(18.206.187.91) 您好!臺灣時間:2021/05/19 00:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:翁俊嘉
研究生(外文):Weng,chun-chia
論文名稱:半導體光放大器之探討與應用
論文名稱(外文):Applications and Discussion of Semiconductor Optical Amplifier
指導教授:蔡文星蔡文星引用關係
指導教授(外文):Tsai,Wen-Shing
口試委員:呂海涵應誠霖
口試委員(外文):Lu,Hai-HanYing,Cheng-Ling
口試日期:2011-06-22
學位類別:碩士
校院名稱:明志科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:52
中文關鍵詞:交叉增益調變交叉相位調變四波混頻光纖光柵毫米波訊號半導體光放大器
外文關鍵詞:Cross-gain modulationcross-phase modulationfour-wave mixingfiber Bragg gratingsmillimeter-wave signalssemiconductor optical amplifiers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
分波多工(WDM)系統的波長數目仍然大大的少於實際的節點數目與用戶數目,這使得兩個具相同波長的波道在同一輸出通道時,可能會造成波長的競爭,解決這種問題的關鍵技術就是波長轉換(WC),進而提高網路的靈活性和擴展性,同時也有利於網路的運作與管理。
半導體光放大器中(Semiconductor Optical Amplifier: SOA)有很多的非線性效應,例如交叉增益調變(Cross-gain Modulation: XGM)、交叉相位調變(Cross-phase Modulation: XPM)、四波混頻(Four-Wave Mixing: FWM)效應等,這些非線性效應做為波長轉換是適合的選擇,SOA有很多的優點如有增益寬、頻帶寬、體積小、可批量生產以及成本低等優點,進而得到了廣泛的應用。在此對於SOA的非線性效應以及其應用進行較為深入的研究。
在本文中提出了幾種方法在SOA中的非線性效應而達到波長轉換的特性,於架構一我們詳細的提出以SOA為基礎,首先針對輸出轉換訊號的光訊號雜訊比以及FWM轉換效率,調整其訊號與幫浦光之間的波長間距,並且量測最佳的光訊號雜訊比與FWM轉換效率,再則經改變訊號光與幫浦光的功率差做一性能量測,最後研究討論對輸出轉換訊號之影響大小。第二個架構我們提出全雙工的微波光纖(Radio-over-Fiber: ROF)系統,利用光載波抑止(optical carrier suppression: OCS)技術產生射頻訊號升頻的結果,OCS技術在ROF系統中有較高的接收靈敏度、高的頻譜效率以及較小的功率損失,另外對於電與光的元件也有著簡單的架構與低頻寬需求的優點。我們設計並且實驗證實經載入6.9 GHz的微波訊號成功的升頻至六倍頻的毫米波(Millimeter-Wave: mm-wave) 41.4 GHz,並且在ROF系統中同時實現微波(microwave)與毫米波的訊號供下行鏈路使用。在上行鏈路方面我們使用一光纖光柵將微波訊號的中心載波反射至上行鏈路所使用。第三個架構是呈現出利用SOA中的XGM將光的中頻(Intermediate Frequency: IF)訊號與本地振盪(Local Oscillator: LO)訊號做一升頻的概念,此技術提供了高的轉換效率以及不受入射光波長與極化影響的性質,此架構是有益於ROF系統的應用。

The actual channel number of wavelength Division Multiplexing (WDM) system is still far fewer than the number of the nodes and users. The wavelength blocking happens due to wavelength competition when two optical network units have the same wavelength channel. Wavelength conversion (WC) is one of the key techniques to resolve this problem. It can enhance the flexibility and extension of the network, and provide better operation and management of the network.
Semiconductor optical amplifier (SOA) has many nonlinear effects included Cross-gain Modulation (XGM), Cross-phase Modulation (XPM) and four-wave mixing (FWM). The nonlinear characteristics are suitable for wavelength conversion. The SOA has many benefits such as large bandwidth and small bulk that is suitable for batch production. A detailed theory research of several nonlinear effects and application of SOA are given.
