跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/27 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:庫馬
研究生(外文):Arun Kumar Itta
論文名稱:奈米碳分子篩選複合膜的製備、特性分析及其在碳捕捉與氫氣分離之應用
論文名稱(外文):Preparation and characterization of nano-carbon molecular sieving composite membrane for carbon capture and hydrogen separation
指導教授:魏銘彥
指導教授(外文):Ming-Yen Wey
口試委員:張木彬白曛綾朱信袁中新
口試日期:2011-07-19
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:215
中文關鍵詞:聚合物熱裂解碳膜氫分離碳捕獲
外文關鍵詞:PolymerPyrolysisCarbon membraneHydrogen separationCarbon capture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
相較於高分子薄膜應用於氣體分離,碳分子篩薄膜已成為新穎之純化材料之一。碳分子篩薄膜乃利用高分子前驅物在高溫下斷鍵沉積而形成具有高氣體選擇率之連續無缺陷薄膜。
在過去20-25年期間,已製備各種CMS膜並廣泛應用於工業的氣體分離上。另外相關文獻亦針對不同CMS膜探討如何控制和提升氣體分離之效能。本研究主要探討分別為(1)CMS膜中前驅物官能基之影響(2)CMS表面結構改質之影響(3)添加奈米微粒於CMS膜之影響。
本研究利用多孔氧化鋁作為擔體製備磁盤類型的CMS膜進行氫氣分離和碳捕捉。 CMS膜前驅物使用聚酰亞胺 (PI) 和聚醚酰亞胺 (PEI) ,它們具有類似的官能基被製造應用於氣體分離應用上。為了評估PI和PEI的官能基對CMS薄膜特性的影響,以不同前驅溶劑和碳化溫度進行研究。從實驗結果中發現,高分子前驅物之官能基及前驅溶劑濃度對於CMS膜有顯著影響。在PI-10-600 CMS薄膜有最佳氫氣滲透能力 (565 Barrer) [1 Barrer = 1

Carbon molecular sieve (CMS) membranes represent the most attractive pure component materials to compete against polymer membranes for high performance gas separations. CMS membranes are formed from the thermal decomposition of polymer precursors and can therefore be formed into continuous defect free membranes with excellent gas separation performance. Over the last 20-25 years, CMS membranes have been produced in a variety of geometries and have a wide range of separation performance applicable to several important industrial gas separations. The aim of this dissertation was to elucidate the effect of different synthesis factors on the separation performance of CMS membranes to allow more control over gas separation performance. The main focus of this study was to clarify (1) the effect of functional group of precursor on CMS membrane (2) the effect of CMS surface structure modification (3) the effect of addition of nano-particles on the CMS membrane.
In this study, disk type of CMS membranes was fabricated on porous alumina support for hydrogen separation and carbon capture. CMS membranes derived from polyimide (PI) and polyetherimide (PEI), which have similar functional groups were fabricated for gas separation. To evaluate the effect of the functional groups of PI and PEI on the properties of their CMS membranes, the composition of the casting solution and carbonization temperatures were investigated. From the experimental results, CMS membranes were significantly affected by the functional group of precursors and their concentrations in the casting solution. Optimized performance for hydrogen permeation (565 Barrer) [1 Barrer = 1

CONTENTS

Page

Abstract (Chinese) І

Abstract IV

Contents VII
List of Figures XIV

List of Tables ΧIX

Chapter 1 INTRODUCTION

1.1 Back ground 1

1.2 Research objectives 2
1.3 Dissertation review 7

Chapter 2 LITERATURE REVIEW
2.1 Introduction of gas separation membranes 9
2.1.1 Polymeric membranes 9

2.1.2 Inorganic membranes 13

2.2 Introduction of carbon membranes 15
2.2.1 Transport mechanism of carbon membranes 17
2.2.2 Structure of carbon membranes 19
2.3 Fundamentals of gas transport through carbon membranes 20
2.3.1 Permeation in carbon membranes 20
2.4 Fabrication of carbon membranes 23
2.4.1 Selection of polymer precursor 24
2.4.1.1 Polyfurfuryl alcohol 30
2.4.1.2 Phenolic Resin 31
2.4.1.3 Polyimides 33
2.4.1.4 Relationship between polymer structure and CMS structure 38
2.4.1.5 Effect of imide-functional group on CMS 44
2.4.2 Pretreatment of polymer precursor 48
2.4.2.1 Oxidation 48
2.4.2.2 Nonsolvent pretreatment and cross linking 51
2.4.3 Pyrolysis or carbonization process 52
2.4.3.1 Pyrolysis temperature 52
2.4.3.2 Heating rate 53
2.4.3.3 Thermal soak time 56
2.4.3.4 Pyrolysis atmosphere 58
2.4.3.5 Post treatment 61
2.5 Current separation performance 63
2.6 Reproducibility of CMS membranes 65
2.7 Modification of CMS membranes 67
2.7.1 Blending of polymers 67
2.7.2 Self-assisted deposition carbon segment 68
2.7.3 Addition of nano-particles 71
2.7.3.1 SBA-15 71
2.7.3.2 MWCNTs 74
2.8 Summary of literature review 75
Chapter 3 MATERIALS AND EXPERIMENTAL PROCEDURE

3.1 Materials 78
3.1.1 Polymers 78
3.1.2 Solvents 78
3.1.3 Alumina (Al2O3) supports 78
3.1.4 Gases 78
3.2 Experimental 79
3.2.1 Membrane preparation 79
3.2.2 Pyrolysis procedure 79 3.2.3 Gas permeation measurement 80 3.2.4 Characterization of carbon membranes 82
3.2.4.1 Thermogravimetric analysis (TGA) 82 3.2.4.2 Field emission scanning electron microscopy (FE-SEM) 83
3.2.4.3 Fourier transform infrared spectrometry (FTIR) 84
3.2.4.4 Atomic force microscopy (AFM) 85
3.2.4.5 Pore size distribution 85
Chapter 4 EFFECT OF FUNCTIONAL GROUP ON CMS
MEMBRANES

