(44.192.112.123) 您好!臺灣時間:2021/03/09 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊宗杰
研究生(外文):Tzung-Jie Yang
論文名稱:奈米材料輔助電噴灑質譜法於尿液中紫外光吸收劑與蛋白質電荷分佈之研究
論文名稱(外文):Nanomaterial-Based Mass Spectrometry for Analysis of Ultraviolet Absorbers in Urine and the Charge-State Distribution of Protein
指導教授:李茂榮李茂榮引用關係
口試委員:謝建台傅明仁楊慶成鄭政峯
口試日期:2011-06-24
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:132
中文關鍵詞:奈米材料電噴灑質譜法
外文關鍵詞:NanomaterilElectrospray Mass spectrometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主要是利用各式奈米材料結合電噴灑質譜法於小分子與生化分子分析之研究。利用二氧化矽修飾磁性奈米粒子應用於尿液中微量紫外光吸收劑之偵測,研究中首先針對合成之材料進行各項鑑定,包含IR、TEM、XRD、ESCA等光譜鑑定,之後進行樣品前處理之最佳化條件探討,並於實驗最佳化條件下,評估方法的可行性,根據實驗結果顯示,本實驗方法之線性範圍分別為於HBP、BP-7、BP-3、BP-2、BP-6與4-MBC等分析物介於10-1000 ng mL-1;對於DHB與BP-12分析物分別為0.5-1000 ng mL-1與0.5-500 ng L-1;對於DHMB與OD-PABA分析物分別為0.75-1000 ng mL-1與0.75-500 ng mL-1,線性相關係數為0.991以上,偵測極限介於0.1 ng mL-1 (OD-PABA)與 8.8 ng mL-1 (BP-2)之間,定量極限介於0.2 ng mL-1 (OD-PABA)與29.3 ng mL-1 (BP-2)之間,精密度介於1.8 %與10.8 %之間。應用於16個尿液樣品分析,於S5樣品中,測得尿液樣品中含有微量DHMB之成份,濃度為283.4 ng mL-1。
本實驗另發展一滴溶液分析大氣壓質譜法,於透明膠片上塗覆一層疏水性導電材料,根據實驗結果顯示,當在3.5 μL液滴表面施予不同電位時,液面與塗覆材料間的接觸角會隨著電位大小而改變,出現類似電潤濕的現象,且由離子訊號強度與CCD攝影機觀察其噴灑狀態,其訊號穩定度佳且持續時間較長,將其應用於奈米材料混合溶液分析,於尿液樣品中添加Fe3O4/SiO2與Fe3O4奈米材料對於分析物的訊號並無明顯提升,但在兩種不同磁性材料於分析物離子強度比較結果,使用Fe3O4/SiO2對於分析物的訊號可提升1.3(4-MBC)-2.1(BP-12)倍;添加MWCNTs則是分析物離子訊號相較於直接尿液樣品分析可提升2(4-MBC)-7(OD-PABA)倍,根據此實驗條件進行方法評估,方法線性範圍介於0.25-5 μg mL-1,且相對標準偏差低於16%。
由於蛋白質的電荷分佈與構型有關,因此利用電噴灑質譜法探討在不同奈米材料環境下,對於蛋白質電荷分佈型態之影響,實驗中分別探討不同尺寸金奈米粒子與二氧化鈦奈米粒子對於細胞色素C、肌紅蛋白與泛素電荷分佈之影響。於金奈米粒子研究部分,金奈米粒子對於細胞色素C與泛素於電噴灑質譜法分析下,其電荷分佈範圍並無顯著的改變,顯示這些蛋白質於金奈米材料環境下,其構型並不會因此受到改變,但是觀測細胞色素C與泛素之ESI-MS質譜圖則顯示其差異性。於細胞色素C之分析結果中,其每一帶電荷離子訊號峰由原先單一同位素訊號(monoisotopic peak),隨著金奈米粒子的比例增加,每一電荷離子訊號會呈現一高斯分佈型態,且同位素峰皆明顯表現;在泛素的分析結果則顯示於電噴灑游離法下會與金奈米粒子形成水合離子訊號,如[Ubq+Au+6H2O+6H]6+與[Ubq+Au+6H2O]6+。
在肌紅蛋白中分析結果則顯示隨著金奈米粒子比例的增加,其帶電荷數會隨著減少且落於高質量區,但在二氧化鈦溶液環境下,肌紅蛋白其帶電荷價數介於+11價與+20價之間,相較於在金奈米環境下,最強訊號之電荷價數由+21價趨於+17價分佈不同,推測二氧化鈦於ESI-MS分析過程中對肌紅蛋白帶電荷數的提升有所助益,且在此兩種奈米材料環境下,由於都未觀察到heme group (m/z 616.4)訊號峰的出現,因此推測肌紅蛋白結構並無任何改變。


In this thesis, nanomaterial-based electrospray mass spectrometric approach was utilized for small molecular and macromolecular analysis. The thesis is divided in five chapters. The functionalized magnetic nanoparticles, Fe3O4/SiO2 was synthesized and then utilized for analysis of eleven ultraviolet absorbers in urine. The feasibility of the presented method was also evaluated. The linear range of proposed method were 10-1000 ng mL-1 for HBP, BP-3, BP-2, BP-6 and 4-MBC; 0.5-1000 ng mL-1, 0.5-500 ng L-1, 0.75-1000 ng mL-1 and 0.75-500 ng mL-1 for DHB, BP-12, DHMB and OD-PABA, respectively. LODs were ranged from 0.1 ng mL-1 to 8.8 ng mL-1 with R.S.D. below 10.8%. This approach was also applied for real samples analysis. The trace amount of DHMB in urine was detected and the concentration is 277.1 ng mL-1. The ambient mass spectrometry for one-droplet analysis was developed in this thesis. A 3.5 μL solution was dipped on a laboratory-made screen-printed plate coated with silver or graphite gel. The voltage of +5 kV was applied on the surface of the droplet and electrospray was performed when applying the voltage. The ultraviolet absorbers studied are including 3-(4-methylbenzylidene)-camphor (4-MBC), 2-ethyl-4-(dimethylamino)benzoate (OD-PABA) and 2-hydroxy-4-(octyloxy)-benzophenone (BP-12). To evaluate the effect on the ionization efficiency, the solution containing analytes and nanomaterials was dipped on the screen-printed substrate. From the results, the MWCNTs can enhance the intensity of the signal detected and short the analytical time. This technique demonstrates that the nanoparticles assisted electrospray ionization offers a high specific and high throughput screening for trace analysis.
