跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝孟玲
研究生(外文):Meng-Ling Hsieh
論文名稱:奈米中空二氧化矽球體與其釋放行為研究
論文名稱(外文):Study of Nanoporous Hollow Glass Sphere and its Control Release Behavior
指導教授:吳震裕
口試委員:陳守一林正良
口試日期:2011-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:147
中文關鍵詞:二氧化矽中空玻璃球
外文關鍵詞:silicahollow glass sphere
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以無乳化聚合製備聚苯乙烯( PS )粒子,並於轉化率達80 %後加入適量的甲基丙烯氧基丙基三甲氧基矽烷( methacryl oxypropyl trimethoxy silane, MPS )及二乙烯基苯 ( divinylbenzene, DVB)。藉由乳液表面帶有矽烷官能基幫助四乙氧基矽烷 ( tetraethyl orthosilicate, TEOS )及改質矽烷水解的二氧化矽溶膠可以快速的反應於乳液表面,形成核-殼結構,最後以萃取及煅燒移除PS中心核,獲得中空玻璃球的結構。由SEM觀察乳液表面型態,發現其粒徑大小均一,當二氧化矽殼層包覆在乳液外後,乳液表面變得粗糙不規則,煅燒過後的中空玻璃球的型態則有部分出現破掉的現象。以TGA探討萃取後製備之中空玻璃球所殘留的PS鏈段,顯示以MPS/PS為2/ 8所製備出的中空玻璃球所殘留的有機鏈段比為MPS/PS為1/ 9還多,故說明MPS添加量增加時,提高改善PS與二氧化矽之間的相容性,但導致有機鏈段不容易被萃取完全。由BET得知二氧化矽包覆乳液形成核-殼的比表面積為39.01 m2/g,經煅燒後之中空玻璃球為603.30 m2/g,除了佐證中心核已幾乎除去,更進一步說明,二氧化矽殼層為多孔洞( porous )的結構,會大幅提升比表面積。藉由BJH計算孔徑分布,顯示TEOS縮合於表面改質PS乳液 ( MPS對PS添加量為1/ 9 ) ,經萃取煅燒之中空玻璃球時( PSM0.1-T3-E-C ),平均孔徑為7.72 nm。TEOS縮合於表面改質PS乳液 ( MPS對PS添加量為1/ 9 及添加DVB) ,經萃取煅燒製備之中空玻璃球 ( PSM0.1D-T3-E-C ) 其平均孔徑為4.12 nm,說明乳液外層有交聯結構的PS可以減緩四氫呋喃( tetrahydrofuran, THF )對二氧化矽殼層破壞,使孔隙較小。最後,將維他命C置入中空玻璃球內,測試釋放情形。將累積釋百分比帶入Higuchi模型、零級模型、一級模型。其中,零級模型,第零小時到第三小時,反應速率常數為25.89,第三小時到第十小時,反應速率常數為2.40。

In this study, polystyrene latex was prepared by emulsifier free polymerization. Methacryl oxypropyl trimethoxy silane ( MPS ) and divinylbenzene ( DVB ) were added in the reaction medium at the 80 % conversion of styrene polymerization to provide silane functional groups for further reaction with tetraethoxylsilane ( TEOS ) to construct the shell. Therefore, a core-shell structure was formed in the PS-silica latex. Furthermore, a porous hollow silica sphere was obtained by removing PS core by solvent extraction followed by calcination step.
The PS latex particles are nearly monodispersed based on DLS data. The surface of PS-silica latex is more rough and uneven than that of the PS latex. The collapsed structure on the surface of hollow silica is shown. TGA was used to evaluate the amount of PS chains remained on the silica shell, indicating that the addition of MPS will introduce more PS chains on the silica shell due to the enhancing compatibility of MPS between PS and silica. BET measurements show the surface area of 39.01 m2/g for PS-silica latex and 603.30 m2/g for hollow silica sphere after calcination. The organic PS chains are removed and voids between these small silica nanoparticles are observed. Porous hollow silica with an average pore diameter of 7.72 nm by BJH method in the shell for PSM0.1-T3-E-C which was synthesized with polycondensation of TEOS took place at the PS/MPS latex surface and removing PS core by extraction and calcination steps. A BJH average pore size of 4.12 nm is obtained PSM0.1D-T3-E-C which was made from modification PS with MPS and DVB. This indicates that the addition of DVB can reach a partial crosslinking of polystyreneand prevent the sphere shell from breaking during extraction and calcination step. Furthermore, We also focused on the encapsulation of ascorbic acid into hollow silica studdied their controlled release behavior. Release data were analyzed with the zero order model, the first order model, the Higuchi model. The kinetic release model fits with the zero order model. The kinetic constant (k1) in the first 3 hours was 25.89, and k2 was 2.40 after 3 hours.