4.1 Results and discussion 87
4.1.1 Characterization of CMS membranes 87
4.1.1.1 TGA 87
4.1.1.2 FTIR analysis 89
4.1.1.3 FE-SEM 94
4.1.2 Gas permeation properties of the PI- and PEI-derived
CMS membranes 98

4.1.2.1 PI-derived CMS membranes 98
4.1.2.2 PEI-derived CMS membranes 102
4.3 Conclusions 106

Chapter 5 MODIFICATION OF CMS STRUCTURE

5.1 Blending of polymers 108
5.1.1 Results and discussion 108
5.1.1.1 Characterization of CMS membranes 108
5.1.1.1.1 TGA 108
5.1.1.1.2 FE-SEM of CMS membranes 110
5.1.1.2 Effect of pyrolysis temperature on the gas permeation
properties of CMS membranes 112
5.1.1.2.1 PPO-based CMS membranes 112

5.1.1.2.2 PPO/PVP-based CMS membranes 115
5.1.1.3 Effect of polymer concentration (wt.% loading) on the
gas permeation properties of CMS membranes 118

5.1.1.3.1 PPO-based CMS membranes 118

5.1.1.3.2 PPO/PVP-based CMS membranes 119

5.1.1.4 Correlation of permeability and permselectivity for
PPO and PPO/PVP-based CMS membranes 123

5.1.2 Conclusions 125
5.2 Self- assisted deposition carbon segment for gas separation 127

5.2.1 Fabrication of CMS membranes 127

5.2.1.1 PPO/PI- and PPO/PEI-derived CMS membranes 127

5.2.2 Results and discussions 127

5.2.2.1 Characterization of CMS membranes 127

5.2.2.1.1 Thermal degradation behavior 127

5.2.2.1.2 FE-SEM of CMS membranes 129
5.2.2.1.3 AFM analysis 133
5.2.2.1.4 Change in pore size by self-assisted
adsorption of coke 135

5.2.2.2 Gas permeation properties of modified CMS
membranes 138

5.2.2.3 H2 and CO2 separation performance comparison with
the Robeson’s trade-off line 142

5.2.2.3.1 Trade-off relationship between H2 permeability
and H2/N2 and H2/CH4 selectivity 142

5.2.2.3.2 Trade-off relationship between CO2
permeability and CO2/N2 and CO2/CH4
selectivity 144

5.2.3 Conclusions 148

Chapter 6 ADDITION OF NANO-PARTICLE ON CMS

6.1 Effect of SBA-15 texture on CMS membrane gas separation performance 149

6.1.1 Experimental 149
6.1.1.1 Synthesis of SBA-15 149
6.1.1.2 Fabrication of CMS membranes 149
6.1.2 Results and discussion 150
6.1.2.1 Characterization of CMS membranes 150
6.1.2.1.1 Characterization of SBA-15 150
6.1.2.1.2 Thermal stability studies (TGA) 152
6.1.2.1.2.1 Aging temperature of SBA-15 152
6.1.2.1.2.2 Weight loading of SBA-15
composites 156

6.1.2.1.3 FE-SEM of CMS membranes 158
6.1.2.2 Effect of aging temperature of SBA-15 on the gas
permeation properties of PPO- based CMS membranes 160

6.1.2.3 Effect of weight loading of SBA-15 on the gas
permeation properties of PPO- based CMS membranes 166

6.1.2.4 Correlation of permeability and selectivity for
PPO/SBA-15–derived CMS membranes 172

6.1.2.4.1 Trade-off relationship between H2 permeability
and H2/N2, H2/CH4 selectivity 172

6.1.2.4.2 Trade-off relationship between CO2
permeability and CO2/N2, CO2/CH4
selectivity 174

6.1.2.4.3 Trade-off relationship between O2 permeability
and O2/N2 selectivity 176

6.1.3 Conclusions 177
6.2 Effect of MWCNT on CMS separation performance 179

6.2.1 Experimental 179
6.2.1.1 PI/MWCNT membrane preparation 179
6.2.2 Results and discussion 179
6.2.2.1 Membrane structure 179
6.2.2.2 Gases permeation results 181
6.2.3 Conclusions 185
Chapter 7 CONCLUSIONS AND RECOMMENDATIONS
7.1 Conclusions 186
7.2 Recommendations 189
References 191
Appendix A Dry/Wet-phase inversion method i


