跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱韋名
研究生(外文):Wei-Ming Chu
論文名稱:超音波輔助雙活性基相間轉移觸媒在固-液相系統催化酯化合成對-羥基苯甲酸苯甲酯之研究
論文名稱(外文):Synthesis of Benzyl 4-Hydroxybenzoate by Ultrasound-Assisted Phase-Transfer Catalysis with Dual-Site Phase-Transfer Catalyst in Solid-liquid System
指導教授:楊鴻銘楊鴻銘引用關係
口試委員:王茂齡吳和生
口試日期:2011-06-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:132
中文關鍵詞:雙活性基相間轉移觸媒固-液相超音波化學
外文關鍵詞:Dual-site phase-transfer catalystSolid-liquid phaseSonochemistr
相關次數:
  • 被引用被引用:1
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討超音波輔助雙活性基相間轉移觸媒在固-液相中催化對-羥基苯甲酸鈉與溴化苯甲基合成對-羥基苯酸鉀苯甲酯之酯化反應。雙活性基相間轉移觸媒是以4,4’-二(氯甲基)-1,1’-聯苯與三丁胺反應,並以乙腈為溶劑在溫度70˚C下反應生成氯化4,4’-二(三丁基銨基甲基)-1,1’-聯苯(QCl2)。應用此觸媒在本系統中探討內容包括操作變數對合成對-羥基苯甲酸苯甲酯之效應及其反應動力學探討。
操作變數包括不同攪拌速率、不同觸媒量、不同水量、不同有機相反應物添加量、不同有機溶劑、不同觸媒、不同溫度和鹽類效應等變因作催化反應探討。在本系統中,攪拌速率250 rpm時產率有最大值,超過250 rpm則因整體溶液飛濺於瓶壁上造成反應物殘留於瓶壁使得產率下降。而添加微量的水也能有效的提升產率;當完全不添加水時反應30分鐘後產率僅3.7%,若於系統中添加1毫升去離子水則可使產率在反應30分鐘後大幅提升至84.32%。當使用高極性的溶劑如甲基異丁基酮會有最佳的催化效果,使用微極性或無極性的溶劑如甲苯與正庚烷時產率較低或幾乎無產物生成,顯示溶劑極性的高低對產率影響很大。在與一般單活性基之商業觸媒比較時,可發現自行合成之雙活性基觸媒有較佳的催化效果,Kapp視反應速率常數約為溴化四丁基銨的1.5倍。
在反應機制上,觸媒中間體與有機相反應物所進行的本質反應發生在固-液界面與有機相的界面處。反應過程中隨著產物對-羥基苯甲酸苯甲酯的生成,則同時有副產物溴化鈉鹽類的生成,其實驗結果可用虛擬一階線性方程式-ln(1-Y)=Kappt表示之,式中Kapp為視反應速率常數。於超音波頻率28 kHz、超音波功率300 W及攪拌速率250 rpm、溫度60˚C條件下,在不添加觸媒時反應30分鐘僅能達到12.04%的產率,而若添加0.5毫莫耳的觸媒氯化4,4’-二(三丁基銨基甲基)-1,1’-聯苯則可使產率提升至84.32%。系統中以固體反應物為限量試劑,過量添加有機相反應物可使反應速率提升,添加過量15倍的溴化苯甲基時系統達最高產率;超音波及攪拌同時輔助才能使系統達到催化的效果。以甲基異丁酮為溶劑在超音波輔助下經Arrhenius方程式計算可得活化能為24.05 kcal/mol。


摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XII
符號說明 XIII
第一章 緒論 1
一、 前言 1
二、 相間轉移觸媒之簡介 1
(一) 相間轉移觸媒的反應類型 3
(二) 相間轉移觸媒的反應型態 9
三、 固-液相相間轉移觸媒催化反應 14
(一) 固-液相相間轉移催化反應的發展與回顧 14
(二) 固-液相相間轉移催化反應的原理 18
四、 酯化反應 22
(一) 一般酯類合成方法 22
(二) 相間轉移觸媒催化反應合成酯類 24
五、 超音波原理與應用 26
(一) 超音波化學原理 26
(二) 超音波在相間轉移觸媒催化之應用 29
六、 研究目的與方法 31
第二章 實驗設備與實驗方法 34
一、 實驗藥品 34
二、 實驗設備與分析儀器 35
三、 產物之合成 38
四、 觸媒中間體之製備 38
五、 校正曲線 39
六、 中間相觸媒中間體的定量方式 42
七、 觸媒正電荷離子(Q2+)的含量滴定 42
八、 反應動力學實驗步驟 43
第三章 雙活性基相間轉移觸媒合成與分析 44
一、 前言 44
二、 雙活性基相間轉移觸媒之合成與分析 44
(一) 雙活性基相間轉移觸媒的合成與純化 44
(二) 雙活性基相間轉移觸媒之鑑定與分析 45
第四章 超音波輔助雙活性基相間轉移觸媒在固-液相催化合成對-羥基苯甲酸苯甲酯 51
一、 前言 51
二、 反應機構與動力學模式推導 52
(一) 反應機構 52
(二) 反應動力學推導 53
三、 反應機制驗證 58
四、 再現性測試 60
五、 攪拌速率與超音波交互作用對催化反應的影響 61