中文摘要 i
英文摘要 ii
謝 誌 iv
目 錄 v
表目錄 vii
圖目錄 ix
一、緒論 1
1.1中空奈米材料特性 1
1.2中空結構的製備與用途 1
1.3 二氧化矽溶凝膠反應 2
1.4 奈米粒子與藥物釋放 5
1.5 研究動機與目的 6
二、文獻回顧 8
2.1 中空玻璃球製備 8
2.1.1 以PS乳液製備中空玻璃球 8
2.1.2 添加致孔劑(界面劑)製備中空玻璃球 14
2.2 中空玻璃球藥物釋放 17
三、實驗 22
3.1 實驗項目 22
3.2 實驗材料 23
3.3 實驗架構與實驗流程 25
3.4 實驗儀器 31
3.5 實驗步驟 32
四、結果與討論 35
4.1表面改質PS乳液分析 35
4.1.1 表面改質PS乳液官能基鑑定 ( FT-IR ) 35
4.1.2 表面改質PS乳液光散射粒徑分析 ( DLS ) 36
4.1.3 表面改質PS乳液無機含量分析 ( TGA ) 36
4.1.4 表面改質PS乳液表面型態分析 ( SEM ) 37
4.2 矽烷縮合於表面改質PS乳液之PS/SiO2核殼乳液分析 38
4.2.1 PS/SiO2核殼乳液官能基鑑定分析 39
4.2.2 PS/SiO2核殼乳液光散射粒徑分析 ( DLS ) 40
4.2.3 PS/SiO2核殼乳液之無機含量分析 ( TGA ) 41
4.2.4 PS/SiO2核殼乳液表面型態分析 ( SEM ) 44
4.2.5 PS/SiO2核殼球體比表面積及孔穴分分析 ( BET ) 44
4.3 中空玻璃球之製備與分析 47
4.3.1 中空玻璃球之製備與無機含量 47
4.3.2 表面型態分析 ( SEM ) 48
4.3.3 比表面積及孔穴分布分析 ( BET ) 50
4.4 維他命C在中空玻璃球內之釋放行為 53
4.4.1 以BET、TGA證明維他命C進入中空玻璃球 53
4.4.2 累積釋放百分比之不同模型分析 55
五、結論 57
六、參考文獻 59
附錄一、表面改質PS乳液實驗代號說明 144
附錄二、矽烷縮合於表面改質PS乳液及中空玻璃球實驗代號說明 145
附錄三、中空玻璃球包覆維他命C之實驗代號說明及中空玻璃球包覆維他命C理論值計算 146
附錄四、以TGA及UV計算維他命C釋放量 147



1.X. W. Lou, L. A. Archer, Z. C. Yang, Advanced Materials., 20, 3987-4019 (2008)
2.林君玲, “三區塊共聚高分子應用於中孔洞氧化矽晶體合成的研究”, 成功大學化學系碩士論文,民國九十五年
3.C. J. Brinker, G. W. Scherer, Journal of Non-Crystalline Solids, 70, 301-322 (1985)
4.M. Zhao, L. Zheng, X. Bai, N. Li, Li Yu, Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 346, 229-236 (2009)
5.H. P. Lin, C. Y. Mou, Accounts of Chemical Research., 35, 927-935 (2002)
6.V. G. Kessler, G. A. Seisenbaeva, Sol-Gel Methods for Materials Processing, 139-152 (2008)
7.R. K. Iler, “The Chemistry of silica”, J Wily & Sons, New York, 174 (1979)
8.顧寧, 付德剛, 張海黔, “奈米技術與應用”, 滄海書局出版, 台中, 民國九十二年四月
9.G. A. Hughes, Nanomedicine: Nanotechnology, Biology, and Medicine 1, 22- 30 (2005)
10.H. M. Courrier, N. Butz, T. F. Vandamme, Critical Reviews in Therapeutic Drug Carrier Systems, 19, 425- 98 (2002)
11.P. Costa, J. M. Sousa Lobo, Drug Development and Industrial Pharmacy, 29, 89-97 ( 2003)
12.T. Higuchi, Journal of Pharmaceirtical Sciences, 52, 1145-1149 (1963)
13.R. Sharma, R. B. Walker, K. Pathak, Indian Journal of Pharmaceutical Education and Research, 45, 1-7 (2011)
14.K. C. Lee, H. A. Wi, Journal of Applied Polymer Science, 115, 3092-3102 (2010)
15.Z. Chen, S. Li, F. Xue, G. Sun, C. Luo, J. Chena, Q. Xua, Colloids and surfaces. A, Physicochemical and Engineering Aspects, 355, 45-52 (2010)
16.M. Chen, S. Zhou, L. Wu, S. Xie, Y. Chen, Macromolecular Chemistry and Physics, 206, 1896-1902 (2005)
17.M. N. Tan, Y. S. Park, Journal of Industrial and Engineering Chemistry, 15, 356-369 (2009)
18.Y. Lu, J. McLellan, Y. Xia, Langmuir, 20, 3464 (2004)
19.Z. Deng, M. Chen, S. Zhou, B. You, L. Wu, Langmuir, 22, 6403-6407 (2006)
20.J. Yuan, D. Wan, Z. Yang, The Journal of Physical Chemistry. C, 112, 17156-17160 (2008)
21.W. Leng, M. Chen, Shuxue Zhou, L. Wu, Langmuir, 26, 14271-14275 (2010)
22.I. Tissot, J. P. Reymond, F. Lefebvre, E. Bourgeat-Lami, Chemistry of Materials., 14, 1325-1331 (2002)
23.X. Ding, K. Yu, Y. Jiang, Hari-Bala, H. Zhang, Z. Wang, Materials Letters, 58, 3618-3621 (2004)
24.K. F. Ni, G. R. Shan, Z. X. Weng, N. Sheibat-Othman, G. Fevotte, Macromolecules, 38, 7321-7329 (2005)
25.K. Ni, E. Bourgeat-Lami, N. Sheibat-Othman, G. Shan, G. Fevotte, Macromolecular Symposia, 271, 120–128 (2008)
26.M. Chen, L. Wu, S. Zhou, B. You, Advanced Materials, 18, 801-806, (2006)

