(3.237.178.91) 您好!臺灣時間:2021/03/07 02:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠璋
研究生(外文):Kuan-Chang Chen
論文名稱:以溶膠凝膠法製備二氧化鈦擔持於奈米碳管之觸媒及其光催化活性之研究
論文名稱(外文):Synthesis and Photocatalytic Activity of Titania Catalyst Supported on Carbon Nanotubes by Sol-Gel Method
指導教授:楊鴻銘楊鴻銘引用關係
指導教授(外文):Hung-Ming Yang
口試委員:王茂齡吳和生
口試日期:2011-06-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:153
中文關鍵詞:光催化反應光觸媒二氧化鈦奈米碳管溶膠凝膠法
外文關鍵詞:photocatalytic reactionphotocatalysttitaniacarbon nanotubessol-gel method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究目的為將二氧化鈦擔持於奈米碳管載體表面,將其應用於光催化反應,觸媒製備變數包含不同煅燒溫度、碳管酸處理之變化、不同奈米碳管添加比例、不同正丙醇添加量、不同溶劑添加、不同碳管管徑、不同超音波功率製備,觸媒活性則以石英玻璃反應器在50 ppm甲基橙水溶液250 ml於150分鐘紫外光照射下進行反應測試。光催化反應變因包含不同初濃度之甲基橙水溶液、不同pH值甲基橙水溶液及不同波長光源進行光催化反應。
  實驗結果顯示,利用溶膠凝膠法製備觸媒,當煅燒溫度為500℃時觸媒可以提高甲基橙水溶液之轉化率,於二氧化鈦中添加25%之奈米碳管之觸媒能夠有效提升觸媒的分散情況及反應活性,添加10-20 nm奈米碳管作為載體,提供高表面積,於150分鐘光催化反應,其轉化率可以達到43.5%。當以一百瓦之超音波功率進行合成觸媒,可以降低水解速率,降低二氧化鈦之晶粒尺寸,其晶粒尺寸為23.5 nm。
  以超音波功率為一百瓦製備觸媒TiO2(75)/CNT(25),觸媒於進行光催化反應操作變因中,當波長為306 nm之光源進行光照反應,甲基橙轉化率可達到66.3%,速率常數值為商用觸媒之1.6倍,而當甲基橙水溶液pH值為4時亦有較佳的光催化活性。


  In this dissertation, the purpose of this study is to prepare titania supported on carbon nanotubes(CNTs) and to apply it on photocatalytic reaction. The catalysts were tested by quartz glass reactor under the UV light illumination. The parameters of catalyst preparation include the different temperatures of calcinations, acid-treatment of carbon nanotubes, ratios of CNTs to titania, ratio of n-propanol of titanium n-butoxide, different solvents, different diameters of CNTs and different ultrasonic powers. Operating conditions in photocatalytic reaction included different initial concentrations of methyl orange solution, different pH value of methyl orange solution, and different wavelength illumination..
The results revealed that the catalyst prepared by sol-gel method, and calcinations of temperature at 500℃ enhanced the conversion of methyl orange solution. The amount of CNTs at 25% enhanced activity and dispersion of catalyst. Adding the 10-20 nm of CNTs for support can make catalyst obtain large surface. Under the UV light illumination, methyl orange solution converted 43.5%. The catalyst prepared by the ultrasonic that the power under 100W, the titaia crystal size about 23.5 nm.
  The catalyst of TiO2(75)/CNT(25) was used to proceed the photocatalytic reaction. Photodegradation of the methyl orange solution under irradiation of UV light (306 nm), the conversion of methyl orange solution was 66.3%, and the rate constant was 1.6 times commercial catalyst. When the pH value of methyl orange solution was 4, the photocatalyst had better photocatalytic activity.


