跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 12:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃伯舜
研究生(外文):Bo-Shun Huang
論文名稱:土-根系統之根系抗剪強度增量轉換模式
論文名稱(外文):The Conversion Model of the Increased Shear Strength Due to Roots in Soil-Root System
指導教授:林德貴林德貴引用關係
口試委員:林信輝陳榮河林三賢范嘉程
口試日期:2011-06-28
學位類別:博士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:154
中文關鍵詞:土-根系統數值模型抗剪強度增量極限拉拔抗力力學轉換模式
外文關鍵詞:numerical model of soil-root systemincreased shear strength due to rootsultimate pull-out resistancemechanical conversion models
相關次數:
  • 被引用被引用:2
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究藉由數值程序來建立根系在土-根系統中,提供之抗剪強度增量ΔSr與其地上部植生基徑D,地下部根系極限拉拔抗力Pu,以及土層受剪面上根系之平均拉力強度Tr等參數間之轉換模式,並用以決定植生邊坡穩定分析中,土-根系統所需之力學參數,並使穩定分析能更迅速有效。本研究首先針對台灣坡地植生工程常用之三種植物即:山黃麻(Trema orientalis (L.) Blume; India charcoal trema, ICT)、九芎(Lagerstroemia subcostata Koehne; Subcostate crape myrtle, SCM),以及山芙蓉(Hibiscus mutabilis L.; Cotton rose, CR),來進行根系形態調查。調查內容包含:根系幾何形狀、根徑、根面積比及根域範圍等項目。另外,再進行室內單根材料之拉力強度試驗及現地土-根系統之拉拔試驗,以決定根系材料拉力強度及土-根系統之極限拉拔抗力。最後,藉由根系形態之現地調查成果以及室內試驗所得根系材料參數,吾人即可建構土-根系統之二維數值模型,並進行土-根系統現地拉拔試驗之數值模擬及參數研究。

藉由土-根系統現地拉拔試驗數值模擬所得之拉拔抗力-拔出量關係曲線(即P-Lp曲線),以及極限拉拔抗力值Pu與現地試驗結果之比對,吾人即可驗證上述土-根系統之二維數值模型、數值模擬程序及各項材料參數輸入值之有效性。隨之,吾人再利用上述相同之二維數值模型,來進行土-根系統現地直接剪力試驗之數值模擬,以決定根系在土-根系統中所能提供之抗剪強度增量ΔSr。最後,本研究採用(1)現地量測值:植物地下部重量Wr、側根根數NLR、植生地上部基徑D及根系極限拉拔抗力Pu;(2)室內試驗值:單根材料極限抗拉力tmax;以及(3)數值模擬值:根系極限拉拔抗力Pus,抗剪強度增量ΔSr等三組研究成果,來建立四組土-根系統抗剪強度增量之力學轉換模式,即: (1)ΔSr=f(D),(2)ΔSr=f(Pus),(3) ΔSr=f(D, Pu, Wr, NLR),以及(4) ΔSr = f(Tr, Ar, As)。上述轉換模式,提供了一套快速便捷之根系力學轉換方法,其可利用土-根系統中相關之物理及力學參數,來估計由於根系所產生之抗剪強度增量,並運在植生邊坡穩定性之量化評估分析中。

In this study, a mechanical conversion model was developed through numerical procedures to correlate the increased shear strength of soil-root system due to roots with plant root parameters of basal diameter of plant D, ultimate pull-out resistance of root Pu, and the average tensile strength of roots Tr. Meanwhile, the model can be used to determine the required strength parameters for the stability analysis of vegetated slope and expedite the efficiency of analysis. Firstly, three species of plants, namely, Trema orientalis (L.) Blume (India charcoal trema, ICT), Lagerstroemia subcostata Koehne (Subcostate crape myrtle, SCM), Hibiscus taiwanensis S. Y. Hu (Cotton rose, CR) commonly used for the slope vegetation in Taiwan were selected for the field investigations. In the investigation the basic properties of root system such as root morphology, root diameter, root area ratio, and root growth characteristics were surveyed in field site. Moreover, a series of laboratory tensile strength tests and in-situ pull-out tests were performed to determine the tensile strength of root material and the ultimate pull-out resistance of soil-root system respectively. Using the root morphology and root material parameters, one can establish a 2-D numerical model of soil-root system to simulate the in-situ pull-out behaviors and relevant parametric study.

