................................................................39
圖3.17 表面輪廓儀(α-step)量測薄膜厚度示意圖.......................................40
圖3.18 (a)XRD繞射原理(b)XRD繞射儀....................................................41
圖3.19 掃描式電子顯微鏡..........................................................................43
圖3.20 紫外光可見光分光光譜儀..............................................................44
圖3.21 (a)四點探針(b)電阻率換算公式中矯正因子對照圖.......................45
圖3.22 (a)半導體特性分析儀(b)探針座.......................................................46
圖3.23 全光譜橢偏儀..................................................................................48
圖4.1 AZO靶材XRD分析..........................................................................56
圖4.2 AZO於玻璃基板之光穿透率情形.....................................................57
圖4.3 200 nm ITO當感測薄膜之IDS-VGS及線性度響應情形(線性區).....59
圖4.4 200 nm AZO當感測薄膜之IDS-VGS及線性度響應情形(線性區)…60
圖4.5 300 nm AZO當感測薄膜之IDS-VGS及線性度響應情形(線性區)…60
圖4.6 200 nm ITO當感測薄膜之IDS-VDS及線性度響應情形(飽和區) ….61
圖4.7 200 nm AZO當感測薄膜之IDS-VDS及線性度響應情形(飽和區)…62
圖4.8 300 nm AZO當感測薄膜之IDS-VDS及線性度響應情形(飽和區)…62
圖4.9 膜厚200nm ITO之SEM分析 ....63
圖4.10 膜厚200nm AZO之SEM分析.......................................................64
圖4.11 膜厚300nm AZO之SEM分析........................................................64
圖4.12 ITO、AZO薄膜不同厚度XRD分析情形.......................................65
圖4.13 ITO薄膜不同退火溫度XRD分析情形...........................................66
圖4.14 AZO薄膜不同退火溫度XRD分析情形..........................................67
圖4.15 ITO和AZO不同基板之光穿透情形...............................................68
圖4.16 水熱法ZnO TFTs通道SEM俯視圖(a)未退火(b)400 ℃氧氣氛下
退火1小時......................................................................................69
圖4.17 水熱ZnO TFTs通道之SEM橫截面圖...........................................69
圖4.18 水熱ZnO TFTs之通道俯視SEM圖:(a)5 μm(b)10 μm(c)
25 μm的通道長(L).......................................................................70
圖4.19 未退火/退火水熱法ZnO TFTs的PL發射光譜..............................72
圖4.20 ZnO TFTs XRD分析情形.................................................................73
圖4.21 未退火/退火水熱法ZnO TFTs與ITO/glass substrate穿透光譜…74
圖4.22 水熱ZnO TFTs未退火與退火之IDS–VDS輸出特性…..................75
圖4.23 ZnO TFTs未退火/退火之IDS-VGS驅動特性.....................................76
圖4.24 ZnO TFTs未退火/退火之IDS1/2-VGS特性.........................................77
圖4.25 ZnO TFTs未退火/退火之IGS-VDS特性............................................78
圖4.26 水熱ZnO TFTs不同通道尺寸的IDS-VDS輸出特性........................80
圖4.27 水熱ZnO TFTs不同通道尺寸的IDS-VGS驅動特性........................81
圖4.28 水熱ZnO TFTs不同通道尺寸的IDS1/2-VGS特性............................82
圖4.29 水熱ZnO TFTs不同通道尺寸的IGS-VGS特性................................83


[1]. 江松勳,AZO透明導電膜之製備與特性分析,碩士論文,國立成功大學化學工程研究所,台南,2006。
[2]. H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, "Semiconducting Transparent Thin Films," Institute of Physics Publishing, Bristol, England, 1995, pp. 358.
[3]. R.G. Gordon, "Criteria for Choosing Transparent Conductors," MRS Bulletin, vol. 25, no. 8, pp. 52-57, August, 2000.