This study presents some approach to generate wavelength conversion based on nonlinear effects in a SOA. In first architecture we present a detailed experimental characterization of SOA-based wavelength conversion for conversion signals. The optical signal to noise ratio (OSNR) of the output converted signal and FWM efficiency are studied at a fixed value of wavelength detuning between the pump and the signal. Then, the effect of wavelength detuning between signal and pump is experimentally investigated. Finally conversion signal measurements are performed at different Signal-to-Pump power ratio (SPR) and OSNR compared with optimum FWM conversion efficiency.
In second architecture we proposed a full-duplex Radio-over-Fiber (ROF) system. The optical carrier suppression (OCS) modulation scheme is employed to generate optical mm-wave and up-convert application. Up-conversion shows the highest receiver sensitivity, highest spectral efficiency and smallest power penalty over ROF system delivery. Moreover, the OCS modulation scheme has a simple configuration and low-frequency bandwidth requirement for electrical and optical components. We designed and experimentally demonstrated an efficient photonic frequency-sextuple technology for 41.4 GHz ROF systems to simultaneously realize millimeter-wave (mm-wave), and microwave generation for down-stream channels. A filter is employed to separate the optical carrier from the sidebands to generate optical microwave carrier for up-stream channel.
The third architecture is present a scheme of up-converting optical intermediate frequency (IF) signals with an optical local oscillator (LO) using XGM effect in a SOA. This scheme provides high conversion efficiency and is independent of the incident light wavelength and polarization. It can be useful for ROF transmission system application.

目錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
明志科技大學學位論文授權書 iii
誌謝 iv
摘要 v
Abstract vii
目錄 ix
圖目錄 xi
表目錄 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 1
1.3 論文大綱 4
第二章、微波光纖系統 5
2.1 光纖放大器 5
2.1.1、光纖放大器之應用 5
2.1.2、光纖放大器種類 6
2.2、半導體光放大器 9
2.2.1、半導體光放大器之基本原理 9
2.2.2、半導體光放大器的非線性效應 11
2.2.2.1 交叉增益調變(Cross-gain Modulation: XGM) 11
2.2.2.2 交叉相位調變(Cross-phase modulation: XPM) 12
2.2.2.3 四波混頻(Four-wave Mixing: FWM) 13
2.2.2.4 半導體光放大器非線性效益比較: 15
2.3、布拉格光纖光柵(FIBER BRAGG GRATING: FBG) 16
第三章、半導體光放大器波長轉換架構 17
3.1、實驗原理 17
3.2、實驗架構 18
3.3、實驗結果 21
第四章、全雙工微波光纖升頻架構 26
4.1、實驗原理 26
4.2、實驗架構 28
4.3、實驗結果 30
第五章、半導體光放大器波長轉換升頻架構 36
5.1、實驗原理 36
5.2、實驗架構 38
5.3、實驗結果 39
第六章、結論與未來研究方向 46
6.1 結論 46
6.2 本研究之成果 46
6.3 未來研究方向 47
參考文獻 48

圖目錄
圖1.1、無波長轉換阻塞、波長轉換無阻塞示意圖分別為(a)、(b) 2
圖2.1 矽光纖中鉺離子Er3+能階圖 6
圖2.2、受激拉曼散射能階圖 7
圖2.3、受激布里淵散射能階圖 8
圖2.4、半導體放大器結構圖 10
圖2.5、光的吸收與放射現象 11
圖2.6、半導體光放大器中交叉增益調變順向原理圖 12
圖2.7、半導體光放大器中交叉增益調變逆向原理圖 12
圖2.8、半導體光放大器中交叉相位調變原理圖 13
圖2.9、半導體光放大器中四波混頻原理圖 14
圖2.10、利用紫外光製作布拉格光纖光柵濾波器 16