Acharya M, Foley HC. Spray-coating of nanoporous carbon membranes for air separation. Journal of Membrane Science 161(1999) pp. 1-5.
Acharya M, Raich BA, Foley HC, Harold MP, Lerou JJ. Metal-supported carbogenic molecular sieve membranes: synthesis and applications. Industrial and Engineering Chemistry Research 36 (1997) pp.2924-2930.
Baker RW, Lokhandwala K. Natural gas processing with membranes: an overview. Industrial Engineering and Chemistry Research 47 (2008) pp.2109-2121.
Baker RW. Future direction of membrane gas separation technology. Industrial Engineering and Chemistry Research 41 (2002) pp.1393-1411.
Bakhtiari O, Mosleh S, Khosravi T Mohammadi T. Preparation characterization and gas permeation of polyimide mixed matrix membranes. Journal of Membrane Science and Technology (2011):1:101. doi:10.4172/2155-9589.1000101
Barbosa-Coutinho E, Salim VMM, Borges CP. Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon 41 (2003) pp. 1707–1714.
Barsema JN, Klijnstra SD, Balster JH, van der Vegt NFA, Koops GH, Wessling M. Intermediate polymer to carbon gas separation membranes based on matrimid PI. Journal of Membrane Science 238 (2004) pp. 93–102.
Barsema JN, van der Vegt NFA, Koops GH, Wessling M. Carbon molecular sieve membranes prepared from porous fiber precursor. Journal of Membrane Science 205 (2002) pp. 239–246.
Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art. Industrial Engineering and Chemistry Research 48 (2009) pp. 4638-4663.
Bird AJ, Trim DL. Carbon molecular sieves used in gas separation membranes. Carbon 21 (1983) pp. 177-180.
Bos A, Punt IGM, Wessling M, Strathmann H. CO2-induced plasticization phenomena in glassy polymers. Journal of Membrane Science 155 (1999) pp. 67-78.
Boudreau LC, Kuck JA, Tsapatsis M. Deposition of oriented zeolite A films: in situ and secondary growth. Journal of Membrane Science 152 (1999) pp. 41-59.
Briceno K, Garcia-Valls R, Montane D. State of the art of carbon molecular sieves supported on tubular ceramics for gas separation applications, Asia Pacific Journal of Chemical Engineering 5 (2010) pp. 169–178.
Burns RL, Koros WJ. Defining the challenges for C3H6/C3H8 separation using polymeric membranes. Journal of Membrane Science 211 (2003a) pp. 299-309.
Burns RL, Koros WJ. Structure property relationships for poly (pyrrolone-imide) gas separation membranes. Macromolecules 36 (2003b) pp. 2374-2381.
Campo MC, Visser T, Nijmeijer K, Wessling M, Magalh˜aes FD, Mendes AM. Influence of pyrolysis parameters on the performance of CMSM. International Journal of Chemical Engineering (2009) pp. 147879 1-9.
Centeno TA, Fuertes AB. Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride). Carbon 38 (2000) pp. 1067-1073.
Centeno TA, Fuertes AB. Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes. Separation and Purification Technology 25(2001) pp. 379-384.
Centeno TA, Fuertes AB. Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science 160 (1999) pp. 201-211.
Centeno TA, Vilas JL, Fuertes AB. Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. Journal of Membrane Science 228 (2004) pp. 45-54.
Chen YD, Yang RT. Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane. Industrial Engineering and Chemistry Research 33 (1994) pp. 3146-3153.
Cheng YS, Pena MA, Fierro JL, Hui DCW, Yeung KL. Performance of alumina, zeolite, palladium, Pd–Ag alloy membranes for hydrogen separation from town gas mixture. Journal of Membrane Science 204 (2002) pp.329–340.
Chung TS, Jiang LY, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science 32 (2007) pp. 483-507.
Cong H, Radosz M, Towler BF, Shen Y. Polymer-inorganic nanocomposite membranes for gas separation. Separation and Purification Technology 55 (2007) pp. 281-291.
Davenas J. Influence of the temperature on the ion beam induced conductivity of polyimide. Journal of Applied Surface Science 43 (1989) pp. 218-223.
David LIB, Ismail AF. Influence of the thermastabilization process and soak time during pyrolysis on the polyacrylonitrile carbon membranes for O2/N2 separation. Journal of Membrane Science 213 (2003) pp.285-291.
David LIB. Development of asymmetric polyacrylonitrile carbon hollow fiber membrane for oxygen/nitrogen gas separation, Universiti Teknologi Malaysia, MSc Thesis, 2001.
Duval JM, Kemperman AJB, Folkers B, Mulder MHV, Desgrandchamps G, Smolders CA. Preparation of zeolite filled glassy polymer membranes. Journal of Applied Polymer Science 54 (1994) pp. 409-418.
Eisenberg A, Hird B, Moore RB. A new multiplet-cluster model for the morphology of random ionomers, Macromolecules 23 (1990) pp. 4098-4107.
Ekiner OM, Vassilatos G. Polyaramide hollow fibers for hydrogen/methane separation- spinning and properties. Journal of Membrane Science 53 (1990) pp. 259–73.
Fuertes AB, Centeno TA. Carbon molecular sieve membranes from polyetherimide. Microporous Mesoporous Materials 26 (1998a) pp. 23–26.
Fuertes AB, Centeno TA. Preparation of supported asymmetric carbon molecular sieve membranes. Journal of Membrane Science 144 (1998b) pp. 105-111.
Fuertes AB, Menendez I. Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes. Separation and Purification Technology 28 (2002) pp. 29-41.
Fuertes AB, Nevskaia DM, Centeno TA. Carbon composite membranes from Matrimid(r) and Kapton(r) polyimides for gas separation. Microporous and Mesoporous Materials 33 (1999) pp. 115-125.
Fuertes AB. Adsorption-selective carbon membrane for gas separation. Journal of Membrane Science 177 (2000) pp. 9-16.
Fuertes AB. Effect of air oxidation on gas separation performance of adsorption-selective carbon membranes. Carbon 39 (2001) pp. 697-706.