[4]. 李鎮緯,低壓退火改善連續式直流濺鍍AZO 薄膜特性,碩士論文,崑山科技大學電機工程研究所,台南,2008。
[5]. 蔡居能,研究二氧化錫酸鹼感測器之非理想效應及校正方法,碩士論文,中原大學電子工程研究所,中壢,2005。
[6]. 林詠濠,含有氧化鋅緩衝層之氧化鋅透明薄膜電晶體特性研究,碩士論文,國立成功大學光電科學與工程研究所,台南,2009。
[7]. 莊家泰,薄膜電晶體液晶顯示器配向膜定向製程缺陷改善之研究,碩士論文,國立高雄第一科技大學機械與自動化工程研究所,高雄,2011。
[8]. 陳連春,最新液晶運用技術,建興出版社,2001。
[9]. 張坤榮,摻雜鋁於氧化鋅透明導電膜之光特性與電特性研究,碩士論文,國立中央大學光電科學研究所,桃園,2008。
[10]. 蔡宜蓁,以反應式磁控濺鍍沉積AZO透明導電膜之特性研究,碩士論文,大同大學材料工程研究所,台北,2007。
[11]. H. Kim, G.P. Kushto, R.C.Y. Auyeung, A. Pique, "Optimization of F-doped SnO2 electrodes for organic photovoltaic devices," Applied Physics A, vol. 93, no. 2, pp. 521-526, July, 2008.
[12]. 蔡宗典,超薄ITO 透明導電膜應用在觸控面板之研究,碩士論文,國立中央大學光電科學研究所,桃園,2008。
[13]. 曹鈞涵,射頻磁控濺鍍氧化鋅薄膜之電學與光學性質,碩士論文,國立清華大學材料科學工程研究所,新竹,2009。
[14]. W.J. Jeong, S.K. Kim, G.C. Park, “Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell,” Thin Solid Films, vol. 506-507, no. 26, pp. 180-183, May, 2005.
[15]. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, "ZnO Schottky ultraviolet photodetectors," Journal of Crystal Growth, vol. 225, no. 2-4, pp. 110-113, February, 2001.
[16]. F. S. Hickernell, "Zinc Oxide Films for Acoustoelectric Device Applications," Sonics and Ultrasonics, vol. 32, no. 5, pp. 621-629, September, 1985.
[17]. S. Basu, A. Dutta, "Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application," Sensors and Actuators B: Chemical, vol. 22, no. 2, pp. 83-87, November, 1994.
[18]. M. Wwraback, H. Shen, S. Liang, C. R. Gorla, Y. Lu, "High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire," Applied Physics Letters, vol. 74, no. 4, pp. 507-509, January, 1999.
[19]. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, vol. 72, no. 25, pp. 3270, January, 1998.
[20]. A. Mitra, R. K. Thareja, "Photoluminescence and ultraviolet laser emission from nanocrystalline ZnO thin films," Journal of Applied Physics, vol. 89, no. 4, pp. 2025, February, 2001.
[21]. 葉上豪,氧化鋅鋁應用於透明導電薄膜之研究,碩士論文,國立台灣科技大學電子工程所,台北,2011。
[22]. P. Bergveld, "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements," Bio-Medical Engineering, vol. BME-17, no. 1, pp. 70-71, January, 1970.
[23]. 季彥良,AgIn5S8延伸式閘極離子感測場效電晶體之研究,碩士論文,國立清華大學材料科學工程研究所,新竹,2008。
[24]. J.L. Chiang, C. Y. Kuo, "pH-Sensing Characteristics and Hysteresis Effect of AZO/Glass Extended-Gate Field-Effect Transistor," Electric Information and Control Engineering Conference, Yuanlin, Taiwan, 2011, pp. 3434-3437.
[25]. L. Bousse and S. Mostarshed, "Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators," Sensors and Actuators B: Chemical, vol. 17, no. 2, 157-164, January, 1994.
[26]. 趙日新,劉錦燕,廖豐標,電子學(上),高立圖書,2001。
[27]. 謝芳生,劉濱達,微電子學(上),東華書局,1987。
[28]. 楊柏宇,低溫合成氧化鋅基奈米結構之元件特性與應用之研究,博士論文,國立交通大學電子研究所,新竹,2011。
[29]. 陳姿宇,以氧化水熱法製備奈米結構之二氧化鈦薄膜,碩士論文,大同大學材料工程研究所,台北,2008。
[30]. K. Hara, T. Nishikawa, M. Kurashige, H. Kawauchi, T. Kashima, K.Sayama, K. Aika, H. Arakawa, "Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru(II) terpyridyl complex photosensitizer," Solar Energy Materials & Solar Cells, vol. 85, no. 1, pp. 21-30, February, 2004.
