(3.238.130.97) 您好!臺灣時間:2021/05/18 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳則宏
研究生(外文):Chen,Zehong
論文名稱:三相流體化床細胞破碎裝置操作條件對乙醇脫氫酶釋放效率的影響
論文名稱(外文):The effects of operating conditions on the release of alcohol dehydrogenase by three-phase fluidized bed cell disruptor
指導教授:張煜光張煜光引用關係
指導教授(外文):Chang,Yukaung
口試委員:魏毓宏劉炳嵐蔡榮進
口試委員(外文):Wei,YuhongLiu,BinglanTasi,Jungching
口試日期:2011.07.20
學位類別:碩士
校院名稱:明志科技大學
系所名稱:生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:70
中文關鍵詞:三像細胞破碎裝置細胞破碎麵包酵母菌乙醇脫氫酶
外文關鍵詞:three-phase fluidized bed cell disruptorcell disruptionbaker’s yeastalcohol dehydrogenase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用之三相細胞破碎裝置具多重攪拌葉片,並選用500 m玻璃珠和1,000 mL酵母菌溶液在4℃下進行批次破碎程序,藉由操作條件的選擇來探討破碎菌液所釋放ADH活性(U/g-cell)與蛋白質釋放量(mg/g-cell),操作條件包括攪拌速率(0-5,000 rpm)、細胞濃度(20-80%, ww/v)、玻璃珠填充量(0-1,500 mL)、進氣速率(0-30 L/min)及破碎時間(0-12 min)。實驗結果發現,其中進氣速率對於ADH活性和蛋白質釋放的效率較其他操作條件的影響較不顯著,而攪拌速率快慢對於ADH與蛋白質釋放的影響最大。另外藉由一階動力學方程式求得最大釋放量與釋放速率常數。實驗結果顯示細胞破碎量、蛋白質及ADH活性之釋放速率常數分別為0.164 (1/min)、0.092 (1/min) 和0.065 (1/min)。藉由此單一效應操作條件之改變,尋求最佳ADH活性釋放之操作條件,其中細胞濃度為20%(ww/v)、攪拌速率之選擇為5,000 rpm、玻璃珠填充量為1,500 mL及進氣速率為30 L/min。此時可得到最高ADH活性和蛋白質釋放量,分別為2,442.88(U/g-cell)和314.49(mg/g-cell)。
A three-phase fluidized bed with a multi-disk impeller has been employed for disruption of baker’s yeast (Saccharomyces cerevisiae) in a batch process. The cell disruption was performed with 500 μm glass bead in a volume of cells 1,000 mL (20 mM sodium phosphate buffer, pH 8) at 4℃. The influences of operating parameters on the release of soluble protein (mg/g-cell) and alcohol dehydrogenase (ADH) (U/g-cell) were investigated. These parameters included rotational speed of impeller (0-5,000 rpm), yeast cell concentration in the slurry (20-80%, ww/v), glass bead loading in the grinding chamber (0-1,500 mL), superficial velocity of gas bubble (0-30 L/min), and cell disruption time (0-12 min). Under these operating conditions, there was less significant performance of breakage of yeast cells and release of soluble protein and ADH with changes in gas rate, as compared to other operating parameters. It was found that the impeller speed was the most significant parameter for the release of soluble protein and ADH. Disruption kinetics, as measured by the release of soluble protein and ADH, and degree of cell disruption, correlated well by a first-order rate equation. The maximum release rate constant of cell disruption, soluble protein, and ADH was found to be 0.164 (1/min), 0.092 (1/min) and 0.065 (1/min), respectively. The maximum release of ADH and soluble protein was 2,442.88 (U/g-cell) and 314.49 (mg/g-cell), respectively at impeller speed of 5,000 rpm, yeast cell concentration of 20% (ww/v), glass beads-volume of 1,500 ml, and gas rate of 30 L/min.
目錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
明志科技大學學位論文授權書 iii
誌謝 iv
中文摘要 v
Abstract vi
目錄 vii
圖目錄 x
表目錄 xii
縮寫對照表 xiii
符號表 xiv
第一章 緒論 1
第二章 文獻回顧 2
2.1細胞結構 2
2.2細胞破碎技術 2
2.1.1物理破碎 4
2.1.1.1 減壓 4
2.1.1.2 滲透壓衝擊 5
2.1.1.3 熱分解 5
2.1.1化學破碎 6
2.1.2.1 抗生素 6
2.1.2.2 螯合劑 6
2.1.2.3 離液劑 7
2.1.2.4 界面活性劑 7
2.1.2.5 溶劑 8
2.1.2.6 氫氧化物與次氯酸鹽 8
2.1.3酵素法 9
2.1.3.1 自溶 9
2.1.3.2 噬菌體分解 9
2.1.3.3 外來溶解酶 9
2.1.4機械法 10
2.1.4.1 高壓均質機 10
2.1.4.2 微流體化 11
2.1.4.3 球磨機 11
2.1.4.4 球磨機裝置之設計 12
2.2 攪拌式三相細胞破碎裝置 15
2.3 麵包酵母菌 19
2.4 乙醇脫氫酶 20
2.4.1 乙醇脫氫酶之來源與性質 20
2.4.2 乙醇脫氫酶之應用 20
2.5乙醇脫氫酶、總量蛋白質及細胞破碎最大釋放量之評估 21
第三章 實驗方法與材料 24
3.1 實驗材料 24
3.1.1 實驗藥品 24
3.1.2 實驗設備 25
3.2分析方法 26
3.2.1 總量蛋白質檢量線製作 26
3.2.2 菌液中總量蛋白質分析 27
3.2.3 細胞濃度檢量線製作 27
3.2.4 細胞破碎率之分析 28
3.2.5 乙醇脫氫酶活性之測定 29
3.3實驗方法 30
3.3.1 批次攪拌三相細胞破碎裝置操作步驟 30
3.3.2 操作條件的選擇 31
第四章 結果與討論 35
4.1 細胞破碎結果符號說明 35
4.1.1 進氣速率效應影響 38
4.1.2 菌液濃度效應影響 43
4.1.3 攪拌速率效應影響 48
4.1.4 玻璃珠填充量效應影響 53
第五章 結論與展望 58
參考文獻 60
參考文獻
Andrews B.A. , Asenjo J.A., Enzymatic lysis, Disruption of microbial cells.
Trends in Biotechnology , 5 (1987) 273-277.