The analysis of protein conformation by ESI-MS was devoted in this study. This work outlines the changes to the charge-state distribution (CSD) and to improvement of the resolution of isotopic peak when the nanomaterial solution is infused to the ion source and co-electrosprayed with the protein-contained solution. The various conformation gold nanoparticles (AuNPs) and titanium dioxide nanoparticles (TiO2) were used in this study. Generally the ESI-MS of protein solution often show a monomodal distribution of charge-state peaks with a maximum charge-state and a most-intense charge-state. When AuNPs mixed with protein such as cytochrome c and ubiquitin, the mass resolution of isotopic peak in the mass spectrum were improved. The ESI-MS of protein solution was shown the average distribution of isotopic peaks with the most-abundant charge-state. For the assessment of myoglobin with AuNPs and TiO2, the charge-stated peaks of protein were shifted. The present study was demonstrated the effect of nanomaterials on the charge-states distribution of protein and the characteristics of isotopic peaks of protein in ESI-MS.


目錄
中文摘要 ………………………………………………………………………….i
Abstract ……………………………………………………………………………...iii
目錄 ………………………………………………………………………………v
表目錄 ……………………………………………………………………………...xi
圖目錄 …………………………………………………………………….……….xii
第一章 、序論 ……………………………………………………………………1
1.1. 奈米材料簡介 …………………………………………………………1
1.2. 奈米粒子製備方法 ……………………………………………………1
1.2.1. 磁性奈米粒子(magnetic nanoparticles, MNPs) ………………3
1.2.2. 金奈米粒子(gold nanoparticles, AuNPs) ……………………4
1.2.3. 二氧化鈦奈米粒子(titanium dioxide, TiO2 NPs) ………………5
1.2.4. 銀奈米粒子(silver nanoparticles, AgNPs) ……………………5
1.3. 質譜術簡介 ………………………………………………………………6
1.3.1. 離子化方法介紹 ………………………………………………6
1.3.1.1. 電灑游離法簡介 …………………………………………6
1.3.1.2. 離子形成機制 …………………………………………6
1.3.2. 質譜儀簡介 ……………………………………………………9
1.3.2.1. 四極矩式質量分析器(triple-quadrupole mass analyzer)…..9
1.3.2.1.1. 四極矩式質量分析器簡介 …………………………9
1.3.2.1.2. 串聯質譜儀(tandem mass spectrometer, MS/MS) ……9
1.3.2.2. 離子阱質量分析器 …………………………………..13
1.3.2.2.1. 三維離子阱質量分析器 ………………………..13
1.3.2.2.2. 二維離子阱(線性離子阱)質量分析器 ……………..14
1.4. 研究動機 ……………………………………………………………..19
1.5. 參考文獻 ……………………………………………………………..20
第二章、 …………………………………………………………………..22
2.1. 前言 ……………………………………………………………..22
2.2. 實驗部分 ………………………………………………………..30
2.2.1. 藥品與試劑 ……………………………………………..30
2.2.1.1. 紫外光吸收劑標準品 ……………………………..30
2.2.1.2. Fe3O4@ SiO2合成藥品 ……………………………..30
2.2.1.3. 溶劑 ……………………………………………..30
2.2.2. 藥品配製 ……………………………………………..30
2.2.2.1. 配製100 μg/mL 11種紫外光吸收劑單一標準溶液 ………………………………………………………..30
2.2.2.2. 配製10 μg/mL混合標準品工作溶液 ……………..32
2.2.2.3. 配製檢量線尿液工作溶液 ………………………..32
2.2.3. 儀器設備 ……………………………………………..32
2.2.4. Fe3O4/SiO2磁性奈米粒子合成與製備 …………………..33
2.2.4.1. 磁性奈米粒子合成 ……………………………..33
2.2.4.2. SiO2修飾磁性奈米粒子合成 …………………..33
2.2.5. Fe3O4/SiO2奈米粒子鑑定分析與樣品製備 ……………..36
2.2.5.1. 穿透式電子顯微鏡(transmission electron microscopy, TEM)鑑定分析 …………………………………..36
2.2.5.2. 高解析X光粉末繞射儀(high resolution X-ray powder diffraction, HR-XRD) ……………………………..36
2.2.5.3. 化學分析能譜儀(electron spectroscopy for chemical analysis, ESCA)鑑定分析 ………………………..36
2.2.6. 樣品前處理流程 ………………………………………..36
2.2.7. 尿液樣品 ……………………………………………..37
2.3. 結果與討論 ………………………………………………………..39
2.3.1. 修飾性磁性奈米粒子表面特性分析 …………………..39
2.3.2. 前處理方法之最佳化 …………………………………..39
2.3.2.1. 探討Fe3O4/SiO2奈米粒子添加量對尿液中紫外光吸收劑效率之影響 ………………………………………..39
2.3.2.2. 探討pH值對於尿液中紫外光吸收劑之萃取效率影響 ………………………………………………………..44