[31]. 高逢時,奈米科技,科學發展,第386期,2005,第386頁。
[32]. 莊佑豪,水溶液法製備氧化鋅薄膜及其光學特性研究,碩士論文,大同大學材料工程所,台北,2009。
[33]. Z.K. Tang, G.K.L. Wong, P. Yu, "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, vol. 72, no.25, pp. 3270-3272, June, 1998.
[34]. J.L. Wang, T.Y. Hsieh, C.C. Hwang, D.C. Shye, P.Y. Yang, "Annealing Effect on Hydrothermally Grown ZnO Thin-Film Transistors," Nanoelectronics Conference, Taipei, Taiwan, 2009, pp. 1-2.
[35]. P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, no. 7, pp. 1117-1119, February, 2003.
[36]. C. J. Kao, Y. W. Kwon, Y. W. Heo, D. P. Norton, S. J. Pearton, F. Ren, G. C. Chi, "Comparison of ZnO metal-oxide-semiconductor field effect transistor and metal-semiconductor field effect transistor structures grown on sapphire by pulsed laser deposition," Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 23, no. 3, pp. 1024-1028, May, 2005.
[37]. P. F. Carcia, R. S. McLean, M. H. Reilly, "High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition," Applied Physics Letters, vol. 88, no. 12, pp. 123509-123511, March, 2006.
[38]. P. Y. Yang, J. L. Wang, W. C. Tsai, S. J. Wang, J. C. Lin, I. C. Lee, C. T. Chang, H. C. Cheng, "Photoresponse of hydrothermally grown lateral ZnO nanowires," Thin Solid Films, vol. 518, no. 24, pp. 7328-7332, October, 2010.
[39]. 戴嘉福,TiO2:Nb 薄膜應用於太陽能電池透明導電抗反射層之研究,碩士論文,明志科技大學材料工程研究所,台北,2012。
[40]. 張達欣,利用化學氣象沉積法生長非急性之氧化鋅(10-10)薄膜在鋁酸裡基板上,碩士論文,中山大學材料科學研究所,高雄,2008。
[41]. S. Mondal, K. P. Kanta and P. Mitra, "Preparation of Al-doped ZnO (AZO) Thin Film by SILAR," Physical Science, vol. 12, pp. 221-229, October, 2008.
[42]. 林士淵,以電子束蒸鍍技術製作之AZO/Ag/AZO多層膜的光電性質研究,碩士論文,成功大學材料科學及工程研究所,台南,2006。
[43]. S.H. Jeong, J.H. Boo, "Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering," Thin Solid Films, vol. 447, no. 40, pp. 105-110, January, 2004.
[44]. Y.M. Lua, W.S. Hwang, W.Y. Liub, J.S. Yang, "Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering," Materials Chemistry and Physics, vol. 72, no. 2, pp. 269-272, November, 2001.
[45]. M. Lapinski, J. Domaradzkii, E. L. Prociowi, K. Sieradzka, B. Gomicka, "Electrical and Optical Characterization of ITO Thin Films," Photonics and Microsystems, Wroclaw, Poland, 2009, pp. 52-55.
[46]. 王文生,利用熱燈絲輔助低溫磁控濺鍍氧化銦錫透明導電膜,碩士論文,逢甲大學材料與製造工程研究所,台中,2006。
[47]. 張宇能,賴世峰,李于豪,樓淳宇,楊文芳,低壓磊晶成長UV LED氧化鋅奈米線及光電特性之研究,國科會計畫NSC94-E2214-262-001,2007。
[48]. 劉蘊陶,電子學(上),文京圖書,1997。
[49]. 羅正忠,張鼎張,半導體製程技術導論,學銘圖書,2009。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top