跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/22 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林晉章
研究生(外文):Chin-Chang Lin
論文名稱:爐石混凝土波速與強度成長關係曲線之探討與現地強度評估之應用
論文名稱(外文):Investigation of the relationship between ultrasonic pulse velocity and strength development of slag concrete and its application to in-place strength evaluation
指導教授:林宜清林宜清引用關係
口試委員:鄭家齊江支弘劉宗豪
口試日期:2011-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:107
中文關鍵詞:爐石混凝土導電值飽和度波速強度
外文關鍵詞:slag concreteconductivity coefficientsaturation degreewave velocity and the compressive strength
相關次數:
  • 被引用被引用:5
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於探討爐石混凝土波速與強度之關係,並建立導電值與飽和度之間的關係,進而利用飽和度的差異修正現地量測之波速,實驗配比以兩種水泥糊體含量Vpaste36%與Vpaste42%,砂率45%,爐石取代30%水泥,搭配5種水灰比變化,共計10種配比進行波速與強度關係之建立,並以這10種配比建立導電值與飽和度之關係曲線。並利用這兩種關係曲線預估現地強度。
  實驗結果顯示,當現地量測波速受到現地含水狀態影響而造成波速推估強度有約30%的落差。若量測現地混凝土之導電值,並以導電值與飽和度以及飽和度的差異對波速進行修正,而所得之預估強度將大大提升正確性,顯示以含水狀態修正波速推估現地強度之可行性。


 The purpose of this thesis is to discuss the relationship between the wave velocity and the compressive strength of slag concrete. We establish the relationship between conductivity coefficient and the saturation degree of concrete, and further the relationship can be used to modify the wave velocity of in-place measurement by the difference of saturation degree. The specimens used in the studies are made of slag concrete with 30% replacement. The specimens has a constant volume ratio of fine aggregate to total aggregate. Ten concrete mixture proportions are used in the study and they include two cement paste volume ratios (Vpaste) of 36% and 42%, and five water-cement ratios of 0.3, 0.4, 0.5, 0.6, and 0.7. The specimens are used to establish the relationship between the wave velocity and the compressive strength. In addition, we also establish the relationship between conductivity coefficient and the saturation degree of concrete. Eventually, these two established relationship curves can be used to estimate in-place concrete strength.
 Experimental results show that concrete strength estimated by the measured wave velocity has an error of 30% without considering the effect of moisture content. We measure the in-place concrete conductivity coefficient and the related saturation degree to modify the wave velocity, effectively improving the accuracy of estimated compressive strength. Prove it possible to estimate in-place concrete strength by wave velocity modified by moisture content.