圖3.1、半導體光放大器所實現波長轉換實驗原理圖 17
圖3.2、利用半導體光放大器實現波長轉換系統架構圖 19
圖3.3、MZM載入7.5 GHz經調變後光譜圖 19
圖3.4、光耦合器將上下兩路訊號結合光譜圖 20
圖3.5、經SOA進行非線性效應之波長轉換光譜圖 20
圖3.6、可調式帶通濾波器選擇波長轉換之光譜圖 21
圖3.7、在不同的pump功率下轉換訊號OSNR與SPR之間的關係 23
圖3.8、在不同的pump功率下FWM效率與SPR之間的關係圖 23
圖3.9、signal跟pump之間波長間距相對應轉換OSNR圖 24
圖3.10、signal跟pump之間波長間距相對應FWM效率圖 24
圖3.11、轉換OSNR、FWM效率與SOA電流關係圖 25
圖4. 1、光載波抑止技術原理圖 26
圖4. 2、利用半導體光放大器中四波混頻示意圖 27
圖4. 3、利用半導體光放大器實現毫米波架構圖 29
圖4. 4、MZM中心載波抑止光譜圖 31
圖4. 5、下路雷射光譜圖 31
圖4. 6、經耦合器後EDFA輸出光譜圖 32
圖4. 7、經FBG1反射中心載波供上行鏈路再使用光譜圖 32
圖4. 8、FBG1濾掉中心載波抑制光譜圖 33
圖4. 9、經SOA四波混頻效應光譜圖 33
圖4. 10、光纖光柵(FBG2)抑制光譜圖 34
圖4. 11、光纖光柵(FBG3)輸出微波訊號光譜圖 34
圖4. 12、光纖光柵(FBG2、FBG3)反射六倍頻光譜圖 35
圖5.1、WDM-ROF系統利用全光升頻示意圖 36
圖5.2、利用半導體光放大器波長轉換升頻示意圖 37
圖5.3、利用半導體光放大器全光升頻架構圖 39
圖5.4、強度調變器經載波抑止輸出光譜圖 40
圖5.5、強度調變器經載波抑止後掺鉺光纖放大器輸出光譜圖 40
圖5.6、半導體光放大器輸入前之光譜圖 41
圖5.7、半導體光放大器輸入後之光譜圖 41
圖5.8、帶通濾波器選擇轉換後所需的光譜圖 42
圖5.9、經檢光二極體光電轉換量測20 GHz頻譜圖 43
圖5.10、經檢光二極體光電轉換量測19 GHz頻譜圖 43
圖5.11、經檢光二極體光電轉換量測21 GHz頻譜圖 44
圖5.12、20 GHz相位雜訊圖 44
圖5.13、19 GHz相位雜訊圖 45
圖5.14、21 GHz相位雜訊圖 45

表目錄
表2.1、導體光放大器非線性效益比較 15



[1]G.-K. Chang, J. Yu, Z. Jia, and J. Yu, “Novel optical-wireless access network architecture for simultaneously providing broadband wireless and wired services,” Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006, pp. 3, 2006.
[2]T. Ohtsuki, “Multiple-subcarrier modulation in optical wireless communications,” Communications Magazine, IEEE, vol.41, no.3, pp. 74- 79, 2003.
[3]C. Feng, and J. Lin, “Comparision of three kinds of wavelength conversion schmes based on nonlinear polarization rotation,” Broadband Network & Multimedia Technology, 2009. IC-BNMT '09. 2nd IEEE International Conference on, pp.365-369, 2009.
[4]A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, “Error free 100 Gbit/ s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier,” Electronics Letters, vol.34, no.20, pp.1958-1959, 1998.
[5]A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, “80 Gbit/ s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer,” Electronics Letters, vol.35, no.17, pp.1477-1478, 1999.
[6]S. Singh and R. S. Kaler, “Wide bandwidth optical wavelength converter based on four wave mixing using optimized SOA,” Fiber and Integrated Optical, vol. 25, pp.213–230, 2006.
[7]Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” Photonics Technology Letters, IEEE, vol.15, no.1, pp.90-92, 2003.
[8]J. P. Turkiewicz, G. D. Khoe, and H. de Waart, “All-optical 1310 nm to 1550 nm wavelength conversion by utilizing nonlinear polarization rotation in semiconductor optical amplifier,” Electronics Letters, vol.41, no.1, pp. 29- 30, 2005.
[9]H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” Microwave Theory and Techniques, IEEE Transactions on, vol.40, no.12, pp.2285-2293, 1992.
[10]Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” Photonics Technology Letters, IEEE, vol.18, no.16, pp.1726-1728, 2006.