2.3.2.3. 探討萃取時間對於尿液中紫外光吸收劑之萃取效率影響 …………………………………………………..44
2.3.2.4. 探討脫附溶劑種類對於尿液中紫外光吸收劑脫附效率影響 ……………………………………………..48
2.3.2.5. 探討脫附溶劑體積對尿液中紫外光吸收劑之脫附效率影響 ……………………………………………..48
2.3.2.6. 探討脫附時間對於尿液中紫外光吸收劑之脫附效率影響 …………………………………………………..51
2.3.2.7. 尿液樣品基質效應 (matrix effect)之探討 ………..51
2.3.3. 分析尿液樣品中紫外光吸收劑及其衍生物之線性範圍、線性方程式、線性相關係數與偵測極限之方法確效 …..56
2.3.4. 分析尿液樣品中紫外光吸收劑及其衍生物之精密度 ………………………………………………………..56
2.3.5. 樣品分析 ……………………………………………..58
2.4. 結論 ……………………………………………………………..61
2.5. 參考文獻 ………………………………………………………..62
第三章、 …………………………………………………………………..66
3.1. 前言 ……………………………………………………………..66
3.1.1 大氣壓力質譜法(ambient mass spectrometry)發展 …..66
3.1.2 研究目的 ……………………………………….…….68
3.2. 實驗部分 ……………………………………………………….68
3.2.1. 藥品與試劑 …………………………………………….68
3.2.2. 儀器設備 …………………………………………….68
3.2.3. 多層奈米碳管(multiwall carbon nanotubes, MWCNTs)純化 ……………………………………………………….69
3.2.4. 實驗用基板製作 ……………………………………….69
3.2.5. 樣品製備 …………………………………………….71
3.2.6. 實驗流程 …………………………………………….71
3.3. 結果與討論 ……………………………………………………….73
3.3.1. 一滴溶液分析介面探討 …………………………….73
3.3.2. 探討樣品置放方式對分析物訊號的影響 …………….77
3.3.2.1. 層層堆疊模式(layer-by-layer mode) …………….77
3.3.2.2. 均勻分散模式(homogeneous mode) …………….77
3.3.3. 比較不同奈米材料對紫外光吸收劑分析訊號強度之影響 ………………………………………………………..77
3.4. 結論 ……………………………………………………………..87
3.5. 參考文獻 ………………………………………………………..88
第四章、 …………………………………………………………………..90
4.1. 前言 ……………………………………………………………..90
4.1.1. 蛋白質結構簡介 ………………………………………..90
4.1.1.1. 血質蛋白(heme protein) ……………………………..91
4.1.1.1.1. 細胞色素C(cytochrome c, Cyt. c) ……………..93
4.1.1.1.2. 肌紅蛋白(myoglobin, Myo) …………………..93
4.1.1.2. 泛素(ubiquitin, Ubq) ……………………………..96
4.1.2. 電噴灑質譜法於蛋白質結構分析 …………………..96
4.1.3. 奈米材料與蛋白質間相互作用之研究 ……………..98
4.1.4. 研究目的…………………………………………………100
4.2. 實驗部份 ………………………………………………………101
4.2.1. 藥品與試劑 ……………………………………………101
4.2.2. 儀器裝置 ……………………………………………101
4.2.2.1. 質譜儀 ……………………………………………101
4.2.2.2. 電子顯微鏡 ………………………………………102
4.2.3. 奈米材料製備 ………………………………………102
4.2.3.1. 金奈米粒子溶液製備 ……………………………102
4.2.3.1.1. 10 nm金奈米粒子合成(I) …………………102
4.2.3.1.2. 50 nm金奈米粒子合成(II) …………………102
4.2.3.1.3. 硫辛酸修飾金奈米粒子合成 ……………102
4.2.3.2. 銀奈米粒子溶液製備 ……………………………103
4.2.3.3. 二氧化鈦奈米粒子溶液製備 …………………103
4.2.4. 奈米粒子鑑定與分析 …………………………………104
4.2.4.1. 穿透式電子顯微鏡(transmission electron microscopy, TEM)鑑定分析 …………………………………104
4.2.5. 藥品配製 ……………………………………………104
4.2.5.1. 50 mM牛血清白蛋白(bovine serum albumin, BSA)配製 …………………………………………………104
4.2.5.2. 30 mM細胞色素C(cytochrome c)溶液配製 ....104
4.2.5.3. 50 μM血紅素(myoglobin)配製 …………………104
4.2.5.4. 100 μM乳清蛋白(α-lactalbumin, BLA) ………104
4.2.5.5. 200 μg mL-1泛素(ubiquitin)配製 ……………104
4.2.6. 研究方法 ……………………………………………105
4.3. 結果與討論 ………………………………………………………106
4.3.1. 合成奈米材料光譜與電子顯微鏡之鑑定 ……………106
4.3.2. 探討金奈米粒子於蛋白質之電荷分佈效應影響 …106
4.3.2.1. 10 nm金奈米粒子(酒紅色) ………………………106
4.3.3. 二氧化鈦奈米粒子對蛋白質之電荷分佈效應之影響 ………………………………………………………122
4.4. 結論 ……………………………………………………………126
4.5. 參考文獻 ………………………………………………………128
第五章、總結 ……………………………………………………………131

表目錄
表2-1 電噴灑游離法偵測紫外光吸收劑之最佳化條件 …………………..34
表2-2 電噴灑游離法於正負模式下偵測紫外光吸收劑之定性與定量離子.....35
表2-3 Fe3O4/SiO2結合液相層析串聯質譜儀偵測尿液中紫外光吸收劑之最佳化條件………………………………………………………………….....54
表2-4 Fe3O4/SiO2萃取結合液相層析串聯質譜儀偵測尿液中紫外光吸收劑之線性範圍、線性相關係數、偵測極限、定量極限與精密度(n=3)…..…57
表2-5 Fe3O4/SiO2萃取結合液相層析串聯質譜儀於尿液樣品分析之結果…...59
表3-1 比較不同磁性奈米粒子輔助電噴灑游離法分析紫外光吸收劑之離子強度 ………………………………………………………………………..83
表3-2 比較多層奈米碳管輔助電噴灑游離法分析紫外光吸收劑之離子強度 ………………………………………………………………………..86
表4-1 利用電噴灑游離法結合高解析質譜儀分析泛素蛋白質+5價至+10價之最強離子訊號…………………………………………………………....116


圖目錄
圖 1- 1 (a)電噴灑游離法與(b)正離子模式下離子形成過程之示意圖 ………...8