Galarneau A, Cambon H, Di Renzo F, Ryoo R, Choi M, Fajula F. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New Journal of Chemistry 27 (2003) pp. 73-79.
Geiszler V. Polyimide precursors for carbon molecular sieve membranes (1997) University of Texas, Austin: Austin.
Geiszler VC, Koros WJ. Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Industrial Engineering and Chemistry Research 35 (1996) pp. 2999-3003.
Ghosh MK, Mittal KL, editors. Polyimides: fundamental and applications. New York: Marcel Dekker; 1996. pp.7.
Hagg M-B, Lie JA, Lindbrathen A. Carbon molecular sieve membranes: A promising alternative for selected industrial applications. Annual N.Y. Academic Science 984 (2003) pp. 329-345.
Hamad F, Khulbe KC, Matsuura T. Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes. Journal of Membrane Science 256 (2005) pp. 29-37.
Hamed FA, Chowdhury G, Matsuura T. Sulfonated polyphenylene oxide–polyethersulfone thin-film composite membranes. Effect of counter ions on the gas transport properties. Journal of Membrane Science 191 (2001) pp. 71–83.
Haraya K, Suda H, Yanagishita H, Matsuda S. Asymmetric capillary membrane of a carbon molecular sieve. Journal of the Chemical Society, Chemical Communications (1995) pp. 1781-1782.
Hatori H, Kobayashi T, Hanzawa Y, Yamada Y, Iimura Y, Kimura T, Shiraishi M. Mesoporous carbon membranes from polyimide blended with poly (ethylene glycol). Journal of Applied Polymer Science 79 (2001) pp. 836–841.
Hatori H, Takagi H, Yamada Y. Gas separation properties of molecular sieving carbon membranes with nanopore channels. Carbon 42 (2004) pp. 1169-1173.
Hatori H, Yamada Y, Shiraishi M, Nakata H, Yoshitomi S. Carbon molecular sieve films from polyimide. Carbon 30 (1992b) pp. 305-306.
Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimura T. The mechanism of polyimide pyrolysis in the early stage. Carbon 34 (1996) pp. 201-208.
Hatori H, Yamada Y, Shiraishi M. Preparation of macroporous carbon films from polyimide by phase inversion method. Carbon 30 (1992a) pp. 303-304.
Hayashi J, Mituta M, Yamamoto M. Pore size control of carbonized BPDA-pp′ ODA polyimide membrane by chemical vapor deposition of carbon. Journal of Membrane Science 124 (1997b) pp. 243-251.
Hayashi J, Yamamoto M, Kusakabe K, Morooka S. Effect of oxidation on gas permeation of carbon molecular sieving membranes based on BPDA-pp‘ODA polyimide. Industrial Engineering and Chemistry Research 36 (1997a) pp. 2134-2140.
Hayashi J, Mizuta H, Yamamoto M, Kusuki K, Morooka S, Suh SH. Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA-pp''ODA polyimide membrane. Industrial Engineering and Chemistry Research 35 (1996) pp. 4167-4181.
Hayashi J, Yamamoto M, Kusakabe K, Morooka S. Simultaneous improvement of permeance and permselectivity of 3,3''-4,4''-biphenyltetracarboxylic dianhydride-4,4''-oxydianiline polyimide membrane by carbonization. Industrial Engineering and Chemistry Research 34(1995) pp.4364-4370.
He X, Hagg MB. Optimization of carbonization process for preparation of high performance hollow fiber carbon membranes. Industrial Engineering and Chemistry Research 50 (2011) pp. 8065-8072.
http://www.iza-structure.org/databases/( International Zeolite Association) (2006)
Huang Y, Paul DR. Physical aging of thin glassy polymer films monitored by gas permeability. Polymer 45 (2004) pp. 8377-8393.
Huang Y, Wang X, Paul DR. Physical aging of thin glassy polymer films: free volume interpretation, Journal of Membrane Science 277 (2006) pp. 219-229.
Islam MN, Zhou W, Honda T, Tanaka K, Kita H, Okamoto KI. Preparation and gas separation performance of flexible pyrolytic membranes by low-temperature pyrolysis of sulfonated polyimides. Journal of Membrane Science 261(2005) pp. 14-26.
Ismail AF, David LIB. A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science. 193 (2001) pp. 1–18.
Ismail AF, Rahim RA, Rahman WAWA. Characterization of polyethersulfone/Matrimid® 5218 miscible blend mixed matrix membranes for O2/N2 gas separation. Separation and Purification Technology 63 (2008) pp. 200-206.
Itoh N, Haraya K. A carbon membrane reactor. Catalysis Today 56 (2000) pp.103–111.
Jenkins GM, Kawamura K. Polymeric carbons – carbon fiber, glass and char London (1976): Cambridge University Press.
Jia M, Pienemann KV, Behling RD. Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation. Journal of Membrane Science 57 (1991) pp. 289-296.
Jia M, Pienemann KV, Behling RD. Preparation and characterization of thin-film zeolite-PDMS composite membranes. Journal of Membrane Science 73 (1992) pp. 119-128.
Jomekian A, Pakizeh M, Poorafshari M, Mansoori SAA. Synthesis and characterization of novel modified SBA-15/PSF nanocomposite membrane coated by PDMS for gas separation. Journal of Nanotechnology in Engineering and Medicine 2 (2011) pp. 021003-1-9.
Jones CW, Koros WJ. Carbon composite membranes: A solution to adverse humidity effects. Industrial Engineering and Chemistry Research 34 (1995b) pp. 164-167.
Jones CW, Koros WJ. Carbon molecular sieve gas separation membranes-II. Regeneration following organic exposure. Carbon 32(1994a) pp.1427-1432.
Jones CW, Koros WJ. Carbon molecular sieve gas separation membranes-I. Preparation and characterizaton based on polyimide precursors. Carbon 32 (1994b) pp.1419-1425.
Jones CW, Koros WJ. Characterization of Ultramicroporous Carbon Membranes with Humidified Feeds. Industrial Engineering and Chemistry Research 34 (1995a) pp. 158-163.
Jung CH, Kim GW, Han SH, Lee YM. Gas separation of pyrolyzed polymeric membranes: effect of polymer precursor and pyrolysis conditions. Macro Molecule Research 15(6) (2007) pp. 565-574.
