(3.235.11.178) 您好!臺灣時間:2021/03/07 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳則佑
研究生(外文):Tza-You Chen
論文名稱:應用點估法與TRIGRS程式分析奧萬大道路邊坡之破壞機率
論文名稱(外文):An application of the point estimate method and TRIGRS to analyze failure probability of the roadside slopes in Aowanda
指導教授:馮正一馮正一引用關係
指導教授(外文):Zheng-Yi Feng
口試委員:林基源林昭遠王國隆
口試日期:2011-07-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:72
中文關鍵詞:TRIGRS ; 破壞機率 ; 奧萬大 ; 辛樂克颱風
外文關鍵詞:TRIGRSfailure probabilityAowandaTyphoon Sinlaku
相關次數:
  • 被引用被引用:7
  • 點閱點閱:282
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本研究於奧萬大地區進行山崩潛感分析,應用TRIGRS程式模擬奧萬大道路邊坡受到2008年辛樂克颱風豪雨襲擊時,降雨入滲對邊坡穩定之影響性。為符合於現況,參數方面採用現地勘查、遙測資料進行分區,並使用地形指數與Rosenblueth點估法增加參數之可靠度。研究結果指出奧萬大道路邊坡風化板岩透水性佳,道路邊坡受零星降雨影響有限,且累積降雨量與崩塌面積並非完全成正比。陡峭區域受到少量降雨其破壞機率即會昇高,較緩的邊坡必須有充足之雨量,破壞機率才會明顯的昇高。對於TRIGRS程式於奧萬大之崩塌源頭區之應用,本研究分析所得崩塌區位與實際崩塌區位符合性高。分析結果由ROC曲線驗證,顯示出AUC面積逹到92%。

This study investigates the landslide susceptibility analysis in Aowanda area. This study applied TRIGRS code to simulate the rainfall-induced seepage influence of the roadside slopes stability of Aowanda area under heavy rainfall attack of Typhoon Sinlaku in 2008. To increase the reliability of the simulations, this study adopted topography index and Rosenblueth point estimate method. Also, zonation was made according to the field investigation and remote sensing data for better assuming the simulation parameters relating to in-situ condition. The permeability is high in the weathered slate formation of Aowanda. Roadside slope stability is less influenced by scattering rainfalls. The cumulated rainfall and the landslide area is not necessary proportional. For steep slopes, the failure probability will increase even only with an average rainfall amount. In contrast, for gentle slopes, the failure probability will gradually increase only after significant amount of rainfall. The comparison between the calculated and actual landslide area is satisfied using TRIGRS for the landslide source areas of Aowanda. In the analysis, the TRIGRS model was used for slope stability analysis, and the result was compared by carefully validations of predicting landslides. The area under the receiver operating characteristic (ROC) curves for TRIGRS model was 92%.