目錄
摘要 I
Abstract II
致謝 III
表目錄 VIII
圖目錄 XIII
符號說明 XV
第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 2
第二章 文獻回顧與基本原理 6
2-1 二氧化鈦基本性質 6
2-2 二氧化鈦之合成方法 8
2-2-1 溶膠-凝膠法(Sol-Gel method) 8
2-2-2 熱水解法 (Thermal hydrolysis method) 11
2-2-3 水熱法 (Hydrothermal method) 11
2-2-4 微乳膠法 (Microemulsion method) 12
2-2-5 含浸法 (Impregnation method) 12
2-2-6 化學氣相沉積法 (Chemical Vapor deposition,CVD) 13
2-2-7 液相沉積 (Liquid phase deposition, LPD) 13
2-3 半導體異相光催化反應原理 14
2-3-1 量子尺寸效應(Quantum Size Effects) 14
2-3-2 半導體光催化之反應原理 15
2-4 二氧化鈦光催化之改進 17
2-4-1 金屬原子負載 18
2-4-2 將過渡金屬離子摻入二氧化鈦 18
2-4-3 複合半導體 19
2-5 奈米碳管 20
2-5-1 奈米碳管的之基本特性 20
2-5-2 奈米碳管之製備與合成方法 22
2-5-3 奈米碳管之應用 23
2-6 光觸媒反應文獻回顧 24
第三章 實驗設備與方法 28
3-1實驗藥品 28
3-2實驗設備 29
3-3 分析儀器 29
3-3-1 X-ray繞射儀(X-ray Diffraction Spectrometer) 30
3-3-2 BET表面積與孔洞分析儀(Brunauer-Emmett-Teller) 32
3-3-3場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope,FE-SEM) 33
3-3-4 X光能量散佈儀(X-ray Energy Dispersive Spectrometer,EDS) 34
3-3-5熱重分析儀(Thermogravimetric Analysis,TGA)氣相層析儀 34
3-3-6穿透式電子顯微鏡(Transmitted Electron Microscope,TEM) 35
3-3-7傅立葉轉換紅外線光譜儀(FT-IR) 36
3-3-8紫外-可見光光譜儀(UV-vis Spectrophotometer) 37
3-4 實驗方法 38
3-5 觸媒於甲基橙光催化反應 40
3-6 甲基橙(MO)水溶液檢量線 44
第四章 觸媒活性與特性分析 45
4-1 前言 45
4-2 觸媒條件探討 48
4-2-1 不同煅燒溫度對二氧化鈦光觸媒之影響 48
4-2-2 酸前處理對奈米碳管之影響 61
4-2-3 添加不同奈米碳管比例對光觸媒之影響 73
4-2-4 不同正丙醇添加量對光觸媒之影響 87
4-2-5不同溶劑製備二氧化鈦對光觸媒之影響 94
4-2-6不同管徑擔持二氧化鈦對光觸媒之影響 106
4-2-7不同超音波功率之製備對光觸媒之影響 118
4-3 結論 127
第五章 光催化反應操作條件探討 129
5-1 前言 129
5-2 不同初濃度甲基橙水溶液對光催化反應之影響 130
5-3 不同pH值甲基橙水溶液對光催化反應之影響 134
5-4 不同波長光源對甲基橙光催化反應之影響 139
5-5 結論 145
第六章 總結 146
參考文獻 150


1.E. M. Levin, H. F. McMurdie, "Phase diagrams for ceramists", The American Cermic Society, Inc., 76 (1975) 4150-4999.
2.L. Linsebigler, G. Lu, T. Yates, “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results”, Chemical reviews, 95 (1995) 735-758.
3.R. L. Penn, J. F. Banfield, “Formation of rutile nuclei atanatase twin interfaces and the phase transformation mechanismin nanocrystalline titania”, American Mineralogist, 84 (1999) 871-876.
4.K. B. Jeremy, T. Hughbanks, G. J. Miller, J. W. Richardson, J. V. Smith, “Structural-Electronic Relationships in Inorganic Solids:Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, Journal of American Chemical Society, 109 (1987) 3639-3646.