總目錄
摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI
目錄
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
第二章 文獻回顧 3
2-1 混凝土強度之非破壞性檢測技術介紹 3
2-2 混凝土之特性與材料組成 13
2-2-1 混凝土材料之組成 14
2-2-2 混凝土強度之影響因素 16
2-3 混凝土之波傳行為特性 19
2-3-1 波速檢測於混凝土性質之研究 19
2-3-2 影響混凝土波傳速度之主要因素 21
2-4 水泥糊體與混凝土之UPV與強度成長 23
2-4-1 水泥糊體UPV與抗壓強度之成長 23
2-4-2 混凝土UPV與抗壓強度之成長 23
2-4-3 粗骨材含量對硬固混凝土UPV與抗壓強度之影響 24
2-4-4 硬固混凝土UPV與抗壓強度模擬曲線 24
2-5 混凝土含水狀態對於UPV波速之影響[53] 26
第三章 儀器設備與實驗方法 27
3-1 應力波波速量測 27
3-1-1 超音波法 27
3-1-2 敲擊回音法 28
3-2 抗壓強度試驗 30
3-3 混凝土含水飽和度試驗 30
第四章 實驗規劃與試體製作 32
4-1 研究流程 32
4-2 實驗規劃 32
4-2-1 試體規劃 32
4-2-2 試驗材料與性質 33
4-3 試體製作 33
4-3-1 圓柱試體製作 33
4-3-2 立方型試體製作 34
4-3-3 版試體製作 34
第五章 實驗結果與討論 35
5-1 含水量與飽和度測定 35
5-1-1 導電值與飽和度測定結果分析 35
5-1-2 飽和度與波速測定結果暨關係曲線之建立 35
5-2 波速與強度關係探討 36
5-2-1 波速與強度之關係 36
5-2-2 波速與強度之成長關係 37
5-3 以版試體探討現地強度評估 37
5-3-1 以UPV預估現地混凝土不同齡期之強度 37
5-3-2 以IE-PV預估現地混凝土不同齡期之強度 39
5-3-3 以UPV預估硬固混凝土強度 40
5-3-4 以IE-PV預估硬固混凝土強度 40
第六章 結論與建議 42
參考文獻(REFERENCES) 43


表目錄
表2-1 量測混凝土超音波波速之相關規範[62] 48
表2-2 各種混凝土強度現場試驗法之原理與優缺點 49
表2-3 混凝土材料組成與性質之相關研究文獻 50
表2-3(續) 混凝土材料組成與性質之相關研究文獻 51
表2-4 混凝土材料波傳速度之相關研究文獻 52
表2-4(續) 混凝土材料波傳速度之相關研究文獻 53
表2-4(續) 混凝土材料波傳速度之相關研究文獻 54
表2-4(續) 混凝土材料波傳速度之相關研究文獻 55
表2-5 文獻[52]郭資料之混凝土配比 56
表2-6 文獻[52]郭資料混凝土試體之UPV與抗壓強度量測結果(w/c=0.3、0.4 S/A=30%、45%、60%) [52] 57
表2-6(續) 文獻[52]郭資料混凝土試體之UPV與抗壓強度量測結果(w/c=0.5、0.6 S/A=30%、45%、60%) [52] 58
表2-6(續) 文獻[52]郭資料混凝土試體之UPV與抗壓強度量測結果(w/c=0.7 S/A=30%、45%、60%) [52 59
表4-1 爐石混凝土之配比表 60
表4-2 臺中生活圈4號某工程之混凝土配比 60
表4-3 水泥(Cement)之物理化學性質 61
表4-4水淬高爐爐石粉試驗報告(由中聯資源股份有限公司提供) 62
表5-1 以文獻詹[53]之普通混凝土導電值與飽和度率定曲線修正波速預估強度 63
表5-2 以爐石混凝土之導電值與飽和度率定曲線修正波速預估強度 64
表5-3 整合普通混凝土與爐石混凝土之導電值與飽和度率定曲線修正波速預估強度 65
表5-4超音波法與敲擊回音法之波速差異 66
續表5-4超音波法與敲擊回音法之波速 67
表5-6以表面P波推估強度 69
表5-7 以文獻郭[52]之波速與強度迴歸曲線推估現地硬固混凝土強度 70
表5-8表面P波以文獻郭[52]之波速與強度迴歸曲線推估強度 71

圖目錄
圖2-1 反彈錘--構造示意圖 72
圖2-2 探頭貫入試驗--Windsor HP Probe 72
圖2-3 探頭貫入試驗--錐狀破裂區示意圖 73
圖2-4 彎裂試驗法示意圖 73
圖2-5(a)拉拔試驗原理示意圖 74
圖2-5(b)錐狀混凝土碎塊 圖2-5(c)擴孔構件及拉拔後混凝土表面狀況 74
圖2-6 直接拔出試驗示意圖 75
圖2-7 超音波試驗儀器及配置簡圖 75
圖2-8 敲擊回音法於混凝土版試驗示意圖 76
圖2-9 應力波動行為示意 76
圖2-10 Snell’s Law示意圖 77
圖2-11 混凝土版試體應力波路徑示意 78
圖2-12 場製圓柱試體模具 78
圖2-13 水灰比與抗壓強度之關係[50] 79
圖2-14 混凝土於不同水灰比在各材齡之強度成長[60] 79
