跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡東州
研究生(外文):Tung-Chou Tsai
論文名稱:正常鼠胚與複製鼠胚於不同胚胎發育階段的基因調控及甲基化修飾之探討
論文名稱(外文):The investigation of gene regulation and methylation modification in normal and cloned mouse embryos at different developmental stages
指導教授:陳全木陳全木引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:205
中文關鍵詞:複製鼠胚胎發育
外文關鍵詞:cloned miceembryonic development
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著生物技術的蓬勃發展,為解開胚胎時期基因調控的謎團,許多學者紛紛發展出各種微量、廣泛分析之技術,如單胚染色及生物晶片;而動物複製科技的進展,更為胚胎領域的耀眼課題,提供一個絕佳的胚源材料,進一步剖析胚胎發育各階段的分子調控機制。文獻指出再程式化 (reprogramming) 的異常造成基因體甲基化的改變是複製胚體致死的主因,其中包括許多銘印基因,而透過Tricostatin A (TSA) 的添加影響再程式化作用,明顯的改善複製動物產製效率,但其分子機制仍有待探討。
本論文以胚胎發育之時間軸為主線,分5個部分剖析小鼠胚胎發育相關的基因調控與甲基化修飾之研究,第一、以DDRT-PCR分析granzyme G之mRNA專一性表現於2-細胞期,而蛋白質僅表現在2-和4-細胞期,功能分析証實granzyme G透過影響胚胎新合成mRNA的量及囊胚之內細胞群數目進而影響胚胎早期發育;第二、以Q-PCR分析胚胎發育前期上遺傳因子修飾基因的表現量,包括Dnmt3b、Dnmt3L、Hat1和Hdac1,結果顯示孤雌致活與複製鼠囊胚皆較正常鼠囊胚明顯降低,而複製鼠囊胚透過TSA的添加可回復Dnmt3L和Hdac1表現量;第三、部分複製鼠胚發育至懷孕中期第9-11天,U2afl-rs1和Igf2均呈現銘印基因修飾異常 (loss of imprinting; LOI),而H19和Nnat則顯示為正常的銘印模式,另外Igf2的DMRnew於胚胎發育後期第15天,才建立其銘印機制;第四、以差異性甲基化雜合生物晶片廣泛剖析出生後第一天複製鼠個體之基因體甲基化變異,其中67個基因受到TSA添加而回復其甲基化圖譜,包括銘印基因 (Dlk1、Ig-DMR、Kcnk9) 和非銘印基因 (Irs1、Rbl1);第五、同樣以差異性甲基化雜合生物晶片剖析Dnmt3b過量表現之基因轉殖鼠檢體,結果顯示基因轉殖鼠之基因體呈現高度甲基化,其中包括Cdk6和Adcy2兩個與心臟發育相關的基因。
本論文已篩選出正常小鼠胚胎與複製小鼠胚胎於早期發育階段具有差異性表現及甲基化變異的基因群,並進一步証實granzyme G參與母源性及胚源性轉變,以及複製小鼠透過TSA的添加可修正其部分基因之甲基化,冀望未來能從這些基因群中篩選出一些對正常胚胎或複製胚胎發育具關鍵性影響的基因,以解決目前胚胎發育及複製動物產製之難題。