Asenjo J.A., Dunnill P., The isolation of lytic enzymes from Cytophaga and their application to the rupture of yeast cells. Biotechnology and Bioengineering , 23 (1981) 1045-1056.

Asenjo J.A., Andrews B.A. , Pitts J.M., Design of enzyme systems for selective product release from microbial cells; isolation of a recombinant protein from yeast. Annals of the New York Academy of Sciences, 542 (1988) 140-152.

Balasundaram B., Harrison S.T.L., Influence of the extent of disruption of Bakers’ yeast on protein adsorption in expanded beds. Journal of Biotechnology, 133 (2008) 360–369.

Belter P.A., Cussler E.L., Hu W.S., Cell disruption, In Bioseparations: Downstream Processing for Biotechnology (Belter P.A., Cussler E.L. and Hu W.S., editors). John Wiley, New York, (1988) 77-98.

Brookman J.S.G., Mechanism of cell disintegration in a high pressure homogenizer. Biotechnology and Bioengineering, 16 (1974) 371-383.

Bunge F., Pietzsch L., Mfiller R., Slydatk C., Mechanical disruption of Arthrobacter sp. DSM 3747 in stirred ball mills for the release of hydrantoin-cleaving enzymes. Chemical Engineering Science, 47 (1992) 225-232.

Caldeira J.C.G., Cabral J.M.S., Extraction of a steroid 1,2 dehydrogenase by sonication of Arthrobacter simplex cells. Bioseparation , 4 (1994) 271-278.

Charinpanitkul, T., Soontornstaid, P., Mahakhant, A., Tanthapanichakoon, W., Microalgal cell disruption using a three-phase fluidized bed equipped with agitation, Word Congress in Particle Technology, 4 (2004).