六、 攪拌速率對催化反應的影響 63
七、 觸媒與水的添加交互作用對催化反應的影響 68
八、 水用量對催化系統的影響 70
九、 相間轉移觸媒添加量對催化系統的影響 76
十、 有機溶劑的種類對催化反應的影響 79
十一、 反應溫度對催化反應的影響 84
(一) 溫度對催化反應的影響 84
(二) 視活化能計算 93
十二、 有機相反應物添加量對催化反應的影響 95
十三、 本質反應 99
十四、 鹽類效應 101
十五、 氫氧化鈉對催化反應之影響 103
十六、 不同觸媒對催化反應的影響 105
十七、 超音波效應對催化反應的影響 107
(一) 超音波頻率對催化反應的影響 107
(二) 超音波功率對催化反應的影響 113
十八、 結論 117
第五章 總結 121
參考文獻 124
附錄 130



[1]J. Jarrouse, “The influence of Quaternary Chloride on the Reaction of Labike Hydrogen Compound and Chlorine-Substituted Chlorine Derivatives,’’ C.R Heabd. Seances Acad. Sci, C232,1424 (1951)
[2]C.M. Starks, “Phase Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts,” J. Am. Chem. Soc., 93 (1971) 195-199.
[3]L. J. Mathias, R. A. Vaidya, “Inverse Phase Transfer Catalysis. First report of a new class of interfacial reactions”, J. Am. Chem. Soc., 108 (1986) 1093-1094.
[4]P. Tundo, P. Venturello, “Synthesis Catalytic Activity, and Behavior of Phase-Transfer Catalysts Supported on Silica Gel. Strong Influence of Substrate Adsorption on Polar Polymeric Matrix on the Efficiency of the Immobilized Phosphonium Salts” , J. Am. Chem. Soc. , Vol. 101 (1979) 6606-6613.
[5]S.L. Regen, J.J. Besse, J. Mcliick, “Solid Phase Cosolvent Triphase Catalytic Hydrolysis of 1-Bromoadamantane”, J. Am. Chem. Soc., 101 (1979) 166-120.
[6]L.K. Doraiswamy, S. Desikanl, “Enhanced Activity of Polymer-Supported Phase Transfer Catalysts”, Chemical Engineering Science, 55 (2000) 6119-6127.
[7]H. M. Yang, C. C. Huang, “Green Conversion of Phenolic Compound to Benzoate Over Polymer-Supported Phase-Transfer Catalysts”, Catalysis Letters, 128 (2009) 235-242.
[8]R. Neumann, Y. Sasson, “Mechanism of Base Catalyzed Reactions in Phase-Transfer Systems with Poly(ethylene glycols) as catalysts. The Isomerization of Allylanisole”, Journal of Organic Chemistry, 49 (1984) 3448-3451.
[9]H. M. Yang, C. C. Huang, “Kinetics for benzoylation of sodium 4-acetylphenoxide via third-liquid phase in the phase-transfer catalysis,” Applied Catalysis A: General 290 (2005) 65-72.
[10]H. M. Yang, C. C. Li, “Kinetics for synthesizing benzyl salicylate by third-liquid phase-transfer catalysis”, Journal of Molecular Catalysis A:Chemical, 246 (2006) 255-262.