圖 1- 2四極矩之構造圖 ………………………………………………………..10
圖 1- 3串聯質譜技術四種掃描模式 ……………………………………………..12
圖 1- 4離子阱構造圖 ……………………………………………………………..14
圖 1- 5二維離子阱質量分析器構造圖 ………………………………………..16
圖 1- 6線性離子阱上DC、RF與AC電位施予之示意圖 …………………..17
圖 1- 7 Thermo Finnigan設計之LTQ離子偵測器示意圖 ………………………..18
圖 2- 1十一種紫外光吸收劑分析物之結構 …………………………………..31
圖 2- 2樣品前處理流程圖 ………………………………………………………..38
圖 2- 3合成磁性奈米材料之FT-IR分析圖 (紅色: Fe3O4;黃綠色: Fe3O4/SiO2) ……………………………………………………………………………..40
圖 2- 4合成磁性奈米材料之ESCA分析圖 (黑色實線: Fe3O4;紅色虛線: Fe3O4/SiO2) ……………………………………………………………..41
圖 2- 5合成磁性奈米材料之HR-XRD分析圖 (黑色實線: Fe3O4;紅色虛線: Fe3O4/SiO2) ……………………………………………………………..42
圖 2- 6合成磁性奈米材料之TEM分析圖 ………………………………………..43
圖 2- 7 Fe3O4/SiO2添加量對紫外光吸收劑萃取效率之影響 …………………..45
圖 2- 8溶液pH值對紫外光吸收劑萃取效率之影響 ………………………..46
圖 2- 9萃取時間對紫外光吸收劑萃取效率之影響 ……………………………..47
圖 2- 10脫附溶劑種類對紫外光吸收劑脫附效果之影響 ………………………..49
圖 2- 11脫附溶劑體積對紫外光吸收劑脫附效率之影響 ………………………..50
圖 2- 12脫附時間對紫外光吸收劑脫附效率之影響 ……………………………..52
圖 2- 13緩衝溶液添加量對紫外光吸收劑萃取效率之影響 …………………..53
圖 2- 14濃度為100 ng mL-1 紫外光吸收劑添加於尿液中,經Fe3O4/SiO2萃取結合LC-MS/MS分析之層析質譜圖. (a) HBP; (b) BP-7(c) BP-1; (d) BP-9; (e) BP-3; (f) BP-8; (g) BP-2 ; (h) BP-6 ;(i) 4-MBC; (j) OD-PABA; (k) BP-12. …………………………………………………………………..55
圖 2- 15 Fe3O4/SiO2萃取結合液相層析串聯質譜儀於S5尿液樣品分析所得之層析質譜圖. (a) HBP; (b) BP-7(c) BP-1; (d) BP-9; (e) BP-3; (f) BP-8; (g) BP-2 ; (h) BP-6 ;(i) 4-MBC; (j) OD-PABA; (k) BP-12. ……………..60
圖 3- 1 實驗基材製備流程圖 …………………………………………………..70
圖 3- 2 實驗流程圖 ……………………………………………………………..72
圖 3- 3 一滴溶液結合電噴灑分析之側視圖 …………………………………..74
圖 3- 4 液珠直接電噴灑。(a) 電灑電壓未施加前;(a) 電灑電壓施加後 …..75
圖 3- 5 3.5 μL 0.1%甲酸水溶液液珠直接電灑之質譜圖 ………………………..76
圖 3- 6 層層堆疊模式之側視圖 ……………………………………………..78
圖 3- 7 堆疊式樣品製備法結合電噴灑質譜法分析含1 μg mL-1紫外光吸收劑之尿液與Fe3O4/SiO2磁奈米粒子混合溶液所得之(a) TIC圖與選擇離子層析圖(b) 4-MBC, m/z 255;(c) OD-PABA, m/z 278與(d) BP-12, m/z 327。 ………………………………………………………………………..79
圖 3- 8 均勻混合模式之側視圖 ……………………………………………..80
圖 3- 9 均勻混合式樣品製備法結合電噴灑質譜法分析含1 μg mL-1紫外光吸收劑之尿液與Fe3O4/SiO2磁奈米粒子混合溶液所得之選擇離子層析圖。(a) 4-MBC, m/z 255;(b) OD-PABA, m/z 278與(c) BP-12, m/z 327。 …..81
圖 3- 10 均勻混合式樣品製備法結合電噴灑質譜法分析含1 μg mL-1紫外光吸收劑之尿液與Fe3O4磁奈米粒子混合溶液所得之選擇離子層析圖。(a) 4-MBC, m/z 255;(b) OD-PABA, m/z 278與(c) BP-12, m/z 327。 …..82
圖 3- 11 (a)噴灑前、(b)噴灑後基材表面CCD圖。 ……………………………..85
圖 4-1 血紅素基團(heme group)結構 ………………………………………..92
圖 4-2 細胞色素C之結構圖 …………………………………………………..94
圖 4-3 氧分子於肌紅蛋白中heme group鍵結示意圖 ……………….……….95
圖 4-4 泛素蛋白質之結構圖 ………………………………………….……….97
圖 4-5 合成奈米粒子之TEM圖 ………………………………………107
圖 4-6 細胞色素C於不同比例20 nm金奈米粒子溶液之ESI-MS質譜圖 …108
圖 4-7 細胞色素C之+8價離子訊號於不同體積比例金奈米粒子溶液之高解析ESI-MS質譜圖 ………………………………………………………110
圖 4-8 細胞色素C之+7價離子訊號於不同體積比例金奈米粒子溶液之ESI-MS高解析質譜圖 …………………………………………………111
圖 4-9 泛素於不同體積比例10 nm金奈米粒子溶液之ESI-MS質譜圖 ....112
圖 4-10 泛素+6價離子訊號峰於不同體積比例金奈米粒子(10 nm)溶液之ESI-MS質譜圖 ………………………………………………………113
圖 4-11 泛素於不同體積比例金奈米粒子(10 nm) 溶液之ESI-MS高解析質譜圖 ………………………………………………………………………115
圖 4-12 泛素於不同體積比例金奈米粒子(50 nm)溶液之ESI-MS質譜圖 …117
圖 4-13 泛素於不同體積比例金奈米粒子(50 nm)溶液之ESI-MS高解析質譜圖 ………………………………………………………………………118
圖 4-14 肌紅蛋白於不同體積比例金奈米粒子(10 nm)溶液之ESI-MS質譜圖 ………………………………………………………………………120
圖 4-15 金奈米粒子(棕色線)、肌紅蛋白(橘色線)及其混合溶液(黃綠色線)之拉曼光譜圖 ……………………………………………………………121
圖 4-16 肌紅蛋白於不同比例二氧化鈦奈米粒子溶液之ESI-MS質譜圖 ....123
圖 4-17 肌紅蛋白於不同比例空白溶液稀釋之ESI-MS質譜圖 …………....124
圖 4-18 肌紅蛋白+13價至+19價離子訊號之質譜圖 ………………………125


第一章
P.D. Marcato, N. Duran, J. Nanosci. Nanotechnol. 8 (2008) 2216-2229.
W.H. De Jong, P.J. Borm, Int. J. Nanomedicine 3 (2008) 133-149.
S.C. McBain, H.H. Yiu, J. Dobson, Int J Nanomedicine 3 (2008) 169-180.