圖2-15 減水劑使用及空氣解放圖 80
圖2-16 減水劑使聚集之水泥分散圖 80
圖2-17(a) 81
圖2-17 混凝土波速與強度之關係曲線(a)圓柱試體之波速與強度;(b) 81
圖2-18輕質骨材之波速量測示意圖 82
圖2-19 混凝土之波速與動彈性模數關係[35 ] 82
圖2-20 不同探頭頻率下混凝土及砂漿試體之縱向波速與橫向波速比較圖[25] 83
圖2-21 混凝土及砂漿試體之波速與強度關係[25] 83
圖2-22 骨材種類對混凝土波速與強度關係之影響[1] 84
圖2-23 骨材量對混凝土波速與強度關係之影響[1] 84
圖2-24 水泥石、水泥砂漿及混凝土之波速與強度關係之影響[1] 85
圖2-25 不同水灰比之波速成長曲線[55] 85
圖2-26 孔隙含量對混凝土抗壓強度、撓曲強度、波速及動彈性模數 86
圖2-27 養護溫度對混凝土抗壓強度與波速關係之影響[50] 86
圖2-28 含水條件對混凝土抗壓強度與波速關係之影響[12] 87
圖2-29 單位重與波速之關係 87
圖2-30 混凝土試體承受荷重下波速之變化[25] 88
圖2-31 水泥石(w/c=0.3~0.7)---(a) (UPV-齡期)關係;(b) (抗壓強度-齡期)關係[52] 88
圖2-32 混凝土(CAC=1165kg/m3) (a) (UPV-齡期)關係;(b) (抗壓強度-齡期)關係;(c) UPV之發展百分比;(d)抗壓強度之發展百分比[52] 89
圖2-33 混凝土(CAC=915kg/m3) (a) (UPV-齡期)關係;(b) (抗壓強度-齡期)關係;(c) UPV之發展百分比;(d)抗壓強度之發展百分比[52] 90
圖2-34 混凝土(CAC=666kg/m3) (a) (UPV-齡期)關係;(b) (抗壓強度-齡期)關係;(c) UPV之發展百分比;(d)抗壓強度之發展百分比[52] 91
圖2-35 水泥糊體、混凝土之UPV與強度關係(齡期28天) [52] 92
圖2-36 混合各配比之混凝土波速與強度關係[52] 92
圖2-37 硬固混凝土(28天齡期)在不同粗骨材含量情況下之波速與強度關係[52] 93
圖2-38 不同粗骨材含量之理論波速與強度關係曲線[52] 93
圖2-39 公式(2-9)對應在不同CAC下之係數a與b之值[52] 94
圖3-1 PUNDIT超音波試驗儀器 95
圖3-2波音波之波速量測方式 直接傳遞法(Direct Transmission) 95
圖3-3 混凝土試體石膏蓋平台 96
圖3-4 ELE1797D0001型抗壓試驗機 96
圖3-5 HI520含水量測定儀 97
圖4-1 Ф10×20cmh圓柱試體模 97
圖4-2 15cm×15cm×15cm立方型木模試體 98
圖5-1 W/C=0.3(Vpaste42,Vpaste36) 98
圖5-2 W/C=0.4(Vpaste42,Vpaste36) 99
圖5-3 W/C=0.5(Vpaste42,Vpaste36) 99
圖5-4 W/C=0.6(Vpaste42,Vpaste36) 100
圖5-5 W/C=0.7(Vpaste42,Vpaste36) 100
圖5-6 (Vpaste42,Vpaste36)兩者有些微差異,但仍有一致趨勢 101
圖5-7一般混凝土與爐石混凝土導電值與飽和度 101
圖5-8結合普通混凝土與爐石混凝土之導電值與飽和度關係 102
圖5-9 結合Vpaste36%及Vpaste42%波速比與飽和度關係曲線 102
圖5-10 Vpaste36%之波速比與飽和度關係曲線 103
本研究用水灰比0.5其關係式為Y=0.00000008898877003×X3-0.000006081421993×X2+0.00025380023×X+0.946297882 103
圖5-11 Vpaste42%之波速比與飽和度關係曲線 103
圖5-12普通混凝土Vpaste36%之波速比與飽和度關係曲線 104
圖5-13Vpaste36波速強度關係曲線 104
圖5-14Vpaste42波速強度關係曲線 105
圖5-15普通混凝土與爐石混凝土波速強度關係 105
圖5-16 Vpaste42 UPV成長率-齡期關係曲線 106
圖5-17 Vpaste36 UPV成長率-齡期關係曲線 106
圖5-18 強度成長率-齡期關係曲線 107
圖5-19 強度成長率-齡期關係曲線 107



1.V.R. Sturrup, F.J. Vecchio and H. Caratin, “Pulse Velocity as a Measure ofConcrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete,ACI SP-82, 1984; pp. 201-227
2. T.R. Naik and V.M. Malhotra, “The Ultrasonic Pulse Velocity Method”,Chapter 7 in CRC Handbook on Nondestructive Testing of Concrete, V.M.Malhotra and N.J. carino, Eds., CRC Press, Boca raton, FL,1991, pp.169-188.