Charinpanitkul T., Soottitantawat A., Tanthapanichakoon W., A simple method for bakers’ yeast cell disruption using a three-phase fluidized bed equipped with an agitator. Bioresource Technology , 99 (2008) 8935-8939.

Chisti Y., Moo-Young M., Disruption of microbial ceils for intracellular products. Enzyme and Microbial Technology, 8 (1986) 194-204.

Coilis M.A., O'Neill B.K., Middelberg A.P.J., Thermal deactivation affects disruption of Escherichia coli. Biotechnology Techniques , 9 (1995) 91-94.

Currie J.A., Dunnili P., Lilly M.D., Release of protein from bakers' yeast (Saccharomyces cerevisiae) by disruption in an industrial agitator mill. Biotechnology and Bioengineering , 14 (1972) 725-736.

de Smet M.J., Kingma J., Witholt B., The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli. Biochimica et Biophysica Acta, 506 (1978) 64-80.

De Virgilio C., Bürckert N., Boiler T., Wiemken A., A method to study the rapid phosphorylation-related modulation of neutral trehalase activity by temperature shifts in yeast. FEBS letters, 291 (1991) 355-358.

Deters D., Miiller U., Homberger H., Breakage of yeast cells: large scale isolation of yeast mitochondria with a continuous-flow disintegrator. Analytical Biochemistry, 70 (1976) 263-267.

Engler C.R., Disruption of microbial cells. In Comprehensive Biotechnology, (Moo-Young M., editor), vol. 2, Ch. 20, Pergamon Press, Oxford (1985) 305-324.

Felieiello I., Chinali G., A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli. Analytical Biochemistry, 212 (1993) 394-401.

Feliu J.X., Viilaverde A., An optimized ultrasonication protocol for bacterial cell disruption and recovery of β-galactosidase fusion proteins. Biotechnology Techniques , 8 (1994) 509-514.

Felix H., Permeabilized cells. Analytical Biochemistry, 120 (1982) 211-234.

Follows M., Hetherington P.J., Dunnill P., Lilly M.D., Release of enzymes from bakers' yeast by disruption in an industrial homogenizer. Biotechnology and Bioengineering, 13 (1971) 549-560.

Fraser D., Bursting bacteria by release of gas pressure. Nature, 167 (1951) 33-34.

Garrido F., Banerjee U.C., Chisti Y., Moo-Young M., Disruption of a recombinant yeast for the release of β-galactosidase. Bioseparation, 4 (1994) 319-328.

Harrison S.T., Dennis J.S., Chase H.A., Combined chemical and mechanical processes for the disruption of bacteria. Bioseparation , 2 (1991) 95-105.

Helenius A., Simons K., Solubilization of membranes by detergents. Biochimica et Biophysica Acta, 415 (1975) 29-79.

Hettwer D., Wang H., Protein release from Escherichia coli cells permeabilized with guanidine-HCl and Triton X100. Biotechnology and Bioengineering, 33 (1989) 886-895.

Hopkins T.R., Physical and chemical cell disruption for the recovery of intracellular proteins. Bioprocess technology, 12 (1991) 57-83.

Hughes D.E., Wimpenny J.W.T., Lloyd D. (1971), The disintegration of micro-organisms, In Methods in Microbiology, (Norris J.R. and Ribbons D.W., editors), 5B, Chap. 1, Academic, New York, 1-54.

Hunter J.B., Asenjo J.A., A population balance model of enzymatic lysis of microbial cells. Biotechnology and Bioengineering, 35 (1990) 31-42.

Hunter J.B., Asenjo J.A., A structured mechanistic model of the kinetics of enzymatic lysis and disruption of yeast cells. Biotechnology and Bioengineering, 31 (1988) 929-943.

Jackson R.W., DeMoss J.A., Effects of toluene on Escherichia coli. Journal of bacteriology, 90 (1965) 1420-1425.

Johnson B.H., Hecht M.H., Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Nature BioTechnology, 12 (1994) 1357-1360.
Jones M.N., Surfactant interactions with biomembranes and proteins. Chemical Society Reviews, 21 (1992) 127-136.

Katsui N., Tsuchido T., Hiramatsu R., Fujikawa S., Takano M., Shibasaki I., Heat-induced blebbing and vesiculation of the outer membrane of Escherichia coli. Journal of Bacteriology, 151 (1982) 1523-1531.