A. Nel, T. Xia, L. Madler, Science 311 (2006) 622-627.
S. Nie, Y. Xing, G.J. Kim, J.W. Simons, Annu. Rev.Biomed. Eng. 9 (2007) 257-288.
H.C. Fischer, W.C. Chan, Curr. Opin. Biotechnol. 18 (2007) 565-571.
L. Crombez, M.C. Morris, S. Deshayes, F. Heitz, G. Divita, Curr. Pharm. Des. 14 (2008) 3656-3665.
P.M. Heegaard, U. Boas, D.E. Otzen, Macromol. Biosci. 7 (2007) 1047-1059.
D. Aili, K. Enander, J. Rydberg, I. Nesterenko, F. Bjorefors, L. Baltzer, B. Liedberg, J. Am. Chem. Soc. 130 (2008) 5780-5788.
L. Gao, J. Zhuang, L. Nie, J. Zhang,; Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Nat. Nanotechnol. 2 (2007) 577-583.
葉瑞銘(2004),奈米科技導論,高立出版社,台北縣.
呂宗昕(2003),圖解奈米科技與光觸媒,商周出版社,台北市.
T. Sen, A. Sebastianelli, I. J. Bruce, J. Am. Chem. Soc. 128 (2006) 7130-7131.
D. Leun, A. K. Sengupta, Environ. Sci. Technol. 34 (2000) 3276-3282.
X. Zhao, Y. Shi, T. Wang, Y. Cai, G. Jiang, J. Chromatogr. A 1188 (2008) 140-147.
N. Yao, H. M. Chen, H. Q. Lin, C. H. Deng and X. M. Zhang, J. Chromatogr. A 1185 (2008) 93-101.
S. Baumann, U. Ceglarek, G. M. Fiedler, J. Lembcke, A. Leichtle and J. Thiery, Clin. Chem. 51 (2005) 973-980.
X.Wang, L.Wanga, X. He, Y. Zhang, L. Chen, Talanta 78 (2009) 327–332
X. Zhao, Y. Shi, T. Wang, Y. Cai, G. Jiang, J. Chromatogra. A, 1188 (2008) 140–147
Y. Li, T. Leng, H. Lin, C. Deng, X. Xu, N. Yao, P. Yang, and X. Zhang, J. Proteome Res. 6 (2007) 4498-4510
S. Baumann, U. Ceglarek, G. M. Fiedler, J. Lembcke, A. Leichtle and J. Thiery, Clin. Chem. 51 (2005) 973-980.
M. A. Hayat ed., “Collodial Gold: Principle, Methods, and Applications”, (Academic, San Diego, 1989)
M. Anpo, H. Yamashita, K. Ikeue, Y. Fujishima, K. Koyano, T. Tastumi, Catalysis Today 44 (1998) 327-332.
J. Yu, X. Zhao and Q. Zhao, Mater. Chem. Phys. 69 (2001) 25-29.
S. Zhang, N. Fujii and Y. Nosaka, J. Mol. Catal. A-Chem. 129 (1998) 219-224.
C.-T. Chen, Y. C. Chen, Anal. Chem 77 (2005) 5912-5919.
Z. Lu, J. Duan, L. He, Y. Hu and Y. Yin, Anal. Chem. 82 (2010) 7249-7258.
H. Wang, J. Duan and Q. Cheng, Anal. Chem. 83 (2011) 1624-1631.
R. Raijmakers, K. Kraiczek, Ad P. de Jong, S. Mohammed and Albert J. R. Heck, Anal. Chem. 82 (2010) 824-832.
K.-H. Lee, C.-K. Chiang, Z.-H. Lin and H.-T. Chang, Rapid Commun. Mass Spectrom. 21 (2007) 2023-2030.
P. Lorkiewicz and M. C. Yappert, Anal. Chem. 81 (2009) 6596-6603.
S. L.-C. Hsu, R.-T. Wu, Materials Letters 61 (2007) 3719-3722.
S.T. Dubas and V. Pimpan, Mater Lett 62 (2008) 2661–2663.
A.M. Schrand, L.K. Braydich-Stollel, J.J. Schlager, L. Dai and S.M. Hussain, Nanotechnology 19 (2008) 235104.
J.L. Elechiguerra, J. Burt and J.R. Morones et al., J Nanobiotechnol 3 (2005) 6.
J. Zeleny, Phys. Rev. 10 (1917) 1-6.
M. Dole, L. L. Mack, R. L. Hines, J. Chem. Phys. 49 (1968) 2240-2249.
L. L. Mack, P. Kralic, A. Rheude, M. Dole, J. Chem. Phys. 52 (1970) 4977-4986.
M. Yamashita and J. B. Fenn, J. Phys. Chem. 88 (1984) 4451-4459.
M. Yamashita and J. B. Fenn., J. Phys. Chem. 88 (1984) 4671-4675.
M. Dole, L. L. Mack, R. L. Hines, R. C. Mobley, L. D. Ferguson; M. B. Alice, J. Chem. Phys. 49 (1968) 2240–2249.
J.V. Iribarne and B. A. Thomosom, J. Phys. Chem. 64 (1976) 2287.
M. G. Ikonomou, A. T. Blases and P. Kebarle, Anal. Chem. 63 (1991) 1989-1998.
http://www.waters.com/watersdivision/ContentD.asp?watersit=EGOO-66MNYR&WT.svl=1
B Domon, R Aebersold, Science 312 (2006) 212-217
J. T. Waston, O. D. Sparkman, Introduction to Mass Spectrometry, 4th edition, Wiley: New York, 2007.
J. C. Schwartz and M. W. Senko J. Am. Soc. Mass Spectrom. 13 (2002) 659–669

第二章
US Food and Drug Administration, Code of Federal Regulations, Title 21, Parts 70-82 for Colorants; Parts 330–360 for OTC drugs; Parts 700–740 for Cosmetics
European Commission, Council Directive 76/768/CEE of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products, and its successive amendments and adaptations
Japanese Ministry of Health and Welfare, 2000, Notification No. 331/2000, Standards for Cosmetics
P. Schneider, A. Bringhen and H. Gonzenbach, Drug Cosmet. Ind. 159 (1996) 32-38.
H. Tinwell, P.A. Lefevre, G.J. Moffat, A. Burns, J. Odum, T.D. Spurway, G. Orphanides and J. Ashby, Environ. Health Perspect. 110 (2002) 533-536.