3. V.M. Malhotra/Editor et al., “In Situ/Nondestructive Testing of Concrete”,ACI SP-82, 1984
4. Tanigawa, Y., Baba, K., and Mori, H., “Estimation of Concrete Strength by
Combined Nondestructive Testing Method”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 57-76.
5. ACI Committee 228 Report, “In-Place Methods to Estimate Concrete
Strength,” ACI 228.1R-95, 2003, 41 pages.
6. Bungey, J.H., "Testing of Concrete in Structures," Surrey University Press,
Glasgow, 1982, pp. 207
7. Malhotra, V.M., “Testing Hardened Concrete : Nondestructive Methods,”
ACI Monograph, No. 9, American Concrete Institute/Iowa State University
Press, Detroit, 1976, pp. 204.
8. RILEM Recommendations NDT 1, "Testing of Concrete by the Ultrasonic
Pulse Method," Paris, 1972, December.
9. Knab, L.J., Blessing, G.V., and Clifton, J.R. (), "Laboratory Evaluation of
Ultrasonics for Crack Detection in Concrete," ACI J., 80, 17, 1983.
10. Mary J. Sansalone and William B. Streett, “Impact-Echo: Nondestructive
Evaluation of Concrete and Masonry”, BULLBRIER Press, ITHACA, N.Y.,.1997, 339 pages.
11. Chao-Peng Lai, Yiching Lin, and Tsong Yen, “Behavior and Estimation of
Ultrasonic Pulse Velocity in Concrete,” The International Conference on Structural Engineering ,Mechanics and Computation, Cape Town South Africa, 2001, pp. 1365-1372.
12. Stephen Pessiki and Matthew R. Johnson, “Nondestructive Evaluation of
Early-age Concrete Strength In Plate Structures by the Impact-Echo Method,”ACI Materials Journal, Vol. 93, No.3, 1996, pp.260-271.
13. Galan Andrej, “Estimate of Concrete Strength by Ultrasonic Pulse Velocity
and Damping Constant,” ACI Journal, Vol. 64, No. 10, 1967, pp. 678-684.
14. Sandor Popovics, L. Joseph Rose, and John S. Popovics, “The Behavior of
Ultrasonic Pulses in Concrete,” Cement and Concrete Reaserch, Vol. 20, No.2,1990, pp.259-270.
15. Lin, Y.; Changfan, H,; and Hsiao, C., “Estimation of High-Performance
Concrete Strength by Pulse Velocity,” Journal of the Chinese Institute of
Engineers, Vol. 20, No. 6, 1998, pp. 661-668.
16. ASTM C 805 (1992), "Standard Test Method for Rebound Number of
Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02.
17. ASTM C 803 (1992), "Standard Test Method for Penetration Resistance of
Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02.
18. ASTM C 1150 (1992), "Standard Test Method for the Break-Off Number of Concrete," Annual Book of ASTM Standards, Vol. 04.02.
19. ASTM C 900 (1999), "Standard Test Method for Pullout Strength of
Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02.
20. BSI, 1992, “Recommendations for the Assessment of Concrete Strength by
Near-to-Surface Tests,” BS 1881, Part 207, British Standards Institution.