Katsaros FK, Steriotis TA, Stefanopoulos KL, Kanellopoulos NK, Mitropoulos ACh, Meissner M, et al. Neutron diffraction study of adsorbed CO2 on a carbon membrane. Physica B 276-278 (2000) pp. 901–902.
Kawabuchi Y, Oka H, Kawano S, Mochida I, Yoshizawa N. The modification pore size in activated carbon fibers by chemical vapor deposition and its effects on molecular sieve selectivity. Carbon 36(4) (1998) pp. 377-382.
Kesing RE, Fritzsche (Eds.) AK. Polymeric gas separation membranes, Wiley, NewYork, 1993.
Kesting R, Fritzsche A. Polymeric gas separation membranes. Wiley Inter-science, NewYork, 1993.
Khulbe KC, Chowdhury G, Kruczek B, Vujosevic R, Matsuura T, Lamarche G. Characterization of the PPO dense membrane prepared at different temperatures by ESR, atomic force microscope and gas permeation. Journal of Membrane Science 126 (1997) pp. 115-122.
Kim TK, Park HB, Lee YM. Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone. Journal of Membrane Science 251 (2005b) pp. 159-167.
Kim YK, Lee JM, Park HB, Lee YM. The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups. Journal of Membrane Science 235 (2004b) pp. 139-146.
Kim YK, Park HB, Lee YM. Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties. Journal of Membrane Science 226 (2003) pp. 145-158.
Kim YK, Park HB, Lee YM. Carbon Molecular sieve membranes derived from thermally labile polymer containing blend polymers and their separation properties. Journal of Membrane Science 243 (2004a) pp. 9-17.
Kim YK, Park HB, Lee YM. Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their separation properties. Journal of Membrane Science 255 (2005a) pp. 265-273.
Kita H, Maeda H, Tanaka K, Okamoto K. Carbon molecular sieve membrane prepared from phenolic resin. Chemical Letters 2 (1997) pp. 179-180.
Kiyano M, Williams PJ, Koros WJ. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. Journal of Membrane Science 359 (2010) pp. 2-10.
Kneifel K, Peinemann KV. Preparation of hollow fiber membranes from polyetherimide for gas separation. Journal of Membrane Science 65 (1992) pp. 295–307.
Kokuneˇsoski M, Gulicovski J, Matovi´c B, Logar M, Milonji´c SK, Babi´c B. Synthesis and surface characterization of ordered mesoporous silica SBA-15. Material Chemistry and Physics 124 (2010) pp. 1248-1252.
Koresh JE, Danon A. A Novel insight on the high-temperature helium interaction with a carbon molecular sieve. Langmuir 17 (2001) pp.2739-2742.
Koresh JE, Soffer A, Molecular sieve permselective membrane. Part I. Presentation of a new device for gas mixture separation. Separation Science and Technology 18 (1983) pp. 723-734.
Koresh JE, Soffer A. Study of molecular sieve carbons. Part 1.—Pore structure, gradual pore opening and mechanism of molecular sieving. Journal of Chemical Society, Faraday Transactions 1 76 (1980) pp. 2457-2471.
Koresh JE, Soffer A. The carbon molecular sieve membranes. General properties and the permeability of CH4/H2 mixture, Separation Science and Technology 22 (1987) pp. 973-982.
Koros WJ, Coleman MR, Walker DRB. Controlled permeability polymer membranes. Annual Review of Materials Science 22 (1992) pp. 47-89.
Koros WJ, Fleming GK. Membrane-based gas separation. Journal of Membrane Science 83 (1993) pp.1-80.
Koros WJ, Mahajan R. Pushing the limits on possibilities for large scale gas separation: which strategies? Journal of Membrane Science 175 (2000) pp. 181–96.
Krevelen DW. Properties of polymers. New York: Elsevier Science Pub; 1990.
Kruczek B, Matsuura T. Development and characterization of homogeneous made from high molecular weight sulfonated polyphenylene oxide. Journal of Membrane Science 146 (1998) pp. 263–275.
Kusakabe K, Yamamoto M, Morooka S. Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation. Journal of Membrane Science 149 (1998) pp. 59-67.
Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T. Gas permeation properties and characterization of asymmetric carbon membranes by pyrolyzing asymmetric polyimide hollow fiber membrane. Journal of Membrane Science 134 (1997) pp. 245-253.
Kyotani T. Control of the pore structure in carbon. Carbon 38 (2000) pp. 269–286.
Lee HJ, Kim DP, Suda H, Haraya K. Gas permeation properties for the post oxidized polyphenylene oxide (PPO) derived carbon membranes: effect of the oxidation temperature. Journal of Membrane Science 282 (2006b) pp. 82–88.
Lee HJ, Suda H, Haraya K, Moon SH. Gas permeation properties of carbon molecular sieve membranes derived from the polymer blend of polyphenylene oxide (PPO)/polyvinylpyrrolidone (PVP). Journal of Membrane Science 296 (2007b) pp. 139–146.
Lee HJ, Suda H, Haraya K. Characterization of the post-oxidized carbon membranes derived from poly (2,4-dimethyl-1,4-phenylene oxide) and their gas permeation properties. Separation and Purification Technology 59 (2008) pp. 190-196.
Lee HJ, Suda H, Haraya K. Preparation of carbon membranes derived from polymer blends in the presence of a thermally labile polymer. Separation Science and Technology 42 (2007a) pp. 59–71.
Lee HJ, Yoshimune M, Suda H, Haraya K. Gas permeation properties of poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) derived carbon membranes prepared on a tubular ceramic support. Journal of Membrane Science 279 (2006a) pp. 372–379.
Lee LL, Tsai DS. Synthesis and permeation properties of silicon–carbon-based inorganic membrane for gas separation. Industrial Engineering and Chemistry Research 40 (2001) pp. 612–616.
Li Y, Liang F, Bux H, Yang W, Caro J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science 354 (2010) pp. 48–54.