M. Schlumpf, B. Cotton, M. Conscience, V. Haller, B. Steinmann and W. Lichtensteiger, Environ. Health Perspect. 109 (2001) 239-244.
C. Schmutzler, I. Hamann, P.J. Hofmann, G. Kovacs, L. Stemmler, B. Mentrup, L. Schomburg, P. Ambrugger, A. Gruters, D. Seidlova-Wuttke, H. Jarry, W. Wuttke and J. Kohrle, Toxicology 205 (2004) 95-102.
M. Nagtegaal, T.A. Ternes, W. Baumann, R. Nagel, Umweltwiss. Schadst.-Forsch 9 (1997) 79-86.
C. Couteau, N. Perez Cudell, A.E. Connan and L.J. Coiffard, Int. J. Pharm. 222 (2001) 153-157.
C. Fernandez, F. Nielloud, R. Fortune, L. Vian and G. Marti-Mestres, J. Pharm. Biomed. Anal. 28 (2002) 57-63.
V. Sarveiya, S. Risk and H.A.E. Benson, J. Chromatogr., B 803 (2004) 225-231.
M.M. Jiménez, J. Pelletier, M.F. Bobin and M.C. Martini, Int. J. Pharm. 272 (2004) 45-55.
S. Kasichayanula, J.D. House, T. Wang and X. Gu, J. Chromatogr., B 822 (2005) 271-277.
K. Mori, K. Itoh, S. Suzuki and H. Nakamura, Jpn. J. Toxicol. Environ. Health 42 (1996) 60.
J. Engelmann, G. Leyhausen, D. Leibfritz and W. Geurtsen, J. Dent. Res. 80 (2001) 869-875.
R.J. Smernik, J. Environ. Qual. 34 (2005) 1194-1204.
J. Cheng, Y.S. Li, R.L. Roberts and G. Walker, Talanta 44 (1997) 1807-1813.
T.M. Kolev and B.A. Stamboliyska, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 56A (2000) 119-126.
J.A. Kleimeyer and J.M. Harris, Appl. Spectrosc. 57 (2003) 448-453.
B. Musial and J. Sherma, Acta. Chromatogr. 8 (1998) 5-12.
B. Musial and J. Sherma, J. Planar Chromatogr. Mod. 10 (1997) 368-371.
H.-Y. Huang, C.-W. Chiu, I.-Y. Huang, S. Lee, J. Chromatogr. A 1089 (2005) 250-257.
T. Felix, B.J. Hall and J.S. Brodbelt, Anal. Chim. Acta 371 (1998) 195-203.
J. Hany and G. Nagel, Dtsch. Lebensm. Rundsch. 91 (1995) 341-345.
T. Soeborg, N.C. Ganderup, J.H. Kristensen, P. Bjerregaard, K.L. Pedersen, P. Bollen, S.H. Hansen and B. Halling-Sorensen, J. Chromatogr., B 834 (2006) 117-121.
J.-W. Kim, B. R. Ramaswamy, K.-H. Chang, T. Isobe, S. Tanabe, J. Chromatogr. A 1218 (2011) 3511-3520.
C. Plagellat, T. Kupper, R. Furrer, L.F. de Alencastro, D. Grandjean and J. Tarradellas, Chemosphere 62 (2006) 915-925.
T. Poiger, H.R. Buser, M.E. Balmer, P.A. Bergqvist and M.D. Muller, Chemosphere 55 (2004) 951-963.
D.L. Giokas, V.A. Sakkas and T.A. Albanis, J. Chromatogr. A 1026 (2004) 289-293.
V.A. Sakkas, D.L. Giokas, D.A. Lambropoulou and T.A. Albanis, J. Chromatogr. A 1016 (2003) 211-222.
K.W. Ro, J.B. Choi, M.H. Lee and J.W. Kim, J. Chromatogr. A 688 (1994) 375-382.
H.-Y. Huang, C.-W. Chiu, I.-Y. Huang, S. Lee, J. Chromatogr. A 1131 (2006) 192-202.
I. P. Román, A. Chisvert, A. Canals, J. Chromatogr. A 1218 (2011) 2467-2475.
H.K. Jeon, Y. Chung and J.C. Ryu, J. Chromatogr. A 1131 (2006) 192-202.
P. Cuderman and E. Heath, Anal. Bioanal. Chem. 387 (2007) 1343-1350.
R. Rodil, J.B. Quintana, P. López-Mahia, S. Muniategui-Lorenzo and D. Prada-Rodríguez, Anal. Chem. 80 (2008) 1307-1315.
N. Negreira, I. Rodríguez, M. Ramil, E. Rubí and R. Cela, Anal. Chim. Acta 638 (2009) 36-44.
R. Rodil and M. Moeder, J. Chromatogr. A 1179 (2008) 81-88.
M. Kawaguchi, R. Ito, H. Honda, N. Endo, N. Okanouchi, K. Saito, Y. Seto and H. Nakazawa, J. Chromatogr. A 1200 (2008) 260-263.
M. Haunschmidt, C.W. Klampfl, W. Buchberger and R. Hertsens, Anal. Bioanal. Chem. 397 (2010) 269-275.
L. Vidal, A. Chisvert, A. Canals and A. Salvador, Talanta 81 (2010) 549-555.
N. Okanouchi, H. Honda, R. Ito, M. Kawaguchi, K. Saito and H. Nakazawa, Anal. Sci. 24 (2008) 627-630.
D.L. Giokas, V.A. Sakkas, T.A. Albanis and D.A. Lampropoulou, J. Chromatogr. A 1077 (2005) 19-27.
N. Negreira, I. Rodríguez, E. Rubí and R. Cela, Anal. Bioanal. Chem. 398 (2010) 995-1004.
I. Tarazona, A. Chisvert, Z. León and A. Salvador, J. Chromatogr. A 1217 (2010) 4771-4778.
D.L. Giokas, A. Salvador and A. Chisvert, Trends Anal. Chem. 26 (2007) 360-374.
C.G.J. Hayden, M.S. Roberts and H.A.E. Benson, Lancet 350 (1997) 863-864.
