跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.73) 您好!臺灣時間:2024/02/23 11:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃飛鴻
研究生(外文):Fei-Hung Huang
論文名稱:雙氫葉吩類-高分子共聚物之奈米粒子製備及其癌症診治應用
論文名稱(外文):Fabrication of Chlorin-centered Polymeric Nanoparticles for Cancer Theragnosis
指導教授:賴秉杉
口試委員:廖明淵王先知
口試日期:2011-06-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:55
中文關鍵詞:奈米粒子癌症治療光感藥物
外文關鍵詞:NanoparticlesCancer therapyPhotosensitizer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此研究中,我們以光感藥物為起始劑聚合成光感性高分子,且本材料亦可進一步塞入順磁性金屬離子。我們利用NMR、GPC,吸收和螢光光譜來對此兩種光感性的高分子材料進行性質分析測定。而此疏水的光感性高分子利用溶劑揮發法於水溶液可自行組裝製備成奈米粒子,在活性氧化物質(ROS)測定的結果顯示出,於水溶液中奈米粒子比起單純的光感藥物能更有效的產生ROS,這是由於水溶液中奈米粒子具有良好的分散型態。此結果顯示出本實驗中的奈米粒子作為光動力治療於醫學材料上的潛力。另一項結果顯示塞入順磁性金屬離子的奈米粒子具有核磁共振顯影的效果,能夠發展作為核磁共振顯影劑於癌症診斷上的潛力。未來,我們能夠結合此兩種光感性的高分子材料應用在癌症的診斷治療上。

In this study, photosensitizer core polymers without or with paramagnetic metal ion insertion were synthesized and characterized. The synthesized photosensitizer-centered polymer assembled into stable nanoparticles that improved the solubility of the photosensitizer and prevented their aggregation. Our results show that higher levels of reactive oxygen species (ROS) were generated from the nanoparticles than from the free photosensitizer due to aggregation of the hydrophobic photosensitizer. The results indicate that nanoparticles should be considered as a potential biomaterial for use in a photodynamic therapy (PDT) for cancer treatment. Our results also show that the particles with insertion of paramagnetic metal can be a contrast agent for magnetic resonance imaging (MRI) application. Thus, these nanoparticles are potentially good candidates as theranostic agents in the future.

Acknowledgement............................................i
中文摘要..................................................ii
Abstract.................................................iii
List of Figures..........................................vii
List of Tables............................................xi
Chapter 1: Introduction....................................1
1-1 Magnetic Resonance Imaging.............................1
1-1-1 Mechanisms of MR Contrast............................1
1-1-2 MR Contrast Image....................................2
1-1-3 Spin-Lattice Relaxation (Longitudinal Relaxation)....4
1-1-4 Spin-Spin Relaxation (Transverse Relaxation).........5
1-1-5 Contrast Agents......................................7
1-2 Biologically Activated MR contrast agents..............9
1-3 Photodynamic Therapy for Cancer.......................10
1-4 Nanoparticles with PDT or MRI functions...............12
Chapter2: Experimental Design and Method..................14
2-1 Experimental Design...................................14
2-2 Instruments...........................................14
2-3 Materials.............................................15
2-4 Experimental Methods..................................16
2-4-1 Synthesis of Chlorin e6-Poly(ε-caprolactone) Conjugate.................................................16
2-4-2 Insertion of Manganese Ion into Chlorin e6 Poly(ε-caprolactone) Polymers....................................17
2-4-3 Preparation of CPCL or Mn-CPCL Nanoparticles........18
2-4-4 Detection of ROS Produced by CPCL Polymer/Nanoparticles.....................................18
2-4-5 In Vitro MR Images..................................19
2-4-6 Cell Line and Culture Conditions....................19
2-4-7 Cytotoxicity and Phototoxicity of CPCL or Mn-CPCL Nanoparticles in MCF-7/ADR Cells..........................20
Chapter 3: Results and Discussion.........................22
3-1 Characterization of CPCL Polymers.....................22
3-1-1 Synthesis and Characterization of CPCL Polymers.....22
3-1-2 UV-Vis and Fluorescence Spectra of CPCL Polymers....24
3-2 Characterization of Mn-CPCL Polymers..................26
3-2-1 Structure of Manganese Ions Inserted into CPCL Polymers..................................................26
3-2-2 UV-Vis and Fluorescence Spectra of Mn-CPCL Polymers.29
3-2-3 Amount of Manganese in Mn-CPCL Polymers.............30
3-3 Characterization of CPCL Nanoparticles................31
3-3-1 Size Distribution of CPCL Nanoparticles.............31
3-3-2 Morphology of CPCL Nanoparticles....................32
3-3-3 Stability of CPCL Nanoparticles.....................33
3-3-4 UV-Vis and Fluorescence Spectra of CPCL Nanoparticles.............................................34
3-3-5 ROS generation of CPCL Polymer/Nanoparticles........38
3-4 Characterization of Mn-CPCL Nanoparticles.............40
3-4-1 Size distribution of Mn-CPCL Nanoparticles..........40
3-4-2 Morphology of Mn-CPCL Nanoparticles.................40
3-4-3 Stability of Mn-CPCL Nanoparticles..................42
3-4-4 UV-Vis and Fluorescence Spectra of Mn-CPCL Nanoparticles.............................................43
3-4-5 Amount of Manganese Determine of CPCL Nanoparticles.45
3-5 In Vitro MR Images....................................45
3-6 Cytotoxicity and Phototoxicity of CPCL and Mn-CPCL Nanoparticles in MCF-7/ADR Cells..........................48
Chapter 4: Conclusions....................................50
Reference.................................................51