摘要 I
目錄 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究動機與目地 1
1.2 研究架構與內容 2
第二章 文獻回顧 4
2.1 山崩潛感分析 4
2.1.1. 專家評估法 4
2.1.2. 定值法 4
2.1.3. 統計法 6
2.1.4. 專家評估法、統計法和定值法之優缺點 7
2.2 參數不確定分析 7
2.3 土壤厚度 8
第三章 材料與方法 13
3.1 TRIGRS模式 13
3.1.1 基本簡介 13
3.1.2 入滲模式 14
3.1.3 邊坡穩定模式 18
3.1.4 適用限制 18
3.2 地理資訊系統 19
3.2.1 基本介紹 19
3.2.2 地理資訊系統應用於山崩潛感分析 19
3.3 Rosenblueth點估法 20
3.4 地形指數模式 22
3.5 定量指數 25
3.6 ROC曲線 26
第四章 資料蒐集與處理 28
4.1 研究區域環境說明 28
4.1.1 試區簡介 28
4.1.2 崩塌地現地調查與區位分析 29
4.1.3 降雨 32
4.2TRIGRS參數 33
4.2.1 坡度 33
4.2.2 土壤厚度 34
4.2.3 土壤水力參數 35
4.2.4 土壤初始入滲率參數 36
4.2.5 穩態地下水位深度 37
4.2.6 地層強度參數 37
第五章 模式應用與結果討論 39
5.1 TRIGRS參數分析與應用 39
5.1.1 局部敏感度分析 39
5.1.2 土壤水力參數之敏感度分析 42
5.2 地形指數模式操作與模擬結果 44
5.2.1 地形指數模式操作 44
5.2.2 土壤厚度與初始入滲率之模擬結果與討論 50
5.2.3 等值法與地形指數之比較 53
5.3 邊坡穩定分析 54
5.3.1 累積降雨量 54
5.3.2 坡度之臨界累積降雨量 58
5.4 定量分析 60
5.4.1 辛樂克颱風模擬結果定量分析 60
5.4.2 舊有崩塌位置定量分析 61
第六章 結論與建議 64
6.1 結論 64
6.2 建議 65
參考文獻 66



1.中興工程顧問公司(2004),「南投縣投71線道路卓社隧道東口至法治村路段復健工程簡易水土保持申報書」。
2.方至聖(2010),「地質參數對降雨入滲無限邊坡安全係數之敏感度分析,國立嘉義大學土木與水資源工程學系碩士論文。
3.王姵兮(2007),「應用TRIGRS模式評估降雨及入滲誘發池上山棕寮地滑」,國立中正大學應用地球物理研究所碩士論文。
4.何瑞益(2007),「坡地災害潛勢發生時間與位置之研究-以大粗坑集水區為例」,國立海洋大學河海工程學系碩士學位論文。
5.吳佳郡(2006),降雨誘發山崩之潛感分析初探,國立暨南大學土木工程學系碩士論文。
6.呂欣懋(2005),「土石壩滲流之風險分析-以石門水庫為例」,國立臺灣大學土木工程學研究所碩士論文。
7.林仙蕓(2008),「降雨引發坡地淺崩塌之區域性風險分析研究」,國立交通大學土木工程系所碩士論文。
8.林衍丞(2009),「廣域山崩潛感分析模型力學-水力參數逆分析」,國立中央大學應用地質研究所碩士論文。
9.林務局南投林區管理處(2010),「99年度奧萬大聯外道路沿線安全檢測技術服務期末報告書」。
10.姜壽浩(2006),「以局部穩定條件率定之土壤厚度估測模式」,國立台灣大學地理環境資源研究所碩士論文。
11.洪夢秋(2005),「地形指數模式應用於長短期距之逕流模擬」,國立台灣海洋大學河海工程研究所碩士論文。
12.徐美玲(1995),「坡地土壤孔隙水壓動態空間分佈預測模式」,國立臺灣大學地理學系地理學報18:1-22。
13.張石角(1980),「都市山坡地利用潛力調查與製圖-方法論與實例」,中華水土保持學報11(1):13-24。
14.張弼超(2005),「運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例」,國立中央大學應用地質研究所碩士論文。
15.莊緯璉(2005),「運用判別分析進行山崩潛感分析之研究-以臺灣中部國姓地區為例」,國立中央大學應用地質研究所碩士論文。
16.許永佳(2002),「水壩溢流之風險分析-以翡翠水庫為例」,國立臺灣大學土木工程學研究所碩士論文。
17.陳弘恩(2005),「降雨引發淺崩塌模式之建立與探討」,國立交通大學土木工程學系碩士論文。
18.陳本康(2005),「石門水庫集水區崩塌特性及潛勢評估研究」,國立中興大學水土保持學研究所博士論文。
19.湯國安(2006),「ArcGIS地理信息系統空間分析實驗教程」,科學出版社。
20.馮正一、劉怡安、張育瑄(2009),「應用TRIGRS分析集水區中尺寸坡地入滲與穩定性」,水土保持學報41(3):339-356。
21.黃春銘(2005),運用模糊類神經網路進行山崩潛感分析-以臺灣中部國姓地區為例,國立中央大學應用地質研究所碩士論文。
22.楊克誠(2006),「GIS軟件應用實驗指導書」,資環學院地理信息科學系。
23.萬鑫森(1987),「基礎土壤物理學」,國立編繹館,台北。
24.經濟部中央地質調查所(2005),「山崩潛感分析之研究(3/3)94年度總報告附錄B山崩潛感分析及製圖準則」。