[11]H. M. Yang, C. C. Chiu, “Ultrasound-assisted phase-transfer catalysis: Benzoylation of sodium 4-acetylphenoxide by dual-site phase-transfer catalyst in a tri-liquid system”, Ultrasonics Sonochemistry 18 (2011) 363-369.
[12]A.W. Herriott, D. Picker, “Phase transfer catalysis. An evaluation of catalysts”, J. Am. Chem. Soc. 97 (1975) 2345-2349.
[13]A. Brandstrom, “Preparative Ion Pair Extraction, An Introduction to Theory and Pratice”, Apotekarsocieteten / Hassle, Lakemedel, Sweden (1974) 139-148.
[14]M. Kitamura, Y. Arimura, S. Shirakawa, K. Maruoka, “Combinatorial approach for the design of new, simplified chiral phase-transfer catalysts with high catalytic performance for practical asymmetric synthesis of a-alkyl-a-amino acids”, Tetrahedron Letters 49 (2008) 2026-2030.
[15]J. H. Lee, M. S. Yoo, J. H. Jung, S. S. Jew, H. G. Parka, B. S. Jeongb, “Polymeric chiral phase-transfer catalysts derived from cinchona alkaloids for enantioselective synthesis of α-amino acids”, Tetrahedron 63 (2007) 7906-7915.
[16]E. Murugan, A. Sivab, “Preparation of a novel soluble multi-site phase transfer catalyst and the kinetic study for the C-alkylation of α-pinene”, Journal of Molecular Catalysis A: Chemical 235 (2005) 220-229.
[17]P.A. Vivekanand, T. Balakrishnan, “Superior catalytic efficiency of a new multi-site phase transfer catalyst in the C-alkylation of dimedone -A kinetic study”, Catalysis Communications 10 (2009) 1371-1375.
[18]M. L. Wang, Y. M. Hsieh, “Kinetic study of dichlorocyclopropanation of 4-vinyl-1-cyclohexene by a novel multisite phase transfer catalyst”, Journal of Molecular Catalysis A: Chemical 210 (2004) 59-68.
[19]A. Siva, E. Murugan, “Synthesis and characterization of novel multi-site phase transfer catalyst and its catalytic efficiency for dichlorocarbene addition to citral”, Journal of Molecular Catalysis A: Chemical 241 (2005) 101-110.
[20]C. L. Liotta, H. P. Harris, “The Chemistry of “Naked” Anions. I. Reactions of the 18-Crown-6 Complex of Potassium Fluoride with Organic Substrates in Aprotic Organic Solvents ”, J. Am Chem. Soc. 96 (1974) 2250.
[21]M. Fedorynski, K. Wojciechowski, Z. Matacz, M. Makosza, “Sodium and Potassium Carbonates: Efficient Strong Bases in Solid-Liquid Two Phase Systems” , J. Org. Chem., Vol. 43, No. 24, (1978), 4682.
[22]D. Montanari, F. Landini, F. Rolla, Top. Curr. Chem. 101 (1982) 147.
[23]D. Mason, S. Magdassi, Y. Sasson, “Role of Third Liquid Phase in Phase Transfer Catalysis”, J. Org. Chem. 56 (1991) 7229.
[24]S. D. Naik, L. K. Doraiswamy, “Mathematical Modeling of Solid-Liquid Phase Transfer Catalysis”, Chem. Eng. Sci. Vol. 52, No. 24, (1997) 4553-4546.
[25]S. S. Yufit, G. V. Kryshtal, I. A. Esikova, “Adsorption on Interfaces and Solvation in Phase-Transfer Catalysis”, America Chemical Society (1997) 52-67.
[26]H. M. Yang, P. I. Wu, “Kinetics of phase-transfer catalyzed esterification of aliphatic dicarboxylate in solid–liquid system”, Applied Catalysis A: General 209 (2001) 17-26.
[27]H. M. Yang, H. C. Liu, “Kinetics for synthesizing benzyl salicylate via solid–liquid phase-transfer catalysis”, Applied Catalysis A: General 258 (2004) 25-31.
[28]B. Leska, R. Pankiewicz, G. Schroeder, A. Maia, “A new type of B-podand catalysts for solid–liquid phase transfer reactions”, Tetrahedron Letters 47 (2006) 5673-5676.