Keshavarz E., Bonnerjea J., Hoare M., Dunnill P., Disruption of a fungal organism, Rhizopus nigricans, in a high-pressure homogenizer. Enzyme and Microbial Technology, 12 (1990) 494-498.

Kohlrausch U., Höltje J.V., Analysis of murein and murein precursors during antibiotic-induced lysis of Escherichia coli. Journal of Bacteriology, 173 (1991) 3425-3431.

Kula M.R., Shütte H., Purification of proteins and the disruption of microbial cells. Biotechnology Progress, 3 (1987) 31-42.

Kwan H.S., Li C.C., Chiu S.W., Cheng S.C., A simple method to prepare intact yeast chromosomal DNA for pulsed field gel electrophoresis. Nucleic Acids Research, 19 (1991) 1347.

Leive L., The barrier function of the gram-negative envelope, Annals of the New York Academy of Sciences, 235 (1974) 109-129.

Limon-Lason J., Hoare M., Orsborn C.B., Doyle D.J., Dunnill P., Reactor properties of a high-speed bead mill for microbial cell rupture. Biotechnology and Bioengineering, 21 (1979) 745-774.

Lin H.M., Chan E.C., Chert C., Chen L.F., Disintegration of yeast cells by pressurized carbon dioxide. Biotechnology Progress, 7 (1991) 201-204.

Lin M.H., Yang Z., Chen L.F., An improved method for disruption of microbial cells with pressurized carbon dioxide. Biotechnology progress, 8 (1992) 165-166.

Lovitt R.W., Jones M., Collins S.E., Coss G.M., Yau C.P., Attouch C., Disruption of bakers’ yeast using a disrupter of simple and novel geometry. Process Biochemistry, 36 (2000) 415–421.

Ricci-Silva M.E., Vitolo M., Abrahao-Neto J. ,Protein and glucose-6-phosphate dehydrogenase releasing from baker’s yeast cells disrupted by a vertical bead mill.Process Biochemisrty, 35 (1999)831-835.

MacNeiil C.,Sneeringer J.R., Szatmary A., Optimization of cell disruption with bead mill. Pharamaceut. Engineering, 5(1985)34-38.

Marffy F., Kula M.R., Enzyme yields from cells of brewer's yeast disrupted by treatment in a horizontal disintegrator. Biotechnology and Bioengineering, 16 (1974) 623-634.

Melendres A.V., Honda H., Shiragami N., Unno H., Enzyme release kinetics in a cell disruption chamber of a bead mill. Journal of Chemical Engineering of Japan, 26 (1993) 148-152.

Melendres A.V., Unno H., Shiragami N., Honda H., A concept of critical velocity for cell disruption by bead mill. Journal of Chemical Engineering of Japan, 25 (1992) 354-356.

Middelberg, A. P. J., The release of intracellular bioproducts. Bioseparation and Bioprocessing, Vol. II: Processing, quality, and characterization, economic, safety and hygiene, (1998) 131-163.

Mogren H., Lindblom M., Hedenskog G., Mechanical disintegration of microorganisms in an industrial homogenizer. Biotechnology and Bioengineering, 16 (1974) 261-274.

Moldow C., Robertson J., Rothfield L., Purification of bacterial membrane proteins: The use of guanidinium thiocyanate and urea. The Journal of Membrane Biology, 10 (1972) 137-152.

Morein S., Henricson D., Rilfors L., Separation of inner and outer membrane vesicles from Escherichia coli in self-generating percoll gradients. Analytical Biochemistry, 216 (1994) 47-51.

Naglak T.J., Wang H.Y., Rapid protein release from Escherichia coli by chemical permeabilization under fermentation conditions. Biotechnology and Bioengineering, 39 (1992) 732-740.

Nakamura K., Enomotn A., Fukushima H., Nagai K., ltakoda M., Disruption of microbial cells by the flash discharge of high-pressure carbon dioxide. Bioscience, Biotechnology and Biochemistry, 58 (1994) 1297-1301.