V. Sarveiya, S. Risk and H.A.E. Benson, J. Chromatogr. A 803 (2004) 225-231.
H. Gustavsson-Gonzalez, A. Farbrot and O. Larkö, Clin. Exp. Dermatol. 27 (2002) 691-694.
R. Jiang, C.G.J. Hayden, R.J. Prankerd, M.S. Roberts and H.A.E. Benson, J. Chromatogr. B 682 (1996) 137-145.
T. Felix, B.J. Hall and J.S. Brodbelt, Anal. Chim. Acta 371 (1998) 195-203.
I.M. Abdel-Nabi, A.M. Kadry, R.A. Davis and M.S. Andel-Rahman, J. Appl. Toxicol. 12 (1992) 255-259.
S. Kasichayanula, J.D. House, T. Wang and X. Gu, J. Chromatogr. B 822 (2005) 271-277.
C.S. Okereke, M.S. Abdel-Rhaman and M.A. Friedrnan, Toxicol. Lett. 73 (1994) 113-122.
C.S. Okereke, A.M. Kadry, M.S. Abdel-Rahman, R.A. Davis and M.A. Friedman, Drug Metab. Dispos. 21 (1993) 788-791.
M. Ingelman-Sundberg and A.L. Hagbjork, Xenobiotica 12 (1982) 673-986.
T. Poiger, H.R. Buser, M.E. Balmer, P.A. Bergqvist and M.D. Muller, Chemosphere 55 (2004) 951-963.
M.E. Balmer, H.R. Buser, M.D. Muller, T. Poiger, Occurrence of the organic UV-filter compounds BP-3, 4-MBC, EHMC, and OC in wastewater, surface waters, and in fish from Swiss lakes, Agroscope, Swiss Federal Research Station for Horticulture, Plant Protection Chemistry, CH-8820W”Adenswil, Switzerland, 2004.
P. J. Robinson, P. Dunnill, M. D. Lilly, Biotechnol. Bioeng. 15 (1973) 603-606.
K. Aguilar-Arteaga, J.A. Rodríguez and E. Barrado, Anal. Chim. Acta 674 (2010) 157-165.
A.S. de Dios and M.E. Díaz-García, Anal. Chim. Acta 666 (2010) 1-22.
L. Bai, B. Mei, Q.Z. Guo, Z.G. Shi and Y.Q. Feng, J. Chromatogr. A 1217 (2010) 7331-7336.
W. Schärtl, Nanoscale 2 (2010) 829-843.
D. Horák, M. Babic, H. Macková and M.J. Benes, J. Sep. Sci. 30 (2007) 1751-1772.

第三章
J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Science 246 (1989) 64.
S. J. Pachuta, R. G. Cooks, Chem. Rev. 87 (1987) 647-669.
M. Karas, F. Hillenkamp, Anal. Chem. 60 (1988) 2299-2301.
V. V. Laiko, M. A. Baldwin, A. L. Burlingame, Anal. Chem. 72 (2000) 652-657.
A. Venter, M. Nefliu, R. G. Cooks, Trends Anal. Chem. 27 (2008) 284-290.
R. Cooks, Z. Ouyang, Z. Takats, J. M. Wiseman, Science 311 (2006) 1566-1570.
M.-Z Huang, C.-H. Yuan, S.-C. Cheng, Y.-T. Cho and J. Sheia, Annu. Rev. Anal. Chem. 3 (2010) 43-65.
D. R. Ifa, C. Wu, Z. Ouyang amd R. G. Cooks, Analyst 135 (2010) 669-681.
Z. Ouyang, X. Zhang, Analyst 135 (2010) 659-660.
G. A. Harris, A. S. Galhena, and F. M. Fernández, Anal. Chem. (2011) In Press.
Z. Takats, J.M. Wiseman, B. Gologan, R.G. Cooks, Science 306 (2004) 471.
H. Chen, A. Venter, R.G. Cooks, Chem. Commun. 19 (2006) 2042-2044.
I.F. Shieh, C.Y. Lee, J. Shiea, J. Proteome Res. 4 (2005) 606-612.
J. Liu, H. Wang, N. E. Manicke, J.-M. Lin, R. G. Cooks, Z. Ouyang, Anal. Chem. 82 (2010) 2463-2471.
R.B. Cody, J.A. Laramee, H.D. Durst, Anal. Chem. 77 (2005) 2297-2302.
J. D. Harper, N. A. Charipar, C. C. Mulligan, X. Zhang, R. G. Cooks and Z. Ouyang, Anal. Chem. 80 (2008) 9097–9104.
J. Shiea, M.-Z. Huang, H.-J. Hsu, C.-Y. Lee, C.-H. Yuan, I. Beech, J. Sunner, Rapid Commun. Mass Spectrom. 19 (2005) 3701-3704.
S. Trimpin, E. D. Inutan, T. N. Herath, C. N. McEwen, Mol. Cell. Proteomics 9 (2010) 362-367.
S.-C. Cheng, T.-L. Cheng, H.-C. Chang, J. Shiea, Anal. Chem. 81 (2009) 868– 874.
R. B. Dixon, J. S. Sampson, D. C. Muddiman, J. Am. Soc. Mass Spectrom. 20 (2009) 597- 600.
K. C. Schafer, J. Denes, K. Albrecht, T. Szaniszlo, J. Balog, R. Skoumal, M. Katona, M. Toth, L. Balogh, Z. Takats, Angew. Chem, Int. Ed. 48 (2009) 8240-8242.
F. Mugele and J.-C. Baret, J. Phys.: Condens. Matter 17 (2005) R705-R774.

第四章
D. L. Nelson, M. M. Cox, “Principle of Biochemistry”, 4th ed., W. H. Freeman and Company, 2004.
http://www.bio.davidson.edu/people/midorcas/animalphysiology/websites/2004/Gooch/oxygen.htm
http://en.wikibooks.org/wiki/Structural_Biochemistry/Enzyme/Prosthetic_Group
http://web.virginia.edu/Heidi/chapter15/chp15.htm
http://en.wikipedia.org/wiki/Cytochrome_c
http://chemed.chem.purdue.edu/genchem/topicreview/bp/1biochem/blood3.html
符宏勇, “宇元(ubiquitin)蛋白家族共價修飾對植物生長發育的功能機制探討”, p90-95.
http://nobelprize.org/nobel_prizes/chemistry/laureates/2004/
J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong,; C. M. Whitehouse, Science 246 (1989) 64-71.
J.B. Fenn, Angew. Chem. Int. Ed. Engl. 42 (2003), pp. 3871-3894.
