跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 17:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡煜哲
研究生(外文):Yu-Cher Tsai
論文名稱:以隔膜電解法連續製備二氧化氯之可行性研究
論文名稱(外文):Research on the feasibility of continuous generation of chlorine dioxide by membrane electrolysis method
指導教授:謝永旭謝永旭引用關係
指導教授(外文):Yung-Hsu Hsieh
口試委員:章日行張禎祐
口試日期:2011-07-06
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:64
中文關鍵詞:二氧化氯電化學程序電解程序溫度控制連續產出產出濃度
外文關鍵詞:chlorine dioxideelectrochemistry processelectrolysis processtemperature controlcontinuous generationproduction concentration
相關次數:
  • 被引用被引用:1
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二氧化氯(Chlorine Dioxide,ClO2)具有消毒效能佳且能有效控制消毒副產物等優點,因此,現今許多歐美國家淨水廠已將二氧化氯做為消毒程序之用藥。然而,國內至今尚無將二氧化氯應用於淨水程序中消毒用藥的實例。其主要原因是國內對於二氧化氯的使用及分析,還未定出明確規範及標準方法;加上臺灣原水水質特性的差異,故其於淨水程序中之應用,尚屬研究階段。鑑於未來食品、醫療及環境用藥等消毒方面使用二氧化氯有上升的趨勢,國內外相關的製備、應用等研究也日漸增多。就製備二氧化氯而言,多數均以電化學程序進行,該程序有用藥簡單、產出純度高及可連續產出使用等優勢。

本研究係承繼本校「隔膜電解法產製二氧化氯之研究」(楊佳霖,2010)所為。該篇研究主要探討電解槽體內不同電解液組成份對二氧化氯產出之影響,其研究成果發現以NaCl 2%及NaClO2 6%之組成為陽極槽電解液,NaOH 0.5 %之組成為陰極槽電解液,並以12 V電解20分鐘後可得濃度302 mg/L、佔所有產出氯系化合物91%之二氧化氯溶液。

本研究以先前研究之電解液組成為主,進一步探討溫度對二氧化氯產出之影響以及連續產出一定範圍濃度之可能性。研究結果,發現隨著電解液起始溫度及冷卻水溫度的上升,電解槽內之起始電流、最高電流、最高溫度及產出的二氧化氯濃度皆有上升的現象。當控溫溫度達30 ℃,電解槽內之最高溫度達到52℃時,可製得濃度907 mg/L、佔所有產出氯系化合物98%之ClO2溶液。

於連續產出固定濃度ClO2研究方面,則是以固定電流輔以額外加藥的方式進行,其結果發現隨著電流的調降,二氧化氯的產出濃度隨之降低,且其產出時間有延長的趨勢。當電流值設定為20 A時,二氧化氯之最高產出濃度落在35 ~ 40 mg/L之範圍,而電解開始後30 ~ 45 分鐘之產出濃度皆在此範圍內。於電解過程中更換陽極槽電解液以維持產出濃度,若更換體積大於槽體體積50 %後,則更換之體積越大,可於更換後20分鐘達更換前之濃度高峰,並維持此產出濃度,但於更換後短時間內會出現明顯的產出濃度落差。若更換體積槽體體積低於50 %,更換後短時間內產出濃度之落差即較不明顯,但後續產出濃度並無回升的現象。因此推斷,於電解過程中以批次加藥的方式更換電解液,並無法達到連續產出一定濃度範圍之二氧化氯的目的。


Well known as a powerful water disinfectant with fewer disinfection by-products than chlorine, Chlorine dioxide (ClO2) has been widely used for treating potable water in western countries. Yet until today, ClO2 has not been used in practice as disinfectant in purifying potable water in Taiwan. Instead, the application of ClO2 in water purification remains to date at the stage of research. The major reason is the lack of guideline and standard operation procedure (SOP) for the use as well as analysis of this novel disinfectant. In the future, the ClO2 is expected to be more and more widely used as a disinfectant not only for potable water but also for food, medicine, environment, medicine, and so forth. As a result, more and more relevant research will surely be conducted in Taiwan as well as in foreign countries.

A new electrochemistry technology has been widely used in generating ClO2 because of its advantage of high purity production, simple dosing and continuous generation. This research is followed the outcome of previous study of this University on the production of chlorine dioxide by membrane electrolysis method this research. That study explored how different composition of anolyte in operating cell can affect the production of ClO2. According to the research, a ClO2 solution at 302 mg/L of concentration and 91 % of purity respectively can be achieved in 20 minutes of electrolysis operation conducted in mixed anolyte of 2 % NaCl and 6 % NaClO2 along with catholyte of 0.5 % NaOH in condition of 12 V operating voltage.(YANG,2010)

This study went further to explore two issues: the impact of temperature upon ClO2 production and the potentiality of continuous ClO2 production in certain concentration. The outcome of study demonstrates that along with the adjusted rise of initial temperature of electrolysis solution and that of cooling water, the initial current, top current, top temperature as well as ClO2 concentration all go up accordingly. When the controlled temperature reaches 30 ℃and cell top temperature arrives at 52℃, one can harvest a ClO2 at as high as 907 mg/L of concentration and 98% of purity.