Nen H.C., Heppel L.A., On the surface localization of enzymes in E. coli. Biochemical and Biophysical Research Communications, 17 (1964) 215-219.

Neu H.C., Heppel L.A., The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. Journal of Biological Chemistry, 240 (1965) 3685-3692.
Park P.K., Kim E.Y., Chu K.H., Chemical disruption of yeast cells for the isolation of carotenoid pigments. Separation and Purification Technology, 53 (2007) 148–152.

Parle J.N.,Yeast isolated from the Mammalian Alimentary tract.J.gen. Micromobiol, 17(1957)363-367.

Reed G., Nagodawithana T.W.,Yeast derived products. In Yeast Technology, (Reed G. and Nagodawithana T.W., editiors), 2nd ed., Chap. 8, Van Nostrand Reinhold, New York, (1991) 370-377.

Rees P., Cumming R.H., Watson J.S.,Rheology of heated bacterial DNA. In Proceedings of the 1994 IChemE Research Event, UCL, London. Institution of Chemical Engineers, Rugby, (1994) 183-185.

Rehácek J., Schaefer J., Disintegration of microorganisms in an industrial horizontal mill of novel design. Biotechnology and Bioengineering, 19 (1977) 1523-1534.

Sánchez-Ruiz S.A.,Studies on cell disruption and cell debris removal in downstream bioprocessing. M.S. Thesis, Massachusetts Institute of Technology, MA, USA. (1989) 176-181.

Sauer T., Robinson C.W., Glick B.R., Disruption of native and recombinant Escherichia coli in a high-pressure homogenizer. Biotechnology and Bioengineering, 33 (1989) 1330-1342.

Schmitt B., Pyruvate dehydrogenase in Escherichia coli: an active 17S species in crude extracts. Biochimie, 58 (1976) 1405-1407.

Schütte H., Kroner K.H., Hustedt H., Kula M.R., Experiences with a 20 litre industrial bead mill for the disruption of microorganisms. Enzyme and Microbial Technology, 5 (1983) 143-148.

Schütte H., Kula M.R., Pilot- and process-scale techniques for cell disruption. Biotechnology and Applied Biochemistry, 12 (1990) 599–620.

Schutte H., Kraume-Fiiigel R., Kula M.R., Scale-up of mechanical cell disintegration influence if stiirer geometry on residuce time distribution and cell disintegration in a 201 high-speed ball mill. Ger. Chemistry Engineering, 9(1986)149-156.

Sedmak J.J., Grossberg S.E., A rapid sensitive and versatile assay for protein usting Coomassie brilliant blue G250. Analytical Biochemistry, 79(1977)
544-552.

Shamlou P.A., Siddiqi S.F., Titchener-Hooker N.J., A physical model of high-pressure disruption of bakers' yeast cells. Chemical Engineering Science, 50 (1995) 1383 -1391.

Shetty K.J., Kinsella J.E., Effect of thiol reagents on extractability of protein from yeast. Biotechnology and Bioengineering, 20 (1978) 755-766.

Spratt B.G., Biochemical and genetical approaches to the mechanism of action of penicillin. Philosophical transactions of the Royal Society of London. Series B: Biological Sciences, 289 (1980) 273-283.

Susamai N., Charinpanitkul T., Tanthapanichakoon W., Baker yeast cell disruption using a three-phase fluidized bed equipped with an impeller. Word Congress in Particle Technology, 4 (2002) No. 138.
Tarahovsky Y.S., Ivanitsky G.R., Khusainov A.A., Lysis of Escherichia coli cells induced by bacteriophage T4. FEMS Microbiology Letters, 122 (1994) 195-200.

Chrinpanitkul T., Soottitantawat A., Tanthapanichakoon W., A simple method for bakers’ yeast cell disruption using a three phase fluidized bed equipped with an agitator. Bioresource Technology, 99(2008)8935-8939.

Torner M.J., Asenjo J.A., Kinetics of enzyme release from breadmaking yeast cells in a bead mill. Biotechnology Techniques, 5 (1991) 101-106.

Tsuchido T., Katsui N., Takeuchi A., Takano M., Shibasaki I., Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Applied and Environmental Microbiology, 50 (1985) 298-303.