Through the comparisons of the simulated pull-out force versus pull-out displacement curves (or P-Lp curves) and the ultimate pull-out resistance of soil-root system Pu with those from measurements, the validities of the numerical model, simulation procedures and various input material parameters can be verified. Subsequently, the identical 2-D numerical model of soil-root system with that used in pull-out test was repeatedly adopted for the simulation of direct shear test to estimate the increased shear strength ΔSr of soil-root system due to roots. Eventually, integrating the data from : (1) field measurements: the dry root weight Wr, number of lateral root NLR, basal diameter of plant D, ultimate pull-out resistance Pu, (2) laboratory tests: the maximum tensile load of single root tmax, and (3) numerical simulations: the simulations of ultimate pull-out resistance Pus , increased shear strength due to roots ΔSr, one can propose four mechanical conversiton models for soil-root system: (1)ΔS r=f(D), (2)ΔSr=f(Pu), (3) ΔSr=f(D, Pu, Wr, NLR), and(4) ΔSr = f(Tr, Ar, As). The above four conversion models play an important role in the quantitative analyses of the stability of vegetated slope in which the models enable a fast estimation for the increased shear strength due to roots ΔSr through the associated physical and mechanical parameters of soil-root system.


ABSTRACT I
摘 要 II
Chapter 1 Introduction 1
1.1 Motivation of study 1
1.2 Objective of study 2
1.3 Framework of study 2
Chapter 2 Literatures Review 6
2.1 Classification of root patterns 6
2.2 Soil-root system reinforcement model 9
2.3 Mechanical test and numerical simulation of Soil-root system 14
2.3.1 Laboratory/In-situ test 14
2.3.2 Numerical simulation 21
2.4 Statistic model 28
2.4.1 Bivariate correlations 28
2.4.2 Linear Regression 29
2.5 Finite element method – c-phi strength reduction method (SRM) 31
Chapter 3 Investigation and Experiments 32
3.1 Basic information of study site 32
3.2 Investigation of vegetation 34
3.2.1 Vegetation species 34
3.2.2 Investigation methods 34
3.2.3 Root system measurement 38
3.2.3.1 Measurement methods 38
3.2.3.2 Root morphology 40
3.2.3.3 Root parameter 45
3.3 Roots mechanical test 46
3.3.1 Direct shear test of soil 47
3.3.2 Tensile strength of root 47
3.3.3 In-site pull-out test of soil-root system 50
3.3.3.1 Test procedure 50
3.3.3.2 Test results 51
Chapter 4 Numerical Analysis of Soil-Root System 53
4.1 Simulation and verification of pull-out test of soil-root system 53
4.1.1 Numerical model 53
4.1.1.1 Geometry model 53
4.1.1.2 Boundary condition 54
4.1.2 Input material model parameter 54
4.1.2.1 Soil material model parameter 54
4.1.2.2 Root material model parameter 56
4.1.3 Implementation of the numerical simulation 61
4.2 Parametric study of root morphology in pull-out test 62
4.2.1 Numerical model 62
4.2.1.1 Geometry model 62
4.2.1.2 Boundary condition 64
4.2.2 Input material model parameter 64
4.2.2.1 Soil material parameter 65
4.2.2.2 Root material parameter 65
4.2.3 Implementation of parametric study 65
4.3 Direct shear test of soil-roots system 65
4.3.1 Numerical model 65
4.3.1.1 Geometry model 65
4.3.1.2 Boundary condition 67