As for the issue of continuous ClO2 production in certain concentration, the research shows that ClO2 production concentration goes down while the production time range tends to be prolonged, when the electricity current is lowered in a context of fixed current and extra dosing.

With the electricity current fixed at 20 A, the top production concentration falls into the category between 35 mg/L and 40 mg/L and the production concentration remains in this domain in 30 ~ 45 minutes after the process starts. The anolyte in operating cell is replaced with a view to sustaining production concentration. As the replacement volume is higher than 50%, the greater is the replaced volume, the more concentrated is the generated ClO2 solution, as the research suggests initially. However an obvious gap in production concentration is observed shortly after the replacement is made.

On the other hand, when the replacement volume is lower than 50%, gap in generation concentration is less evident but the subsequent concentration is not accelerating as expected. It is concluded accordingly the conceived continuous ClO2 generation in certain concentration seems not be able to be achieved by adding once for all the dose of electrolysis solution in present experimental generation process.


中文摘要…………………………………………………………………Ⅰ
英文摘要…………………………………………………………………Ⅲ
目錄………………………………………………………………………Ⅴ
圖目錄……………………………………………………………………Ⅶ
表目錄……………………………………………………………………Ⅸ
第一章 緒論………………………………………………………………1
第二章 文獻回顧…………………………………………………………3
2-1二氧化氯概述………………………………………………………3
2-1-1 二氧化氯的發現及基本性質………………………………3
2-1-2二氧化氯與其他消毒劑之比較………………………………6
2-1-3二氧化氯之消毒副產物………………………………………9
2-1-4二氧化氯之分析方法………………………………………10
2-2二氧化氯之製備及其應用………………………………………13
2-2-1二氧化氯的傳統製備方法…………………………………13
2-2-2電解法製備二氧化氯………………………………………16
2-2-3二氧化氯之應用……………………………………………17
2-2-4二氧化氯應用於水處理之相關規範………………………20
2-3電化學程序………………………………………………………23
2-3-1電解基本原理………………………………………………23
2-3-2法拉第電解定律……………………………………………24
2-3-3影響電解之相關因素……………………………………………24
第三章 材料與方法……………………………………………………26
3-1研究方法…………………………………………………………26
3-2 實驗藥品………………………………………………………28
3-3 分析設備…………………………………………………………28
3-4 實驗單元…………………………………………………………28
3-5實驗流程及方法…………………………………………………30
3-6分析方法…………………………………………………………32
第四章 結果與討論……………………………………………………36
4-1電解設備試車……………………………………………………36
4-2溫度對二氧化氯產出濃度之效益………………………………42
4-3固定電流對二氧化氯產出之影響………………………………47
4-4連續產出二氧化氯之可行性……………………………………54
第五章 結論與建議……………………………………………………60
5-1 結論………………………………………………………………60
5-2 建議………………………………………………………………61
參考文獻…………………………………………………………………62


刁淑華 (1993),高級氧化預處理對自來水含氯有機物生成之影響,台大環工所碩士論文,台北。
林世豪、吳俊哲、吳志超 (2005),二氧化氯應用在淨水程序中對有機物之去除探討-模廠試驗,第二屆海峽兩岸飲用水安全控制技術及管理研討會,第159-162 頁。
施宜珍 (1996),以二氧化氯為替代消毒劑時其副產物生成與控制之研究,國立中興大學環境工程研究所,碩士論文,台中市。
許勝聖 (1996),以二氧化氯為替代消毒劑時其生成控制及消毒效率之研究,國立中興大學環境工程研究所,碩士論文,台中市。
張怡怡, (1996). 飲用水中無機物、微生物及濁度管制項目及管制標準之合理性分析. EPA-85-J102-09-05, 行政院環境保護署委託研究報告.台北醫學院。
張懿文、吳志超、黃文鑑 (2005),二氧化氯預氧化對混凝程序去除天然有機物及濁度效率影響之研究,中華民國環境工程學會 第三十屆廢水處理技術研討會。
黃志彬 (2002),提升傳統淨水處理程序效能之研究-鳳山場內模型廠試驗研究,第一年計畫,台灣省自來水公司期末報告,第2.6-2.11 頁。
楊佳霖(2010),隔膜電解法產製二氧化氯之研究,國立中興大學環境工程研究所,碩士論文,台中市。
董榮彰 (2005),電解法生產二氧化氯原型機之開發與效益評估,屏東科技大學食品系碩士論文,屏東,第40 – 43 頁。
劉明哲、賴政國、盧明俊、陳重男 (2003),二氧化氯氣液滅菌效能研究,第二十八屆廢水技術研討會。
顧洋, (1996). 臭氧處理在淨水工程上之應用. 中華民國自來水協會會刊. 第15 卷, 第三期, 第32-38 頁。
AWWA Research Foundation (1992). Use of Alternative Disinfectants,
Chlorination By-Products: Production and Control. pp.174-188.
Amy, G.L., Debroux, J. Sinha, S. Brandhuber P. and Chao J., (1998). Occurrence of Disinfection By-Products(DBPs) Precursors in Source Waters and DBPs in Finished Waters. The 4th International Workshop on Drinking Water Quality Management and Treatment Technology, pp.59-70.
Akin E.W., Hoff J.C., Lipp Hoff J.G., Lalezary S., Pirbazari M. and McGuire
M.J., (1984)., Oxidation of taste and odor compounds, AWWA Ann., Conf.,
Dallas, Texas.
Aieta, E.M. and Berg, J.D. (1986). A Review of Chlorine Dioxide in Drinking
Water Treatment. J. AWWA. Vol.78, No.6, pp.62-73.
Condie L.W., (1986). Toxicological problems associates with chlorine dioxide, J. AWWA, Vol. 78, No. 4, pp.156-162.
Craun G.F., Bull R.T., Clark R.M., Doull J., Grabow W., Marsh G.M.,Okun D.A., Regli S., Sobsey M.D. and Symons J.M., (1994).Balancing chemical and microbial risks of drinking water disinfection,Part. Benfits and Potential Risks, J. Water SRT-Aqua.,43(4): pp.192-199.
Gordon G., (2001). Is all chlorine dioxide created equal?, J. AWWA.,Vol.94,
pp.163-174.
Gagnon G.A., Rand J.L., O’Leary K.C., Rygel A.C., Chauret C., and Andrews R.C.(2005). Disinfectant efficacy of chlorite and chlorine dioxide in drinkingwater biofilms, Water Res, Vol. 39, pp.1809-1817.
Henry B. and Savas K., (2005). The formation of chlorine dioxide in
theelectrochemical treatment of drinking water for disinfection, J.
Electrochimica Acta, Volume: 50, Issue: 25-26, pp.5218-5228.
Hoehn R.C. (1992). Chlorine dioxide use in water treatment: key issues.
Conference proceedings, Chlorine Dioxide: Drinking Water Issues: Second
International Symposium Houston, TX.