21. ASTM C 597 (1992), "Standard Test Method for Pulse Velocity Through
Concrete," Annual Book of ASTM Standards, Vol. 04.02.
22. ASTM C 1074 (1992), "Standard Practice for Estimating Concrete Strength
by the Maturity Method," Annual Book of ASTM Standards, Vol. 04.02.
23. ASTM C 873 (1992), "Test Method for Compressive Strength of Concrete
Cylinders Cast in Place in Cylindrical Molds," Annual Book of ASTM Standards, Vol. 04.02.
24. Brian B. Hope and Paul M. Hewitt, “Progressive Concrete Mix Proportioning”, ACI Materials Journal, Vol82, No.3, May-June 1985, pp.350-356.
25. Charles T. Kennedy, “The Design of Concrete Mixes”, ACI Materials Journal, Vol36, 1940, pp.373-400.
26. Leif Berntsson, Satish Chandra, and Tomas Kutti, “Principles and Factors
Influencing High-Strength Concrete Production”, Concrete International, Vol.12, No.12, December 1990, pp.59-62.
27. C.C. Yang and R. Huang, “ A Two-Phase Model for Predicting the Compressive Strength of Concrete”, Cement and Concrete Research, Vol.26,No.10, 1996, pp.1567-1577.
28. H.J. Chan, T.Yen, T.P. Lai and Y.L.Huang, “Determination of dividing strength and its relation to the concrete strength in lightweight aggregate concrete”, Cement and Concrete Composites, Vol.21, No.1, 1999, pp.29-37.
29. Popovics.S.,”Analysis of Concrete Strength versus water-cement ratio relationshop”ACI Materials Journal,Sep.-Oct.1990,PP.517-529.
30. Dan E.Branson,”Deformation of Concrete Structure” ,1978 .p.2
31. A.Meyer Betonstein Zeitung,Vol.29,No.8,1963,PP.391-394
32. T.R. Naik, “The Ultrasonic Testing of Concrete”, Published by ACI in Experimental Methods in Concrete Structure for Practitioners, G.M. Sabnis and N. Fitzsimons, Eds, October 1979.
33. J.Műller-Rochholz, “Determination of the Elastic Properties of Lightweight Aggregate by Ultrasonic Pulse Velocity”, The International Journal of Lightweight Concrete, Vol.1, No.2, 1979, pp.87-90.
34. R. E. Philleo, “Comparison of Results of Three Methods for Determining Young’s Modulus of Elasticity of Concrete”, Journal of ACI, Vol.51, No.5, January 1955,pp.461-469.
35. Klieger Paul, “Long-Time Study of Cement Performance in Concrete, Chapter 10-Progress Report on Strength and Elastic Properties of Concrete”, Journal of ACI, Vol.54, No.6, December 1957,pp.481-503.
36. W.F. Price and J.P. Hynes, “In-Situ Strength Testing of High Strength Concrete”, Magazine of Concrete Reseach, Vol.48, No.176, Sept. 1996,pp.189-197.
37. A. Anderson David and K. Seals Roger, “Pulse Velocity as a Predictor of 28- and 90-Day Strength”, ACI Materials Journal, Vol.78, No.2 March-April 1981, pp.116-122.
38. M.F. Kaplan, “Compressive Strength and Ultrasonic Pulse Velocity Relationships for Concrete in Columns”, Journal of ACI, Vol.54, No.8, February 1958,pp.675-688.
39. P. S. Pessiki and N.J. Carino, “Setting Time and Strength of Concrete Using the Impact-Echo Method”, ACI Materials Journal, 1988; Vol.85, No.5, pp.389-399.
40. H. W. Chung and K.S. Law, “Diagnosing in Situ Concrete by Ultrasonic Pulse Technique”, Concrete International, Vol.13, No.10,1983, pp.42-49.
41. F. Sellect Scott, N. Landis Eric, L. Peterson Michael, P. Shah Surendra and D. Achenbach Jan, “Ultrasonic Investigation of Concrete with Distributed Damage”, ACI Materials Journal, Vol.95, No.1, January-February 1998, pp.27-36.