25.經濟部中央地質調查所(2010),「集水區地形及地質資料庫成果查詢系統」,< 網址:http://gwh.moeacgs.gov.tw/gwh/gsb97-2/sys9/,瀏覽日期:2011.05.09。
26.臺灣省石門水庫管理局(1976),「石門水庫集水區崩塌地航測調查報告」,台灣省林務局農林航空測量隊編印。
27.蔡呈奇(2002),「應用地域分析與地理資訊系統繪製土壤圖:以台灣北部火山灰土壤為例」,國立台灣大學農業化學研究所博士論文。
28.鄭傑銘(2003),「應用GIS進行豪雨及地震引致山崩之潛感性分析」,國立臺灣大學土木工程學研究所。
29.賴韋廷(2009),「利用不同崩塌地分類法改進崩塌潛勢 之研究-以德基水庫集水區為例」,國立中興大學土木工程學系碩士論文。
30.賴鏡如(2008),「河防構造物功能風險分析架構之研究」,國立交通大學土木工程學系碩士論文。
31.鍾育櫻(2005),「921集集大地震前後降雨型崩塌地特徵之比較」,國立臺灣大學地理環境資源研究所碩士論文。
32.鍾欣翰(2008),「考慮水文模式的地形穩定分析以匹亞溪集水區為例」,國立中央大學應用地質研究所碩士論文。
33.魏君蓉(2007),「加勁擋土牆牆面變形之可靠度分析」,暨南國際大學土木工程學系碩士論文。
34.蘇歆婷(2007),「降雨引發坡地淺崩塌風險評估模式之建立與應用」,國立交通大學土木工程學系碩士論文。
35.鐘意晴(2009),「區域性山崩潛感分析方法探討-以石門水庫集水區為例研究」,國立中央大學地球物理研究所碩士論文。
36.Baum, R.L., Savage, W.Z., and Godt, J.W., (2002), TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope stability analysis, U.S., Geological Survey, (Open-File Report 02-0424).
37.Baum, R.L., Savage, W.Z., and Godt, J.W., (2008), TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope stability analysis,Version2.0, U.S., Geological Survey, (Open-File Report 2008-1159).
38.Beven, K. J. and Kirkby, M. J., (1979), A physically based variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24(1),43-69.
39.Beven, K. J., (1986b), Runoff production and flood frequency in catchments of order n: an alternative approach, in Gupta, V. K., Rodriguez-Iturbe, I. and Wood, E. F. (eds.), Scale Problems in Hydrology, Reidel, Dordrecht, 107-131.
40.Beven, K. J.,(2001), Rainfall-runoff modelling : the primer, Chichester : Wiley.
41.Burrough, P. A. and McDonnell, R. A., (1998), Principles of geographical information systems, Oxford university press, New York.
42.Chen, C.Y., Chen, T.C., Yu, F.C., Lin, S.C., (2005), Analysis of time-varying rainfall infiltration induced landslide, Environmental Geology, 48(4-5): 466-479.
43.Chen, J. C., Jan, C. D., Lee, M. H., (2007), Probabilistic analysis of landslide potential of an inclined uniform soil layer of infinite length: theorem, Environmental Geology, 51(6):1239-1248.
44.Dietrich, W. E., Hus, M. L. and Montgomery, D. R., (1995), A process-based model for colluvial soil depth and shallow landsliding using digital elevation data, Hydrological Process, 9: 383-400.