Liang CH, Sha GY, Guo SC. Carbon membrane for gas separation derived from coal tar pitch. Carbon 37 (1999) pp. 1391- 1397.
Lie JA, Ha¨gg M-B. Carbon membranes from cellulose and metal loaded cellulose. Carbon 43 (2005) pp. 2600-2607.
Lin YS, Kumakiri I, Nair BN, Alsyouri H. Microporous inorganic membranes. Separation and Purification Methods 31(2) (2002) pp. 229-379.
Linkov VM, Sanderson RD, Jacobs EP. Carbon membranes from precursors containing low-carbon residual polymers. Polymer International 35 (1994b) pp. 239–242.
Linkov VM, Sanderson RD, Jacobs EP. Highly asymmetrical carbon membranes. Journal of Membrane Science 95 (1994a) pp. 93–99.
Liu Q, Wang T, Guo H, Liang C, Liu S, Zhang Z, Cao Y, Su DS, Qiu J. Controlled synthesis of high performance carbon/zeolite T composite membrane materials for gas separation. Microporous and Mesoporous Materials 120 (2009) pp. 460–466.
Liu Q, Wang T, Liang C, Zhang B, Liu S, Cao Y, Qiu J. Zeolite married to carbon: A new family of membrane materials with excellent gas separation performance. Chemistry of Materials 18 (2006a) pp. 6283-6288.
Liu Q, Wang T, Qiu J, Cao Y. A novel carbon/ZSM-5 nanocomposite membrane with high performance for oxygen/nitrogen separation. Chemical Communications 11 (2006b) pp. 1230-1232.
Liu S, Wang T, Liu Q, Zhang S, Zhao Z, Liang C. Gas permeation properties of carbon molecular sieve membranes derived from novel poly (phthalazinone ether sulfone ketone). Industrial Engineering and Chemistry Research 47 (2008) pp. 876–880.
Loh IH, Oliver W, Sioshansi P. Conducting polymers by ion implantation. Nuclear Instruments and Methods in Physics Research Section B 34 (1988) pp. 337-46.
Low BT, Chung TS. Carbon molecular sieve membranes derived from pseudo-interpenetrating polymer networks for gas separation and carbon capture. Carbon 49 (2011) pp. 2104-2112.
Lu GQ, Diniz da Costa JC, Duke D, Giessler S, Socolow R, Williams RH, et al. Inorganic membranes for hydrogen production and purification: a critical review and perspective. Journal of Colloid Interface Science 314(2) (2007) pp. 589-603.
Manzolini G, Tosti S. Hydrogen production from ethanol steam reforming: energy efficiency analysis of traditional and membrane processes. International Journal of Hydrogen Energy 33 (2008) pp. 5571–5582.
Matsuura T. Synthetic membranes and membrane separation processes. CRC Press, NY, 1994.
Mayumi K, Paul JW, William JK. Effect of polymer precursors on carbon molecular sieve structure and separation performance properties. Carbon 48 (2010) pp. 4432-4441.
McCaig MS, Paul DR. Effect of UV crosslinking and physical aging on the gas permeability of thin glassy polyarylate films. Polymer 40 (1999) pp. 7209-7225.
Meinema HA, Dirrix RWJ, Brinkman HW, Terpstra RA, Jekerle J, Kösters PH. Ceramic membranes for gas separation – recent developments and state of the art. Interceram 54 (2005) pp. 86-91.
Menendez I, Fuertes AB. Aging of carbon membranes under different environments. Carbon 39 (2001) pp. 733–740.
Noble RD, Stern SA. Membrane separations technology - principles and applications, Elsevier Science B.V., 1995, Amsterdam.
Okamoto KI, Kawamura S, Yoshino M, Kita H, Hirayama Y, Tanihara N, Kusuki Y. Olefin/Paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Industrial Engineering and Chemistry Research 38 (1999) pp. 4424-4432.
Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A. Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 35 (1997) pp. 1031–1033.
Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD, Cookson DJ. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318 (2007) pp. 254-258.
Park HB, Kim TK, Lee JM, Lee SY, Lee YM. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes. Journal of Membrane Science 229 (2004) pp. 117-127.
Park HB, Lee YM. Fabrication and characterization of nanoporous carbon/silica membranes. Advanced Materials 17 (2005) pp. 477-483.
Park HB, Suh IY, Lee YM. Novel Pyrolytic Carbon membranes containing silica: preparation and characterization. Chemistry of Materials 14 (2002) pp. 3034-3046.
Park HM, Lee YM. Pyrolytic carbon–silica membrane: a promising membrane material for improved gas separation. Journal of Membrane Science 213 (2003) pp.263-272.
Paul DR, Yampol''skii YP. Polymeric Gas Separation Membranes, CRC Press Inc., 1994, Boca Raton.
Peterson J, Matsuda M, Haraya K. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation. Journal of Membrane Science 131 (1997) pp. 85-94.
Pierson HO, Hand book of carbon, graphite, diamond and fullerenes Park Ridge (1993) NJ: Noyes Publications.
Pinnau I, Koros WJ. Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet and dry/wet inversion. Journal of Applied Polymer Science 43 (1991) pp.1491–502.
Rao MB, Sircar S. Performance and pore characterization of nanoporous carbon membranes for gas separation. Journal of Membrane Science 110 (1996) pp. 109-118.
Rao PS, Wey MY, Tseng HH, Kumar AK, Weng TH, A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous and Mesoporous Materials. 113 (2008) pp. 499-510.
Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science 62 (1991) pp.165-185.
Robeson LM. The upper bound revisited. Journal of Membrane Science 320 (2008) pp.390-400.
Rutherford SW, Do DD. Review of time lag permeation technique as a method for characterization of porous media and membranes. Adsorption 3 (1997) pp. 283–312.
Sakata J, Yamamoto M. Kabushiki Kaisha Toyota Chuo Kenkyusho, Assignee. (1986) U.S Patent 4,583,996.
Sakata Y, Muto A, Uddin MDA, Suga H. Preparation of porous carbon membrane plates for pervaporation separation applications. Separation and Purification Technology 17 (1999) pp. 97–100.