N. L. Kelleher, M. W. Senko, M. M. Siegel, F. W. McLafferty, J. Am. Soc. Mass Spectrom. 8 (1997) 380-383.
M. S. Lipton, L. Pasa-Tolic, G. A. Anderson, D. J. Anderson, D. L. Auberry, J. R. Battista, M. J. Daly, J. Fredrickson, K. K. Hixson, H. Kostandarithes, C. Masselon, L. M. Markillie, R. J. Moore, M. F. Romine, Y. Shen, E. Strittmatter, N. Tolic, H. R. Udseth, A. Venkateswaran, K. K. Wong, R. Zhao, R. D. Smith, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 11049-11054.
L. Konermann, B. A. Collings, D. J. Douglas, Biochemistry 36 (1997) 5554-5559
L. Konermann, D. J. Douglas, Biochemistry 36 (1997 ) 12296-12302
D. J. Wilson, S. P. Rafferty, L. Konermann, Biochemistry 44 (2005) 2276-2283
C.S. Hoaglund-Hyzer, A.E. Counterman and D.E. Clemmer, Chem. Rev. 99 (1999) 3037-3080.
M. Peschke, U.H. Verkerk and P. Kebarle, Eur. J. Mass Spectrom. (Chichester, Engl.) 10 (2004) 993-1002.
L. Konermann and D.J. Douglas, Biochemistry 36 (1997) 12296-12302.
R. Grandori, Protein Sci. 11 (2002) 453-458.
L. Konermann and D.J. Douglas, Biochemistry 36 (1997) 12296-12302.
R. Grandori, Protein Sci. 11 (2002) 453-458.
M. Samalikova, I. Matecko, N. Muller and R. Grandori, Anal. Bioanal. Chem. 378 (2004) 1112-1123.
http://en.wikipedia.org/wiki/Ubiquitin
L Konermann, F. I. Rosell, A. G. Mauk and D. J. Douglas, Biochemistry 36 (1997) 6448-6454.
L Konermann, D. J. Douglas, Biochemistry 36 (1997) 12296-12302.
S. H. Yang, A. B. Wijeratne, L. Li, B. L. Edwards, and K. A. Schug, Anal. Chem. 83 (2011) 643-647.
H. Prakash, B. T. Kansara, S. Mazudar, Int. J. Mass Spectrom. 289 (2010) 84-91.
U. H. Verkerk, M. Peschke and P. Kebarle, J. Mass Spectrom. 38 (2003) 618-631.
A. T. Lavarone, O. A. Udekwu and E. R. Willams, Anal. Chem. 76 (2004) 3944-3950.
Iavarone, A. T.; Williams, E. R. J. Am. Chem. Soc. 125 (2003) 2319-2327
A. T. Iavarone, J. C. Jurchen, and E. R. Williams, Anal. Chem. 73 (2001) 1455-1460
S. H. Lomeli, S. Yin, R. R. Ogorzalek Loo, J. A. Loo, J. Am. Soc. Mass Spectrom. 20 (2009) 593-596
S. H. Lomeli, I. X. Peng, S. Yin, R. R. Loo, J. A. Loo, J. Am. Soc. Mass Spectrom. 21 (2009) 127-131
J. A. Loo, R. R. O. Loo, H. R. Udseth, C. G. Edmonds, R. D. Smith, Rapid Commun. Mass Spectrom. 5 (1991) 101-105
Iavarone, A. T.; Jurchen, J. C.; Williams, E. R. J. Am. Soc. Mass Spectrom. 11 (2000) 976- 985
M. Buck, S. E. Radford,, & C. M. Dobson, Biochemistry 32 (1993) 669-678.
Y. V. Griko, P. L. Privalov, S. Y. Venyaminov & V. P. Kutshenko, J. Mol. Biol. 202 (1988) 127-138.
P. Fan, C. Bracken & J. Baum, Biochemistry 32 (1993)1573-1582.
A. T. Alexandrescu, Y.-L. Ng, and C. M. Dobson, J. Mol. Biol. 235 (1994) 587-599.
D.J. Brockwell, D.A. Smith, and S.E. Radford, Curr. Opin. Struct. Biol. 10 (2000) 16-25.
S.W. Englander, Annu. Rev. Biophys. Biomol. Struct. 29 (2000) 213-238.
D.J. Brockwell, D.A. Smith, and S.E. Radford, Curr. Opin. Struct. Biol. 10 (2000) 16-25.
S.W. Englander, Annu. Rev. Biophys. Biomol. Struct. 29 (2000) 213-238.
R.L. Baldwin and G.D. Rose, Trends Biochem. Sci. 24 (1999) 77-83.
C. M. Niemeyer, Angew. Chem., Int. Ed. 40 (2001) 4129-4158.
N. Nath, A. Chilkoti, Anal. Chem. 74 (2002) 504-509.
D. A. Lavan, D. M. Lynn, R. Langer, Nat. Rev. Drug Discovery 1 (2002) 77-84.
K. J. Mckenzie, F. Marken, Langmuir 19 (2003) 4327-4331.
M. Karlsson, L. G. Mårtensson, B. H. Jonsson, U. Carlsson, Langmuir 16 (2000) 8470-8479.
I. Lynch, K. A. Dawson, S. Linse, Detecting cryptic epitopes created by nanoparticles Sci. STKE 2006, pe14
J. J. Gray, Curr. Opin. Struct. Biol. 14 (2004) 110-115.
J. Vaynberg, J. Qin,Weak, Trends Biotechnol. 24 (2006) 22- 27
M. F. Engel, A. J. Visser, C. P. van Mierlo, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 11316- 11321
M. Lundqvist, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 14265-14270
E. R. Zuiderweg, Biochemistry 41 (2002) 1-7
M. Pellecchia, D. S. Sem, K. Wuthrich, Nat. Rev. Drug Discovery 1 (2002) 211-219.
L. Simonelli, J. Mol. Biol. 396 (2010) 1491-1507
S. K. Chowdhury, V. Katta, B. T. Chait, J. Am. Chem. Soc. 112 (1990) 9012-9013.
V. Katta, B.T. Chait, J. Am. Chem. Soc. 113 (1991) 8534-8535.
M. Šamalikova, I. Matečko, N. Müller and R. Grandori, Anal. Bioanal. Chem. 378 (2004) 1112-1123.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