跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖育琳
論文名稱:區間SETAR模式的建構分析與預測
論文名稱(外文):Interval SETAR modelling and forecasting evaluation
指導教授:吳柏林吳柏林引用關係
學位類別:碩士
校院名稱:國立政治大學
系所名稱:應用數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
畢業學年度:99
語文別:中文
論文頁數:48
中文關鍵詞:非線性區間軟計算門檻自迴歸觀光客匯率
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
雖然傳統線性時間數列在預測上已被廣泛的使用,但是在一般的時間數列中或多或少都會有結構改變(structural changes)的現象,我們往往很難找到一簡單的線性模式來詮釋資料中普遍存在的非線性(nonlinearity)結構,同時隨著模糊理論的興起與區間軟計算(soft computing)的發展,區間預測(interval forecasting)已成為未來研究的重點。本文應用模糊分類法(fuzzy classification),找出結構改變的位置,藉此發展出非線性的區間門檻自迴歸模式(interval SETAR model),再以「來臺觀光客人數」與「新臺幣兌美元匯率」作為實例,建構兩種區間門檻自迴歸模式與區間ARIMA模式並比較之,結果顯示兩種非線性的預測效果都比線性模式好。

第一章 前言........................................1
第二章 研究方法.....................................4
2.1門檻自迴歸模式..............................4
2.2模糊隸屬度與模糊熵分類法.....................8
2.3區間ARIMA模式、區間門檻自迴歸模式............10
2.4預測效率評估...............................12
第三章 實證分析-來臺觀光客人數.......................16
3.1資料來源...................................16
3.2以區間型ARIMA模式建構............................18
3.3平均累加模糊熵分類...............................19
3.4以區間型門檻自迴歸模式建構........................22
3.5預測結果比較與分析...............................28
第四章 實證分析-新臺幣兌美元匯率......................30
4.1資料來源........................................30
4.2以區間型ARIMA模式建構............................32
4.3平均累加模糊熵分類...............................33
4.4以區間型門檻自迴歸模式建構........................36
4.5預測結果比較與分析...............................42
第五章 結論........................................44
參考文獻...........................................46

中文部分:
[1]. 交通部觀光局 (2002)。觀光客倍增計畫。
[2]. 交通部觀光局 (2002)。觀光政策白皮書。
[3]. 交通部觀光局 (2007)。旅遊台灣年計畫。
[4]. 交通部觀光局 (2010)。中華民國年觀光年報。
[5]. 吳柏林 (1995) 時間數列分析與導論。台北:華泰書局。
[6]. 吳柏林、張建瑋 (1996)。非線性時間數列的分類與預測。第三屆三 軍官校基礎學術研討會論文集 98-214。
[7]. 吳柏林 (2000)。模糊數學與統計應用。台北:俊傑書局。
[8]. 吳柏林 (2005)。模糊統計導論:方法與應用。台北:五南出版社。
[9]. 沈中華 (2000)。40分鐘學會匯率危機預測。台北:新陸書局。
[10]. 李榮謙 (1999)。國際貨幣與金融。台北:智勝文化。
[11]. 阮正治 (1996)。遺傳演算法在非線性時間數列結構改變之分析與應用。國立政治大學統計系碩士論文。
[12]. 林茂文 (1992)。時間序列分析與預測。台北:華泰書局。
[13]. 林原宏 (2006)。模糊統計。台北:五南出版社。
[14]. 程友梅 (1995)。轉折型時間序列的認定。國立政治大學統計系碩士論文。
[15]. 張新發 (1996)。遺傳演算法在門檻自迴歸模式(d,r)值估計的應用。國立政治大學統計系碩士論文。
[16]. 楊奕農 (2006)。時間序列分析-經濟與財務上之應用。台北:雙葉書廊。
[17]. 賈昭南 (2002)。國際金融實務與理論。台北:華泰文化。

英文部分:
[1]. Chang, S.K. (2007). On the Testing Hypotheses of Mean and Variance for Interval Data. Management Science and Statistical Decision 4(2), 63-69.
[2]. Chatfield, C. (1993). Calculating Interval Forecasts. Journal and Business & Economic Statistics 11(2), 121-135.
[3]. Chen, S.M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy sets and systems 81, 311-319.
[4]. Huarng, K. (2001). Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy sets and systems 123(3), 387-394.
[5]. Hsu, H.L. (2008). Evaluating forecasting performance for interval data. Computers and Mathematics with Applications 56, 2155-2163.
[6]. Kashia, M., Hejaz, S.R. and Bijari, M. (2008). A new hybrid artificial neural networks and fuzzy regression model for time series forecasting. Fuzzy sets and systems 159, 769-786.
[7]. Kreinovich, V., Nguyen, H.T. and Wu, B. (2007). On-line algorithms for computing mean and variance of interval data, and their use in intelligent systems. Information
Sciences 177, 3228-3238.
[8]. Ludermir, T.B. (2008). Forecasting models for interval-valued time series. Neurocomputing 71, 3344-3352.
[9]. Nguyen, H.T. and Wu, B. (2006). Fundamentals of Statistics with Fuzzy Data. New York:Springer.
[10]. Römer, C. and Kandel, A. (2000). Statistical tests for fuzzy data. Fuzzy sets and systems 72(1), 1-26.
[11]. Tong, R.M. (1978). Synthesis of fuzzy models for industrial processes. International Journal of General Systems 5(4), 143-162.
[12]. Tsay, R.S. (1991). Detecting and modeling non-linearity in univariate time series Analysis. Statistica Sinica 1(2), 431-451.
[13]. Tseng, F.M., Tseng, G.H., Yu, H.C., and Yuan, B.C. (2001). Fuzzy ARIMA model for forecasting the foreign exchange market. Fuzzy sets and systems 118(1),9-19.
[14]. Tseng, F.M. and Tseng, G.H. (2002). A fuzzy seasonal ARIMA model for forecasting. Fuzzy sets and systems 126(3), 367-376.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