4.3.2 Input material model parameter 67
4.3.3 Implementation of the numerical simulation 67
Chapter 5 Results and Discussions 69
5.1 Statistic analyses 69
5.1.1 Field investigation 69
5.1.2 Experiments 69
5.1.2.1 Tensile strength 69
5.1.2.2 Pull-out resistance of soil-root system 72
5.2 Verification of numerical procedures of pull-out test 78
5.2.1 Pull-out resistance versus pull-out displacement 78
5.2.2 Ultimate pull-out resistance 90
5.2.2.1 Comparison between in-situ test and numerical simulation 90
5.2.2.2 Statistical analysis 93
5.2.2.3 Summary and comments 100
5.3 Parametric study of root morphology 101
5.3.1 Pull-out behaviors 101
5.3.2 Ultimate pull-out resistance 110
5.4 Numerical simulation of direct shear test 116
5.4.1 Numerical simulation results 116
5.4.2 Statistic analyses 128
5.4.3 Summary and comments 131
5.5 Conversion model of increased shear strength due to roots 132
5.5.1 Increased shear strength due to roots versus ultimate pull-out resistance 132
5.5.2 Increased shear strength due to roots versus basal diameter 135
5.5.3 Increased shear strength due to roots versus plant parameters 138
5.5.4 Summary and comments 139
5.5.4.1 Application of conversion model in stability analysis of vegetated slope 139
5.5.4.2 Comparison of conversion model with previous root reinforcement models 140
Chapter 6 Conclusions 146
6.1 Conclusions 146
6.1.1 Field investigation and in-situ test 146
6.1.2 Numerical simulation and parametric study of pull-out test 146
6.1.3 Numerical simulation of direct shear test of soil-root system 146
6.1.4 Conversion model of increased shear strength due to roots 147
6.1.5 Summary and comments 147
6.2 Suggestions 148
6.2.1 Influence of soil type 148
6.2.2 Influence of root reinforcement behaviors in soil other than tap roots 149
6.2.3 In-situ test for soil-root system other than pull-out test and direct shear test 149
References 150

1.王欣俞(2006),植生邊坡穩定性之量化評估,國立中興大學水土保持學系碩士論文
2.何昱昀(2004), 根系對土壤加勁效果之數值模擬,國立中興大學水土保持學系碩士論文
3.李潤威(2009),土-根系統剪力強度增量力學轉換模式之建立,國立中興大學水土保持學系碩士論文
4.林信輝、高齊治 (1999),西南部泥岩地區刺竹根力特性之研究,中華水土保持學報 30(1), p1-12
5.林信輝(1995),山鹽菁與山水柳在石灰石礦區之生長與根力特性之研究,水土保持學報27(1),p88-99
6.林信輝(2001),水土保持植生工程,3-5植生與邊坡穩定,p79-93
7.林信輝等四人(2004),美洲闊苞菊根株引拔抗力推定模式之研究,農林學報53(4),p293-306
8.林信輝等三人(2004),九芎植生木樁之生長與根系力學之研究,中華水土保持學報
9.林哲郎等五人(1995),草類根系力學效應之研究,水土保持技術學報1,p61-71
10.吳正雄(1993),樹根力與坡面穩定關係之研究,中華水土保持學報24(2),p23-37
11.吳正雄、陳信雄(1991),台灣衫根力與坡面穩定關係之研究,中華林學季刊24(1),p27-40。
12.陳意昌、張俊斌、林信輝(2002),台灣崩塌地先趨植物根力模式分析,海峽兩岸山地災害與環境保育研究第三卷,p413~419
13.陳燿榮(2006),桂竹林地崩塌地機制動態之調查研究,國立中興大學水土保持學系碩士論文
14.張敬昌(2002),山坡地檳榔根力試驗研究,水土保持學報34(4) ,p249-260
15.張俊斌,林信輝(1995),中橫崩塌地優勢植物根力特性之研究,中華水土保持學報26(4),p235~243
16.張俊斌(1995),中橫崩塌地優勢植物植生特性與其根力之研究,國立中興大學水土保持學系碩士論文
17.黃伯舜(2005),含根土互制行為數值模擬,國立中興大學水土保持學系碩士論文
18.黃士洋(2009),崩塌地優勢樹種根力特性之研究以石門水庫集水區為例,國立中興大學水土保持學系碩士論文
19.賴俊帆(2007),桂竹根系拉拔試驗及其坡面之穩定性評估,國立中興大學水土保持學系碩士論文
20.謝明廷(2009),桂竹林土根系統調查及其根力特性之研究,國立中興大學水土保持學系碩士論文
21.顏正平(1973),水土保持植物根系分佈基本型態調查,中華水土保持學報4(1),p65~84。
22.顏正平(2000),根系型在水土保持適用效能之研究,水土保持植生工程研討會論文,p127~137。
23.顏正平(2004),樹木之地下世界—植物根系分布類型之研究,博學
24.Abe, K., 1991. Estimation of reinforced shear resistance of rooted soil by pull-out resistance of the roots. Journal of Japan Soc. Reveget. Tech. 16(4), 37-45.