5.A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238 (1972) 37-38.
6.M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi M. Toyoda, “Preparation of stable anatase-type TiO2 and its photocatalytic performance”, International Journal of Inorganic Materials, 3 (2001) 809–811.
7.J. Yang, S. Mei, M. F. Rerreira, “Hydrothermal synthesis of nanosized titania powder: influence of peptization and peptizing agents on the crystalline phases and phase transition”, Journal of the American Ceramic Society, 83 (2000) 1361-1368.
8.J. C. Summers, S. A. Ausen, “Catalyst impregnation: Reactions of noble metal complexes with alumina”, Journal of Catalysis, 52 (1978) 445-452.
9.K. Tsukuma, T. Akiyama, H. Imai, “Liquid phase deposition film of tin oxide”, Journal of Non-Crystalline Solids, 210 (1997) 48-54.
10.A. L. Linsebigler, G. Lu, J. T.Yates, “ Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chemical reviews, 95 (1995) 735-758.
11.A. Mills, H. S. Le, “An overview of semiconductor photocatalysis” Journal of Photochemistry and Photobiology A: Chemistry, 108 (1997) 1-35.
12.J. M. Herrmann, H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe, A. Fernandez, “Characterization and photocatalytic activity in aqueous medium of TiO2and Ag-TiO2 coatings on quartz”, Applied Catalysis B-environmental, 13 (1997) 219-228.
13.W. Choi, A. Termin, M. Hoffmann, “The role of metal ion dopants in quantum-size TiO2: correlation between photoactivity and charge carrier recombination dynamics”, Journal of Physical Chemistry, 98 (1994) 13669-13679.
14.N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors”, Journal of Photochemistry and Photobiology A: Chemistry, 85 (1995) 247-255.
15.S Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354 (1991) 56-58.
16.S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter” , Nature, 363 (1993) 603-605.
17.D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls” Nature, 363 (1993) 605-607.
18.洪昭南、徐逸明、王宏達 ,「奈米碳管結構及特性簡介」,化工,第49卷第1 期,第23-30 頁,2002。
19.M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon, 33 (1995) 883-891.
20.V. N. Popov, “Carbon nanotubes: properties and application”, Materials Science and Engineering, 43 (2004) 61-102.
21.R. W. Matthews, “Photooxidation of organic impurities in water using thin films of titanium dioxide”, Journal of Physical Chemistry, 91 (1987) 3328-3333.
22.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, 293 (2001) 269-271.
23.S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr., “Efficient Photochemical WaterSplitting by a Chemically Modified n-TiO2” Science, 297 (2002) 22-43.
24.L. Zhang, Y. Zhu, Y. He, W. Li, H. Sun, “Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel ”, Applied Catalysis A: General, 308 ( 2006) 82-90.
25.W. G. Zhang, L. L. Zhang, Z. J. Jiang, R. Q. Li, X. J. Yang, X. Wang, L. D. Lua, “Synthetic route to the nano-sized titania with high photocatalyticactivity using a mixed structure-directing agent”, Materials Chemistry and Physics, 105 (2007) 414–418.
26.D. L. Liao, B. Q. Liao, “ Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants”, Journal of Photochemistry and Photobiology A: Chemistry, 187 (2007) 363–369.
27.A. K. L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, “ One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity” Applied Catalysis B: Environmental, 91 (2009) 397–405.
28.J. Tian, J. Wang, J. Dai, X. Wang, Y. Yin, “ N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange”, Surface and Coatings Technology, 204 (2009) 723–730.
29.C. C. Mao, H. S. Weng, “ Promoting effect of adding carbon black to TiO2 for aqueous photocatalytic degradation of methyl orange”, Chemical Engineering Journal, 155 (2009) 744–749.
30.C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, “Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes”, Journal of Hazardous Materials, 176 (2010) 807–813.
31.R. A. Spurr, W. Myers, “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer”, Analytical Chemistry, 29 (1957) 760-762.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