42. Wimal Suaris and Viraj Fernando, “Ultrasonic Pulse Attenuation as Measure of Damage Growth during Cyclic Loading of Concrete”, ACI Materials Journal, May-June 1987, Vol.84, pp.185-193.
43. T.T. Wu and T. F. Lin, “The Stress Effect on the Ultrasonic Velocity Variation of Concrete under Repeated Loading”, ACI Materials Journal, Vol.95, No.5, September-October 1998, pp.519-524.
44. Andersen Johannes and Nerenst Poul, “ Wave Velocity in Concrete” Journal of ACI, Vol.48, No.8, April 1952,pp.613-636. 37
45.R. Jones, “Testing of Concrete by an Ultrasonic Pulse Technique”, RILEM Int. Symp. On Nondestructive Testing of Materials and Structures, Paris Vol.1, Paper No.A-17, January 1954, pp.137, RILEM Bull. No.19, 2nd part, November 1954.
46. M.F. Kaplan, “Effects of Incomplete Consolidation on Compressive and Flexural Strength, Ultrasonic Pulse Velocity, and Dynamic Modulus of Elasticity of Concrete”, Journal of ACI, Vol.56, No.9, March 1952, pp.853-867.
47. Sandor Popovics, “A Hypothesis Concrete the Effects of Macro-Porosity on Mechanical Properties of Concrete”, Fracture of Concrete and Rock, SEM-RILEM International Conference, June 1987,Houston Texas, pp.170-174.
48. ASTM C 597 (1992), "Standard Test Method for Pulse Velocity Through Concrete," Annual Book of ASTM Standards, Vol. 04.02.
49. ASTM C 1383 (1998). "Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method" Annual Book of ASTM Standards, Vol. 04.02., 1998.
50. Malhotra, V.M., /Editor et al. (1984).“In Situ/Nondestructive Testing of Concrete”, ACI SP-82, 1984.
51.Komloš, K., Popovics, S., Nürnbergerová, T., Babál, B. and Popovics, J.S. (1996).〝Ultrasonic Pulse Velocity Test of Concrete Properties as Specified in Various Standards,〞Cement and Concrete Composites Volume: 18, June 1996, pp. 357-364.
52. 郭世芳,「探討超音波速度與混凝土抗壓強度之關係與其應用」,國立中興大學土木工程學系博士論文,民國九十六年七月
53. 詹智捷,「混凝土含水狀態之量測與超音波波速關係之建立」國立中興大學土木工程學系碩士論文,民國九十九年七月。
54. 張范宏,「以縱波波速評估高性能混凝土強度研究」國立中興大學土木工程學系碩士論文,民國八十五年七月
55. 賴朝鵬,「混凝土材料組成對其流動性質與波傳行為之影響」,國立中興大學土木工程學系博士論文,民國八十八年六月
56. 干裕成,「劣化混凝土材料應力波傳速度與E 值、老化時程及抗壓強度之關係」行政院原子能委員會委託研究計畫研究報告,民國92 年12 月。
57. 楊仲家,黃然,葉為忠, “以微觀力學探討粗骨材對高性能混凝土之影響”,第三屆結構工程研討會, 1996,pp.1785-1793。
58. 邱欽賢,「水工結構混凝土之抗沖蝕性」,國立中興大學土木工程學系碩士論文,民國91 年6 月。
59. 劉玉雯,「應用於水工結構表層之高性能混凝土磨損行為」,國立中興大學土木工程學系博士論文,民國95 年1 月。
60. 沈進發,”混凝土品質控制”,第三版,民國72 年9 月,第7-35 頁。
61. 林炳炎,“飛灰與飛灰混凝土”,現代營建,民國82 年7 月
62. 黃兆龍,“混凝土性質與行為",詹氏書局,民國86 年8 月。
63. 島川正憲 著,賴迪陽 譯,「超音波工學理論實務」,復漢出版社,民國71 年。
64. 黃啟貞,“超音波檢測試驗法",中華民國非破壞檢測協會(上冊),民國69 年。
65. 陳建財,「建立飛灰爐石粉混凝土波速與強度關係曲線並評估及其應用」。民國九十四年七月。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