Joseph P. W and Blair Martin G., (2009). Development and field testing of a
mobile chlorine dioxide generation system for the decontamination of
buildings contaminated with Bacillus anthracis, J. Hazardous Materials, Vol:
164, pp.1640-1467
Katz, A. and Narkis, N., (1994). Disinfection of Effluent by Combinations of
Equal Doses of Chlorine Dioxide and Chlorine Added Simultaneously Over
arying Contact Times. Water Res. Vol.28, No.10, pp.2133-2138.
Masschelein, W.J., (1979). Chlorine Dioxide: Chemistry and Environment
Impact of Oxychlorine Compounds. Ann Arbor Science. Ann Anbor, MI.
Monk, P.( 2001)Fundamentals of Electroanalytical Chemistry, John Wiley&Sons, New York.
Narkis N., Katz A., Orshansky F., Kott Y. and Friendl Y., (1995). Disinfection of effluents by combinations in chlorine dioxide and chlorine, Wat. Sci. Tech.,
Vol.31, No.5, pp.105-114.
Pillai, K.C., Tae, O.K., Bo, B.P., and Il, S.M., (2008). Studies on process parameters for chlorine dioxide production using IrO2 anode in an un-divided
electrochemical cell, J. Hazardous Materials.
Prentice G., (1991). Electrochemical engineering principles, Prentice Hall,
Englewood Cliffs, U.S.A., pp.258-259.
Rav-Acha, C., (1984). Disinfection of Drinking Water Rich in Bromide with
Chlorine and Chlorine Dioxide, while Minimizing the Formation of
Undesirable By-Products. Water Res. Vol.17, pp.611-621.
Ringer W.C., and Campbell S.J., (1995). Use of chlorine dioxide for alage control at philadelphia, J. AWWA., pp.47:740.
Susan, D.F. and Gerard D.K., (1995). Chlorine Dioxide: Problems of Analysis.
Water Supply. Vol.13, No.2, pp.83-92.
Singer, P.C., (1989). Complying with Trihalomethane Reduction Requirements in Water Treatment Facilities. Noyes Data Corporation, Park Ridge, New Jersey, USA.
Stevens, A.A., C.J. Slocum, D.R. Seeger and G.G. Rebeck, (1976). Chlorination of Organics in Drinking Water. J. AWWA. Vol.68, No.11, pp.615-620.
Symons J. M., (1979) Ozone, chlorine dioxide and chloramines as alternatives to chlorine for disinfection of drinking water. In water chlorination: environmental impact and health effects, Vol.2 (R.L.Jolley et al, eds)Ann
Arbor Sci. Publ., Ann Arbor, Mich.
Trussell R.R., and Umphres M.D., (1978). The formation of trihalomethanes, J.
AWWA., 70(11):pp.604-612.
US.EPA., (1999). Guidance manual alternative disinfectants and oxidants: 4.
Chlorine Dioxide”, USEPA 815-R-99-014.
White, G.C., (1992). The Handbook of Chlorination and Alternative Disinfectants. 3th ed., Van Nostrand Reinhold Company, New York, pp.150-151.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top