[1] Catherine Westbrook CK. MRI in practice, second edition. Blackwell Scicence; 1998.
[2] Catherine Westbrook CK. MRI in glance. Oxford: Blackwell Publishing; 2006.
[3] Woodward P. MRI for technologists2001.
[4] Liang ZP, Lauterbur PC. Principles of magnetic resonance imaging. IEEE Press, New York, NY. 2000.
[5] Lufkin RB. The MRI manual second edition. 1998.
[6] Zurkiya O. Magnetic resonance molecular imaging using Iron oxide nanoparticles. Georgia Institute of Technology. 2006.
[7] Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York: John Wiley and Sons 1999.
[8] Merbach AE, Toth E. The chemistry of contrast agents in medical magnetic resonance imaging. John Wiley & Sons Ltd. 2001.
[9] Nakamura E, Makino K, Okano T, Yamamoto T, Yokoyama M. A polymeric micelle MRI contrast agent with changeable relaxivity. Journal of Controlled Release. 2006;114:325-33.
[10] J. Qin SL, Y. S. Jo, A. Roch, M. Mikhaylova, Z. M. Bhujwalla, R. N. Muller, M. Muhammed. A High-performance magnetic resonance imaging T2 contrast agent. Advanced Materials. 2007;19:1874-8.
[11] Lu Z-R, Ye F, Vaidya A. Polymer platforms for drug delivery and biomedical imaging. Journal of Controlled Release. 2007;122:269-77.
[12] Schwert DD, Davies JA, Richardson N. Non-gadolinium-based MRI contrast agents. Contrast Agents I. 2002;221:165-99.
[13] Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem. 2004;14:2161-75.
[14] Major JL, Meade TJ. Bioresponsive, cell-penetrating, and multimeric MR contrast agents. Accounts of Chemical Research. 2009;42:893-903.
[15] Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews. 2002;54:631-51.
[16] Aime S, Geninatti Crich S, Botta M, Giovenzana G, Palmisano G, Sisti M. A macromolecular Gd(III) complex as pH-responsive relaxometric probe for MRI applications. Chemical Communications. 1999:1577-8.
[17] Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotech. 2000;18:321-5.
[18] Moats RA, Fraser SE, Meade TJ. A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angewandte Chemie International Edition in English. 1997;36:726-8.
[19] Zhang S, Wu K, Sherry AD. A novel pH-sensitive MRI contrast agent. Angewandte Chemie International Edition. 1999;38:3192-4.
[20] L

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王天苗(1994)。心智發展障礙兒童家庭狀況之研究。特殊教育研究學刊,10,119-141。
2. 王天苗(1993)。心智發展障礙兒童家庭需要之研究。特殊教育研究學刊,9,73-90。
3. 王天苗(1985)。智能不足兒童家庭動力與親師態度之探討。特殊教育研究學刊,1,115-140。
4. 王叢桂(2000)。華人父母職責信念-以台灣大學生為對象的探索性研究。香港社會科學學報,18,57-83。
5. 何志鴻、黃惠璣(2007)。影響身心障礙兒童家庭照顧者憂鬱之因素。身心障礙研究,5(1),41-49。
6. 何英奇(1987)。大專學生之生命意義感及其相關意義治療法之實徵性研究。教育心理學報,20,87-106。
7. 何英奇(1990)。生命態度剖面圖之編製:信度與效度之研究。師大學報,35,71-94。
8. 何粵東(2005)。 敘說方法論初探。載於翁開誠主編,應用心理研究,25,55-72。台北:五南。
9. 徐畢卿(2002)。智能障礙者的婦女家庭照顧者-以自閉兒母親為例。護理雜誌,49(2),22-27。
10. 張利中(2002)。尋獲生命意義的時態心理歷程。南華大學生死學通訊,5,31-33。
11. 張利中(2002)。尋獲生命意義的時態心理歷程。南華大學生死學通訊,5,31-33。
12. 張瓊文(2001)。聽覺障礙者的社會適應現況與問題。教師之友,42(4),9-16。
13. 蔡素妙(2003)。復原力在受創家庭諮商復健工作中的應用。輔導季刊,39(2),42-49。
14. 韓福榮、林寶貴(2000)。學前聽障兒童家長溝通訓練課程教學效果之研究。特殊教育研究學刊,18,79-103。