25.Abe, K., Ziemer, R. R., 1991. Effect of tree roots on a shear zone: modeling reinforced shear strength. Can. J. For. Res. 21, 1012-1019.
26.Ali, F., 2010. Use of vegetation for slope protection: root mechanical properties of some tropical plants. Internation Journal of Physical Sciences Vol. 5(5), 496-506
27.Böhm, W, 1979. Methods of study root system. Springer-Verlag Berlin Heidelberg New York.
28.Cazzuffi,D., Crippa, E., 2005. Shear strength behavior of cohesive soils reinforced with vegetation. 16th International Conference on Soil Mechanical and Geotechnical Engineering, OSAKA, Japan, September 12~16, 2493~2498.
29.Coppin, N.J., Richards I.G., 1990. Use of vegetation in civil engineering. Construction Industry, Research and Information Association (CIRIA), U.K.
30.Danjon, F., Fourcaud, T., Bert, D., 2005. Root architecture and wind-firmness of mature Pinus pinaster, New Phytologist 168, 387-400
31.Dupuy, L., Fourcaud, T., Stokes, A., 2005. A numerical investigation into factors affecting the anchorage of roots in tension. European Journal of Soil Science 56, 319-327.
32.Dupuy, L., Fourcaud, T., Stokes, A., Danjon, F., 2005. A density_based approach for the modelling of root architecture: application to Maritime pine (Pinus pinaster Ait.) root systems. Journal of Theoretical Biology 236, 323-334.
33.Ekanayake, J.C., Phillips, C.J., 1999. A method for stability analysis of vegetated hillslopes: an energy approach. Can. Geotech. J. 36, 1172-1184.
34.Ekanayake, J.C., Phillips, C.J., Marden, M., 2004. A comparison of methods for stability analysis of vegetated slopes. Ground and Water Bioengineering for Erosion Control and Slope Stabilization, Science Publisher, Inc., 171-181.
35.Ennos, A.R., 1990. The anchorage of leek seedlings: the effect of root length and soil strength. Annals of Botany 65, 409-416.
36.Ennos, A. R., 1991. The Mechanical of anchorage in wheat Triticum aestivum L. II. Anchorage of mature wheat against lodging. Journal of Experimental Botany 42(245), 1607-1613.
37.Fan, C.C., Su, C.F., 2008. Role of roots in the shear strength of root-reinforced soils with high moisture content. Ecological Engineering 2008, 157-166.
38.Fourcaud, T., Ji, J.N., Zhang, Z.Q., Stokes, A., 2008. Understanding the impact of root morphology on overturning mechanisms: A modeling approach. Annals of Botany 101, 1267-1280.
39.Genet, M., Kokutse, N., Stokes, A., Fourcaud, T., 2008. Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability. Forest Ecology and Management. 2008, 1517-1526
40.Gray, D. H., Megahan, W. F., 1981. Forest vegetation removal and slope stability in the Idaho Batholith. Research paper INT-271, Intermoutain Forest and Range Experiment Station, Ogden, Utah.
41.Gray, D. H., Sotir, R. B., 1996. Biotechnical and soil bioengineering slope stabilization. a practical guide for erosion control. A Wiley-Interscience Publication, John Wiley and Sons, Inc.
42.Kuo, C.C., 2006. Using ecotechnology to redirect Taiwan''s construction work away from conventional method. Ecological Engineering 28, pp325-332.
43.Kokutse, N. Fourcaud, T. Kokou, K. Neglo, K. Lac, P., 2006. 3D numerical modeling and analysis of th influence of forest structure on hill slope stability. Diaster Mitigation of Debris Flow, Slope Failiures and Landslides, 561-567.
44.Lin, Der-Guey, Huang, Bor-Shun, Lin, Shin-Hwei, 2005. Root Mechanical of vegetation engineering - investigations and experiments, Sino-Geotechnics, Vol. 104, 87-102 (in Chinese).
45.Lin, Der-Guey, Huang, Bor-Shun, Lin, Shin-Hwei, 2007. Quantitative evaluation on the stability of vegetated slope using the equivalent single taproot model, Journal of Chinese Soil and Water Conservation. Vol. 38, No. 1, 2007, March, pp15~29 (in Chinese).
46.Lin Der-Guey, Huang Bor-Shun, Lin Shin-Hwei, 2010. 3-D Numerical Investigations into the Shear Strength of the Soil–Root System of Makino Bamboo and Its Effect on Slope Stability, Journal of Ecological Engineering, Volume 36, No. 8, pp 992~1006.