Sandeep K, Bin L, Santiago C, Russ GM, Wei-Hong Z. Dramatic property enhancement in polyetherimide using low-cost commercially functionalized multi-walled carbon nanotubes via a facile solution processing method. Nanotechnology 20 (2009) pp. (465708):1-9.
Saufi SM, Ismail AF. Fabrication of carbon membranes for gas separation- a review. Carbon 42 (2004) pp. 241–259.
Schindler E, Maier F. Manufacture of porous carbon membranes. US patent 4919860, 1990.
Shao L, Chung TS, Pramoda KP. The evolution of physiochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon. Microporous and Mesoporous Materials 84 (2005) pp. 59-68.
Shao L, Chung, TS, Wensley G, Goh SH, Pramoda KP, Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA-TMMDA copolyimide membrane and its derived carbon membranes. Journal of Membrane Science 244 (2004) pp. 77-87.
Shiflett MB, Foley HC. On the preparation of supported nanoporous carbon membranes. Journal of Membrane Science 179 (2000) pp. 275-282.
Shiflett MB, Foley HC. Reproducible production of nanoporous carbon membranes. Carbon 39 (2001) pp. 1421-1446.
Shiflett MB, Foley HC. Ultrasonic Deposition of High-Selectivity Nanoporous Carbon Membranes. Science 285 (1999) pp. 1902-1905.
Shirasaki Y, Tsuneki T, Ota Y, Yasuda I, Tachibana S, Nakajima H, et al. Development of membrane reformer system for highly efficient hydrogen production from natural gas. International Journal of Hydrogen Energy 34 (2009) pp. 4482–4487.
Shmha R, Boyer RF. On a general relation involving the glass temperature and coefficients of expansion of polymers. Journal of Chemical Physics 37 (1962) pp. 1003-1007.
Shusen W, Meiyun Z, Zhizhong W. Asymmetric molecular sieve carbon membranes. Journal of Membrane Science 109 (1996) pp. 267-270.
Singh A, Koros WJ. Significance of Entropic Selectivity for Advanced Gas Separation Membranes. Industrial Engineering and Chemistry Research 35 (1996) pp.1231-1234.
Singh A. Membrane materials with enhanced selectivity; an entropic interpretation. Ph. D. Dissertation. (1997) The University of Texas at Austin.
Singh GA, Koros WJ. Air separation of flat sheet homogeneous pyrolytic carbon membranes. Journal of Membrane Science 174 (2000) pp. 177-188.
Soffer A, Azariah M, Amar A, Golub D, Saguee S, Tobias H. Method of Improving the selectivity of carbon membranes by chemical vapor deposition (1997) United States Patent 5695818.
Soffer A, Koresh J.E, and Saggy S, Separation device (1987) United States Patent 4685940.
Soffer A, Rosen D, Saguee S, Koresh J. Carbon membranes (1989). GB patent 2207666.
Soffer A, Saguee S, Golub D, Cohen H, Azariah M. Selective clogging of failed fibers(1996) United States Patent 5575963.
Song C, Wang T, Qiu J, Cao Y, Cai T. Effects of carbonization conditions on the properties of coal-based microfiltration carbon membranes. Journal of Porous Materials 15 (2008a) pp. 1-6.
Song C, Wang T, Wang X, Qiu J, Cao Y. Preparation and gas separation properties of poly (furfuryl alcohol)-based C/CMS composite membranes. Separation and Purification Technology 58 (2008b) pp. 412-418.
Song C, Wang T, Jiang H, Wang X, Cao Y, Qiu J. Gas separation performance of C/CMS membranes derived from poly (furfuryl alcohol) (PFA) with different chemical structure. Journal of Membrane Science 361 (2010) pp. 22-27.
Steel KM, Koros WJ. An investigation of porosity of carbon materials and related effects on gas separation properties. Carbon 41 (2003) pp.253-266.
Steel KM. Carbon membranes for challenging separations, in Department of Chemical Engineering (2000) University of Texas - Austin: Austin, TX
Steriotis TA, Beltsios K, Mitropoulos ACh, Kanellopoulos N, Tennison S, Wiedenman A, et al. On the structure of an asymmetric carbon membrane with a novolac resin precursor. Journal of Applied Polymer Science 64 (1997) pp. 2323–2345.
Strano MS, Foley HC. Modeling ideal selectivity variation in nanoporous membranes. Chemical Engineering Science 58 (2003) pp. 2745-2758.
Strano MS, Foley HC. Temperature- and pressure-dependent transient analysis of single component permeation through nanoporous carbon membranes. Carbon 40 (2002) pp.1029-1041.
Su J, Lua AC. Influence of carbonisation parameters on the transport properties of carbon membranes by statistical analysis. Journal of Membrane Science 278 (2006) pp. 335-343.
Suda H, Haraya K. Molecular sieving effect of carbonized polyimide membrane. Journal of the Chemical Society, Chemical Communications, (1995) pp.1179-1180.
Suda H, Haraya K. Alkane/Alkene permselectivities of a carbon molecular sieve membrane. Chemical Communications (1997b) pp. 93-94.
Suda H, Haraya K. Gas permeation through micropores of carbon molecular sieve membranes derived from kapton polyimide. Journal of Physical Chemistry B 101 (1997a) pp. 3988-3994.
Tanihara N, Kusuki Y. Membrane and process for its preparation (2000), EP patent 1034836.
Tanihara N, Shimazaki H, Hirayama Y, Nakanishi S, Yoshinaga T, Kusuki Y. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric hollow fiber. Journal of Membrane Science 160 (1999) pp. 179–86.
Tantekin-Ersolmaz SB, Atalay-Oral C, Tatlıer M, Erdem-Senatalar A, Schoeman B, Sterte J. Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membranes. Journal of Membrane Science 175 (2000) pp. 285-88.
Tin PS, Chung TS, Hill AJ. Advanced Fabrication of Carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers. Industrial Engineering and Chemistry Research 43 (2004b) pp. 6476-6483.
Tin PS, Chung TS, Jiang L, Kulprathipanja S. Carbon-zeolite composite membranes for gas separation. Carbon 43 (2005) pp. 2025-2032.