27.M. Xu, W. Li, M. Du, X. Shao, Y. Yin, L. Zhao, X. Pu, Materials Letters, 64, 931-934 (2010)
28.S. Cao, X. Jin, X. Yuna, W. Wu, J. Hu, W. Sheng, Journal of Polymer Science: Part A: Polymer Chemistry, 48, 1332-1338 (2010)
29.S. B. Yoon, J. Y. Kim, J. H. Kim, S. G. Park, J. Y. Kim, C. W. Lee, J. S. Yu, Current Applied Physics, 6, 1059-1063 (2006)
30.M. Yang, Ge Wang, Z. Yang, Materials Chemistry and Physics, 111, 5-8 (2008)
31.H. Blas, M. Save, P. Pasetto, C. Boissie`re, C. Sanchez, B. Charleux, Langmuir, 24, 13132-13137 (2008)
32.S. Zhang, L. Xu, H. Liu, Y. Zhao, Y. Zhang, Q. Wang, Z. Yu, Z. Liu, Materials Letters, 63, 258-259 (2009)
33.M. Wei, C. J. V. Oers, X. Hao, Q. Qiu, P. Cool, S. Liu, Microporous and Mesoporous Materials, 138, 17-21 (2011)
34.Y. Q. Yeh, B. C. Chen, H. P. Lin, C. Y. Tang, Langmuir, 22, 6-9 (2006)
35.H. Zhang, J. Wu, L. Zhou, D. Zhang, L. Qi, Langmuir, 23, 1107-1113 (2007)
36.J. F. Chen, H. M. Ding, J. X. Wang, Lei Shao, Biomaterials, 25, 723-727 (2004)
37.Z. Z. Li, J. F. Chen, F. Liu, A. Q. Liu, Q. Wang, H. Y. Sun, L. X. Wen, Pest Management Science, 63, 241-246 (2007)
38.A. Sousa, K. C. Souza, E. M. B. Sousa, Acta Biomaterialia, 4, 671-679 (2008)
39.S. Tan, Q. Wu, J. Wang, Y. Wang, X. Liu, K. Sui, X. Deng, H. Wang, M. Wu, Microporous and Mesoporous Materials, 142, 601-608 (2011)
40.H. Chen, J. He, H. Tang, C. Yan, Chemistry of Materials, 20, 5894-5900 (2008)
41.H. T. Xu, X. S. Wang, L. M. Tao, S. X. Wu, Science Cheina Chemistry 53, 556-561 (2010)
42.M. P. Kapoor, A. Vinu, W. Fujii, T. Kimura, Q. Yang, Y. Kasama, M. Yanagi, L. R. Juneja, Microporous and Mesoporous Materials, 128, 187-193 (2010)
43.N. Kato, T. Ishii, S. Koumoto, Langmuir, 26, 14334-14344 (2010)
44.P. Horcajada, C. Serre, M. Vallet-Reg, M. Sebban, F. Taulelle, G. Ferey, Angewandte Chemie, 45, 5974-5978 (2006)
45.J. Jang, J. Lee, J. Jeong, Journal of Applied Polymer Science, 56, 1651-1660 (1995)
46.K. S. W. Sing, Pure and Applied Chemistry, 11, 2201-2218 (1982)
47.M. Vallet-Reg, F. Balas, D. Arcos, Angewandte Chemie, 46, 7548-7558 (2007)
48.林宗賢, “奈米多孔二氧化矽為粒製備與鍵定”, 中興大學碩士論文,民國九十七年


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top