45.Duncan, J.M. (2000), Factors of safety and reliability in geotechnicalengineering, J Geotech Geoenviron Eng , 26(4):307-316.
46.Duncan, J.M., (1996), Soil slope stability analysis, in Turner, A.K., and Schuster, R.L., Landslides—Investigation and mitigation: Washington, D.C., National Academy Press, Transportation Research Board Special Report 247, 337-371.
47.Environmental Systems Research Institute, Inc. (ESRI), (2011), http://www.esri.com/ .
48.Heimsath, A.M., Dirtrich, W.E, Nishiizumi, K., Finkel, R.C., (1997), The soil production function and landscape equilibrium, Nature, 388: 358-361.
49.Horn, B. K. P., (1981), Hill shading and the reflectance map, Proceedings of the IEEE,69(1):14-47.
50.Husein Malkawi, A. I., Hassan, W. F., Abdulla, F. A., (2000), Uncertainty and reliability analysis applied to slope stability, Structural Safety, 22:161-187.
51.Iverson, R.M., (2000), Landslide triggering by rain infiltration, Water Resources Research, 22(7):1897-1910.
52.Jenny, H., (1941), Factor of soil formation. New York: McGraw-Hill.
53.Jenson, S. K. and Domingue, J. O., (1988), “Extracting topographic structure from digital elevation data for geographic information system analysis,” Photogrametric Engineering and Remote Sensing, 54(11), 1593-1600.
54.Kirkby, M. J., (1971), Hillslope process-response models based on the continuityequation, Institute of British Geographers, Special Publication, 3: 15-30.
55.Lee, K.T. and Ho, J.-Y., (2009),Prediction of landslide occurrence based on slope instability analysis and hydrological model simulation, Journal of Hydrology, 375:489-497.
56.Liu, C. N. and Wu, C. C., (2008), Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach, Environmental Geology, 55(4): 907-915.
57.O’Callaghan, J., and Mark, D. M.,(1984), The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image Process., 28(3): 323-344.
58.Pack, R. T., D. G. Tarboton, C. N. Goodwin, A. Prasad, (2005), "SINMAP 2. A Stability Index Approach to Terrain Stability Hazard Mapping, technical description and users guide for version 2.0," Utah State University.
59.Rosenblueth, E., (1975), Point estimates for probability moments, Proceedings of the national academy of science,mathmatics, 72(10):3812-3814.
60.Salciarini, D., Godt, J. W., Savage, W. Z., Conversini, P., Baum, R. L., Michael, J. A., (2006), Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides, 3,181-194.
61.Sorbino, G., Sica, C., Cascini, L., Cuomo, S., (2007), On the forecasting of flowslides triggering areas usingphysically based models., Proceedings of 1st North American Landslides Conference, Vol. 1. AEGSpecial Publication 23,305–315.
62.Sorbino, G., Sica, C., Cascini, L., Cuomo, S., (2010), Susceptibility analysis of shallow landslides source areas using physically based models, Natural Hazards, 55(4): 313-332.
63.Sung Eun Cho, Ph.D., (2010), Probabilistic Assessment of Slope Stability That Considers the Spatial Variability of Soil Properties, J Geotech Geoenviron Eng, 136(7):975-984.
64.Swets, J. A.,(1961),Is there a sensory threshold?, Science, New Series, 134:168-177.
65.Valley, B., Kaiser, P. K., and Duff, D., (2011), Probabilistic analyses in Phase2 8.0, Center for Excellence in Mining Innovation.
66.Vieira, B. C., Fernandes, N. F. and Filho, O. A., (2010), Shallow landslide prediction in the Serra do Mar, S o Paulo, Brazil, 10,1829-1837.
67.Zhou, G., Esaki, T., Mitani, Y., Xie, M., Mori, J., (2003), Spatial probabilistic modeling of slope failure using integrated GIS Monte Carlo simulation approach, Engineering Geology, 68, 373-386.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