[29]V. G. Devulapelli, H. S. Weng, “Synthesis of cinnamyl acetate by solid–liquid phase transfer catalysis: Kinetic study with a batch reactor”, Catalysis Communications 10 (2009) 1638-1642.
[30]H. A. Zahalka, Y. Sasson, “The Key Role of Water in Solid-Liquid Phase Transfer-Catalyzed Substitution Reactions”, J. Chem. Soc. Chem. Commun. (1984) 1652-1654.
[31]C.M. Starks, C.L. Loitta, M. Halpern, “Phase transfer catalysis: Fundamentals, Applications, and Industrial Perspectives; Chapman&Hall” , New York (1994).
[32]C. L. Liotta, E. N. Burgess, C. Ray, “Mechanism of Phase-Transfer Catalysis: the omega phase, in ACS Synposium Series, Phase-Transfer Catalysis (ed. C. M. Starks)”, Am. Chem. Soc., Wash. DC (1987) 15-23.
[33]J. B. Melville, J. D. Goddard, “A Solid-Liquid Phase-Transfer Catalysis in Rotating-Disk Flow”, Ind. Eng. Chem. Res. 27 (1988) 511.
[34]G. Maerker, J.F. Carmichael, W.S. Port, “Glycidl Ester Method of preparation and study of Some reaction Variables” , J. Org. Chem., 26 (1961) 2681-2688.
[35]H. E. Hennis, J. P. Easterly, L. R. Collins, L. R. Thompson, “Esters from Reactions of Alkyl Halides and Salts of Carboxylic Acids. Reactions of Primary Alkyl Chlorides and Sodium Salts of Carboxylic Acids”, Ind. Eng. Chem. Prod. Res. Dev., 6 (1967) 193-195.
[36]H. M. Yang, Y. S. Huang, “Green benzylation of sodium salicylate by phase-transfer catalysis with third-liquid phase in a continuous two-phase-flow reactor”, Journal of the Taiwan Institute of Chemical Engineers 42 (2011) 265-270.
[37]J.L. Louis, “Synthetic organic sonochemistry”, Plenum Press, New York and London.
[38]O. Bologa, I. Crudu, “Cavitation, Tribosystems and Cavitation Tribomodels”, The Annals of University “DUNĂREA DE JOS” of GALAŢI FASCICLE VIII, 2002, ISSN 1221-4590 Tribology.
[39]L. Rayleigh, “On the pressure developed in a liquid during the collapse of spherical cavity”, Philos. Mag. 34 (1917) 94–98.
[40]CAVITATION SICKNESS,
http://www.deafwhale.com/stranded_whale/barotrauma.htm
[41]K. S. Suslick, “The Chemical Effects Of Ultrasound”, Scientific American, 260 (1989) 80-86.
[42]K. Yasui, T. Tuziuti, Y. Iida, “Dependence of the characteristics of bubbles on types of sonochemical reactors”, Ultrasonics Sonochemistry 12 (2005) 43-51.
[43]N. S. Nandurkar, M. J. Bhanushali, S. R. Jagtap, B. M. Bhanage, “Ultrasound promoted regioselective nitration of phenols using dilute nitric acid in the presence of phase transfer catalyst”, Ultrasonics Sonochemistry, 14 (2007) 41-45.
[44]J. T. Li, X. L. Li, “An efficient and practical synthesis of methylene dioximes by combination of ultrasound and phase transfer catalyst”, Ultrasonics Sonochemistry 14 (2007) 677-679.
[45]H. Xu, Y. Chen, “An efficient and practical synthesis of mandelic acid by combination of complex phase transfer catalyst and ultrasonic irradiation”, Ultrasonics Sonochemistry 15 (2008) 930–932.
[46]Q. Hua, L. Dabin, L. Chunxu, “Ultrasonically-promoted synthesis of mandelic acid by phase transfer catalysis in an ionic liquid”, Ultrasonics Sonochemistry (2011).
[47]H. M. Yang, G. Y. Peng, “Ultrasound-assisted third-liquid phase-transfer catalyzed esterification of sodium salicylate in a continuous two-phase-flow reactor”, Ultrasonics Sonochemistry, 17 (2010) 239–245.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