Tuomanen E., Tomasz A., Induction of autolysis in nongrowing Escherichia coli. Journal of Bacteriology, 167 (1986) 1077-1080.

Vaara M., Agents that increase the permeability of the outer membrane. Microbiological Reviews, 56 (1992) 395-411.

Vallee B.L., Hoch F.L., Zinc, A component of yeast alcohol dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 41 (1955) 327-338.

Van Gaver D., Huyghebaert A., Optimization of yeast cell disruption with a newly designed bead mill.Enzyme and Microbial Technology, 13(1990) 665-671.

Watson J.S., Cumming R.H.,Release of intracellular protein by thermolysis. In Proceedings of the 4th European Congress on Biotechnology, (Neijssel O.M., van der Meer R.R. Luyben K., Ch. A.M., editors), vol. 2, Elsevier, Amsterdam, (1987) 526-529.

Watson J.S., Cumming R.H., Street G., Tuffnell J.M., Release of intracellular protein by thermolysis. In Separations for Biotechnology, (Verrall M.S. and Hudson M.J., editors), Ellis Horwood, London, (1987) 105-109.

Yusuf C., Murray M.Y., Disruption of microbial cells for intracellular products.Enzymes Microbial. Technology, 8 (1986) 194-204.

Zetelaki K., Disruption of mycelia for enzymes. Process Biochemistry, 4 (1969) 19-22&27.

Zhang Z., Blewett J.M., Thomas C.R., Modelling the effect of osmolality on the bursting strength of yeast cells. Journal of Biotechnology, 71 (1999) 17–24.

黃永年,利用三相細胞破碎裝置藉以尋求破碎酵母菌釋放乙醇脫氫酶最適化操作條件,碩士論文,明志科技大學生化工程研究所,(2009)。

霍丹群、張芸如、侯長軍,「Acetobactor Z127 乙醇脫氫酶的純化及酶學性質」,Journal of Chongqing University (Natural Science Edition),(2006),第29卷,第4期,頁65-68。

孫彥(1998),生物分離工程(第一版)。北京市:化學工業出版社。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 2.黃俊杰,<納稅者權利保護>,翰蘆圖書出版有限公司,2004年2月。
2. 6.陳清秀,<行政訴訟之訴訟標的>,1991年2月,初版。
3. 34.陳榮宗,<舉證責任分配與民事程序法>,台灣大學法學叢書(十七),1984年3月再版。
4. 42.蔡志方,<論協力義務之違反與遲延舉證在行政救濟上之效力>,月旦法學雜誌,第25期,1997年6月。
5. 46.姚瑞光,<民事訴訟法論>,大中國圖書公司,2000年11月修正。
6. 1.江敏雄,<贈與稅行政救濟官司幾則值得參考的實例>,稅務旬刊1875期,,2003年10月31日。
7. 3.吳東都,<行政訴訟之當事人協力義務>,月旦法學雜誌第77期,2001年10月。
8. 4.沈冠伶,<舉證責任與証據七曰之基本問題---以作業系統裝置契約之給付不完全為例>,台灣本土法學雜誌第36期,2006年7月。
9. 5.李建良,<行政種類與型態>,月旦法學教室,2002年12月
10. 6.李建良,<稅捐稽徵、協力義務與依法行政原則-簡評台北高等行政法院92年度訴字第2316號判決,月旦法學教室第二期,2002年12月4日。
11. 7.李瑞霖,<視同贈與課徵贈與稅系列報導(1)--無償免除或承擔債務>,稅務旬刊1886期,2004年2月20日。
12. 8.李瑞霖,<視同贈與課徵贈與稅系列報導(2)--無償免除或承擔債務>稅務旬刊1887期,2004年2月29日。
13. 9.李瑞霖,<視同贈與課徵贈與稅系列報導(3)--無償免除或承擔債務>稅務旬刊1888期,2004年3月10日。
14. 10.李瑞霖,<視同贈與課徵贈與稅系列報導(4)--無償免除或承擔債務>稅務旬刊1889期2004年3月20日。
15. 11.許玉慧,<不可不知的財產規劃方法--境外信託>,實用稅務350期,2004年2月。