[11]T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, “Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source,” Journal of Lightwave Technology, vol.24, no.1, pp. 404- 410, 2006.
[12]J. Yu, J. Gu, X. Liu, Z. Jia, and G.-K. Chang, “Seamless integration of an 8x2.5 Gb/s WDM-PON and Radio-Over-Fiber using all-optical up-conversion based on raman-assisted FWM,” Photonics Technology Letters, IEEE, vol.17, no.9, pp.1986-1988, 2005.
[13]Y. K. Seo, C.-S. Choi, and W.-Y. Choi, “Photonic frequency-upconversoin efficiencies in semiconductor optical amplifiers,” Photonics Technology Letters, IEEE, vol.15, no.5, pp.751-753, 2003
[14]Z. Jia, J. Yu, and G.-K. Chang, “All-optical 16 × 2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems,” Photonics Technology Letters, IEEE, vol.17, no.12, pp. 2724- 2726, 2005.
[15]J. Yu, Z. Jia, and G.-K. Chang, “All-optical mixer based on cross-absorption modulation in electroabsorption modulator,” Photonics Technology Letters, IEEE, vol.17, no.11, pp. 2421- 2423, 2005.
[16]J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter- wave generation or up-conversion using external modulators,” Photonics Technology Letters, IEEE, vol.18, no.1, pp.265-267, 2006.
[17]H.-J. Song, J.S. Lee, and J.-I. Song, “Error-free simultaneous all-optical upconversion of WDM radio-over-fiber signals,” Photonics Technology Letters, IEEE, vol.17, no.8, pp.1731-1733, 2005.
[18]J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “1.244-gb/s data distribution in 60-GHz remote optical frequency up-conversion systems,” Photonics Technology Letters, IEEE, vol.18, no.12, pp.1389-1391, 2006.
[19]W. Shieh, S.X. Yao, G. Lutes, and L. Maleki, “An all-optical microwave mixer with gain [using semiconductor optical amplifier],” Optical Fiber Communication. OFC 97., Conference on, pp.263-264, 1997.
[20]M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, and A. Ng’Oma, “Bidirectional radio-over-fiber link employing optical frequency multiplication,” Photonics Technology Letters, IEEE, vol.18, no.1, pp.241-243, 2006.
[21]X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, “A novel millimeter- wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture,” Microwave Theory and Techniques, IEEE Transactions on, vol.54, no.2, pp. 929- 937, 2006.
[22]A. Kaszubowska, L. Hu, and L. P. Barry, “Remote down-conversion with wavelength reuse for the radio/fiber uplink connection,” Photonics Technology Letters, IEEE, vol.18, no.4, pp.562-564, 2006.
[23]T. Taniguchi, N. Sakurai, K. Kumozaki, and T. Imai, “Full-Duplex 1 Gbps 60 GHz-band radio-on-fiber access based on loop-back optical heterodyne technique,” Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006, pp. 3, 2006.
[24]鄔文杰、陳積德、宋馭民、劉正瑜(民93)。光纖通訊系統-原理與應用。台北縣:新文京開發。
[25]J. Yu, J. Gu, X. Liu, and G. K. Chang, “Seamless integration of an 8x2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM,” Photonics Technology Letters, IEEE, vol.17, no.9, pp.1986-1988, 2005.
[26]M. J. O’MAHONY, “Semiconductor Laser Optical Amplifiers for Use in Future Fiber Systems,” Journal of Lightwave Technology, vol.6, no.4, pp.531-544, 1988.
[27]呂海涵,高密度分波多工系統課程資料,國立台北科技大學光電工程研究所研究報告,台北。
[28]J. Yu and G.-K. Chang, “A novel technique for optical label and payload generation and multiplexing using optical carrier suppression and separation,” Photonics Technology Letters, IEEE, vol.16, no.1, pp.320-322, 2004.
[29]G. -K. Chang, J. Yu, A. Chowdhury, and Y. -K. Yeo, “Optical carrier suppression and separation label-switching techniques,” Journal of Lightwave Technology, vol.23, no.10, pp. 3372- 3387, 2005.
[30]J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T.Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration,” Journal of Lightwave Technology, vol.24, no.7, pp. 2851- 2858, 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top