Tin PS, Chung TS, Kawi S, Guiver, MD. Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides. Microporous and Mesoporous Materials 73 (2004c) pp.151-160.
Tin PS, Chung TS, Liu Y, Wang R, Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon 42 (2004a) pp. 3123-3131.
Tin PS, Xiao Y, Chung TS. Polyimide-carbonized membranes for gas separation: structural, composition, and morphological control of precursors. Separation and Purification Reviews 35 (2006) pp. 285-318.
Tseng HH, Kumar IA, Weng TH, Lu CY, Wey MY. Preparation and characterization of carbon molecular sieve membranes for gas separation–the effect of incorporated multi-wall carbon nanotubes. Desalination 240 (2009) pp.40–45.
Vankelecom IFJ, Merckx E, Luts M, Uytterhoeven JB. Incorporation of zeolites in polyimide membranes. Journal of Physical Chemistry 99 (1995) pp. 13187-13192.
Vu DQ, Koros WJ, Miller SJ. High Pressure CO2/CH4 Separation Using Carbon Molecular Sieve Hollow Fiber Membranes. Industrial Engineering and Chemistry Research 41 (2002) pp. 367-380.
Vu DQ, Koros WJ, Miller SJ. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science 211(2) (2003) pp. 311-334.
Vu DQ. Formation and characterization of asymmetric carbon molecular sieve and mixed matrix membranes for natural gas purification, in Department of Chemical Engineering (2001) University of Texas at Austin: Austin, TX.
Wang K, Suda H, Haraya K. The characterization of CO2 permeation in a CMSM derived from polyimide. Separation and Purification Technology 21 (2003) pp. 61-69.
Wang H, Zhang L, Gavalas GR. Preparation of supported carbon membrane from furfuryl alcohol by vapor deposition polymerization. Journal of Membrane Science 177 (2000) pp. 25-31.
Wang S, Zeng M, Wang Z. Asymmetric molecular sieve carbon membranes. Journal of Membrane Science 109 (1996) pp. 267–270.
Wang T, Zhang B, Qiu J, Wu Y, Zhang S, Cao Y. Effects of sulfone/ketone in poly (phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes. Journal of Membrane Science 330 (2009) pp. 319–325.
Wei W, Hu H, You L, Chen G. Preparation of carbon molecular sieve membrane from phenol-formaldehyde Novolac resin. Carbon 40(2002) pp. 445-467.
Wei W, Qin G, Hu H, You L, Chen G. Preparation of supported carbon molecular sieve membrane from novolac phenol formaldehyde resin. Journal of Membrane Science 303 (2007) pp. 80-85.
Weng TH, Tseng HH, Wey MY. Fabrication and characterization of poly (phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. International Journal of Hydrogen Energy 35 (2010) pp. 6971-6983.
Weng TS, Tseng HH, Wey MY. Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane. Journal of Membrane Science 369 (2011) pp. 550-559.
Yamamoto M, Kusakabe K, Hayashi J, Morooka S. Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube. Journal of Membrane Science 133 (1997) pp. 195–205.
Yoneyama H, Nishihara Y. Carbon based porous hollow fiber membrane and method for producing same (1992), US patent 5089135.
Yoshimune M, Fujiwara I, Haraya K. Carbon molecular sieve membranes derived from trimethylsilyl substituted poly (phenylene oxide) for gas separation Carbon 45 (2007) pp. 553–560.
Yoshimune M, Fujiwara I, Suda H, Haraya K. Novel carbon molecular sieve membranes derived from poly (phenylene oxide) and its derivatives for gas separation. Chemical Letters 34 (2005) pp. 958–959.
Yoshimune M, Haraya K. Flexible carbon hollow fiber membranes derived from sulfonated poly (phenylene oxide). Separation and Purification Technology 75 (2010) pp. 193-197.
Zhang B, Wang T, Wu Y, Liu Q, Liu S, Zhang S, et al. Preparation and gas permeation of composite carbon membranes from poly (phthalazinone ether sulfone ketone). Separation and Purification Technology 60 (2008) pp. 259-263.
Zhang F, Yan Y, Yang H, Meng Y, Yu C, Tu B, Zhao D. Understanding effect of wall structure on the hydrothermal stability of meso structured silica SBA-15 Journal of Physical Chemistry B 109 (2005) pp. 8723-8732.
Zhang L, He G, Zhao W, Tan M, Li X. Effect of formamide additive on the structure and gas permeation performance of polyetherimide membrane. Separation and Purification Technology 73 (2010) pp. 188-193.
Zhang X, Hu H, Zhu Y, Zhu S. Carbon molecular sieve membranes derived from phenol formaldehyde novolac resin blended with poly (ethylene glycol). Journal of Membrane Science 289 (2007) pp. 86–91.
Zhang X, Hu H, Zhu Y, Zhu S. Effect of carbon molecular sieve on phenol formaldehyde novolac resin based carbon membranes. Separation and Purification Technology 52 (2006) pp.261–265.
Zhao HY, Cao YM, Ding XL, Zhou MQ, Yuan Q. Poly(N,N-dimethylaminoethyl methacrylate)–poly(ethylene oxide) copolymer membranes for selective separation of CO2. Journal of Membrane Science 310 (2008) pp. 365-373.
Zhou W, Yoshino M, Kita H, Okamoto KI. Carbon Molecular Sieve Membranes Derived from Phenolic Resin with a Pendant Sulfonic Acid Group. Industrial Engineering and Chemistry Research 40 (2001) pp. 4801-4807.
Zhou W, Yoshino M, Kita H, Okamoto KI. Preparation and gas permeation properties of carbon molecular sieve membranes based on sulfonated phenolic resin. Journal of Membrane Science 217 (2003) pp. 55-67.
Zhou Z, Yang J, Zhang Y, Chang L, Sun W, Wang J. NaA zeolite/carbon nanocomposite thin films with high permeance for CO2/N2 separation. Separation and Purification Technology 55 (2007) pp. 392-395.
Zhou ZH, Yang JH, Chang LF, Zhang Y, Sun WG, Wang JQ. Novel preparation of NaA/carbon nanocomposite thin films with high permeance for CO2/CH4 separation. Chinese Chemical Letters 18 (2007) pp. 455-457.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