47.Morgan, R.P.C., Rickson, R.J., 1995. Slope stabilization and erosion control-A bioengineering approach. E and FN SPON, London.
48.Nicoll, B.C., Gardiner, B.A., Rayner, B., Peace, A.J., 2006. Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Canada Journal for NRC Research Press 36, 1871-1883
49.O′Loughlin, C., Ziemer, R.R., 1982. The Importance of root strength and deterioration rates upon EDAPHIC stability in steepland forests, I.U.F.R.O. Workshop P.1.07-00 Ecology of Subalpine Ecosystems as a Key to Management. 2-3 August 1982, Corvallis, Oregon. Oregon State University, 70-78.
50.Operstein, V., Frydman S., 2000. The influence of vegetation on soil strength. Ground Improvement 4, No.2, 81-89.
51.Operstrin, V., Frydman, S., 2001. Numerical simulation of direct shear of root-reinforced soil. Ground Improvement 5, 163-168.
52.Operstrin, V., Frydman, S., 2002. The stability of soil slopes stabilised with vegetation. Ground Improvement 6, 163-168.
53.Osman, N., Barakbah, S.S., 2006. Parameters to predict slope stability-soil water and root profiles. Ecological Engineering 28, 90-95.
54.Peltola, H., Kellomaki, S., Hassinen, A., Granander, M., 2000. Mechanical stability of Scots pine, Norway spruce and binch: an analysis of tree-pulling experiments in Finland. Forest Ecology and Management 135, 143-153
55.Pollen, N., Simon, A., 2005. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water resources research 41, W07025.
56.Plaxis 2D V8.5. Manual of finite element code for soil and rock analyses
57.Schmidt, K.M., Roering, J.J., Stoke, J.D., Dietrich, W.E., Montgomery, D.R., Schaub, T., 2001. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon coast range. Canada Geotech Journal 38, 995-1024.
58.Stokes, A., Ball, J., Fitter, A.H., Brain, P., Coutts, M.P., 1996. An experimental investigation of resistance of model root systems to uprooting. Annals of Botany 78, 415-421.
59.Stoke, A., 1999, Strain distribution during anchorage failure of pinus pinaster Ait. At different ages and tree growth response to wind-induced root movement, Plant and soil 217, 17-27
60.Stoke, A., Atger, C., 2009. Desirable plant root traits for protecting natural and engineered slope against landslides. Plant soil 324, 1-30
61.Sun, H.L., Li, S.C., Xiong, W.L., Yang, Z.R., Cui, B.S., Tao-Yang, 2008. Influence of slope on root system anchorage of pinus yunnanensis. Ecological Engineering 2008, 60-67.
62.Waldron, L.J., 1977. The shear resistance of root-permeated homogeneous and stratified soil, Soil Science Society American Journal, 843-849.
63.Waldron, L.J., Dakessian S., 1981. Soil reinforcement by roots: calculation of increased soil shear resistance from root properties, Soil Science, Vol. 132, No. 6, 427-435.
64.Wu, T.H., 1976. Investigation of landslides on prince of wales island Alaska, Geotechnical engineering report No.5, Department civil engineering Ohio state university, Columbus, 94P.
65.Wu, T.H., 1994. Slope Stabilization Using Vegetation. Geotechnical Engineering Emerging Trends in Design and Practice. 377-402.
66.Wu, T.H., Beal, P.E., Lan, C., 1988b. In-situ shear test of soil-root systems. Journal of Geotechnical Engineering 114(12), 1376-1394.
67.Wu T.H., Watson A.J., El-Khouly M.A., 2004. Soil-root interaction and slope stability ground and water bioengineering for erosion control and slope stabilization, Science Publisher, Inc., pp.183-192.
68.Wu, T.H., McKinnell, W.P. III, Swanston, D.N., 1979. Strength of tree roots and landslides on Prince of Wales Island. Alaska. Can. Geotech. Journal 16, 19-33.
69.Wu, T.H., McOmber, R.M., Erb, R.T., Beal, P.E., 1988a. Study of soil-root interaction. Journal of Geotechnical Engineering 114(12), 1351-1375.
70.Yatabe, R., Tagi, N., Yokota, K., 1996, Stability analysis of slope reinforced by roots network

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top