As vigorous development of biotechnology, many researchers developed micro and high through put analyzing technology. Previous researches pointed out that the aberrant of reprogramming resulted in aberrant methylation, including imprinting genes, and cloned embryonic lethally. The treatment of tricostatin A (TSA) improved the efficiency of cloned animal production through affecting reprogramming, the molecular mechanism is not clear yet.
Different developmental stage embryos were collected for the studies of gene regulation and epigenetic modification in normal and cloned embryos. First, granzyme G specifically expressed mRNA at 2-cell stage, and protein at 2- and 4-cell stages in the cytoplasma. Functional assay showed that granzyme G was related to mRNA compose, inner cell mass division and affected embryonic development. Secondary, parthenogenetic and cloned blastocyst showed significantly low expression of Dnmt3b, Dnmt3L, Hat1 and Hdac1 compared with in vivo cultured blastocyst. The expression of Dnmt3L and Hdac1 could be recovered by TSA treatment in cloned blastocyst. Third, U2afl-rs1 and Igf2 showed loss of imprinting in cloned fetus at 9 and 11 dpc. The imprinting phenomenon of DMRnew in Igf2 was established at 15.5 dpc. Fourth, high- through-put analyzed the methylated pattern of neonatal cloned mice by using the CpG island microarray. Sixty seven genes were restored methylation pattern and 143 genes were not affected by TSA treatment in cloned mice. Dlk1, IgDMR, Kcnk9, Irs1 and Rbl1 showed recovered methylation by TSA treatment. Finally, according to the result of CpG island microarray, Dnmt3b over-expression transgenic mice showed hypermethylation in genome, including Cdk6 and Adcy2 which were related to cardiac development.
The differential expression and aberrant methylated genes were screened from early developmental stage of normal and cloned mouse embryos. The results demonstrated that granzyme G participated in maternal- zygotic transition and some methylated pattern of genes could be recovered by TSA treatment in cloned mice. For solving the puzzles of normal and cloned embryonic development, I wished to screen some key genes from this research in the future.


中文摘要------------------------------------------------------------------------------------i
英文摘要------------------------------------------------------------------------------------ii
目次-----------------------------------------------------------------------------------------iii
表目次------------------------------------------------------------------------------------viii
圖目次--------------------------------------------------------------------------------------xi
緒言------------------------------------------------------------------------------------------I

第一章 胚胎發育與基因甲基化研究之文獻檢討
一、母源性與胚源性轉變----------------------------------------------------------1
二、胚胎早期發育相關基因表現-------------------------------------------------2
三、Granzyme基因的家族成員---------------------------------------------------3
四、反意寡核苷酸鏈抑制基因表現於胚胎發育上的應用-------------------5
五、複製動物科技的重要性與進展----------------------------------------------9
六、DNA甲基化相關背景介紹-------------------------------------------------15
七、銘印基因的介紹與基因體再程式化機制---------------------------------27
八、目前常見檢測甲基化的方法------------------------------------------------34

第二章 Granzyme G 基因表現於2-細胞期鼠胚及其在母源性與胚源性轉變 (maternal-zygotic transition) 作用中的角色
一、前言------------------------------------------------------------------------------43
二、材料與方法
(一)卵母細胞與載卵丘細胞的收集與製備-----------------------------44
(二)小鼠胚胎RNA製備----------------------------------------------------44
(三)反轉錄聚合酶連鎖反應 (RT-PCR) ---------------------------------45
(四)基因選殖
1. 選殖片段與載體之接合反應--------------------------------------46
2. 大腸桿菌之轉型作用-----------------------------------------------46
3. 大腸桿菌質體DNA之萃取---------------------------------------47
4. 核酸限制酶裁切-----------------------------------------------------47
5. 以低熔點膠回收目標基因片段-----------------------------------48
(五)核酸定序法--------------------------------------------------------------49
(六) 反意寡核酸合成與顯微注射系統----------------------------------49
(七) 全胚包埋之原位雜合分析-------------------------------------------49
(八) 全胚包埋之免疫螢光分析-------------------------------------------50
(九) 利用2種不同的螢光染劑區分出滋養層細胞及內細胞群----51
(十) 胚體內RNA合成分析------------------------------------------------51
(十一) 數據統計分析-------------------------------------------------------51
三、結果與討論
(一)純化並定序差異性表現之cDNA-------------------------------------52
(二)Granzyme G 在不同小鼠胚胎發育時期的表現圖譜--------------53
(三)利用antisense morpholino 降低Granzyme G的表現,進而造成2-細胞期發育障阻現象------------------------------------------53
(四)不同劑量Granzyme G morpholino antisense處理對胚胎發育的影響-------54
(五)絲胺酸蛋白分解酶抑制劑對胚胎發育存活率的影響-------------55

第三章 利用定量反轉錄聚合酶連鎖反應技術偵測複製鼠胚胎發育前期囊胚中DNA甲基轉移酶與組蛋白修飾相關基因之mRNA表現量
一、前言------------------------------------------------------------------------------74
二、材料與方法
(一)卵母細胞與載卵丘細胞的收集與製備-----------------------------75
(二)卵丘細胞核注射及重組受精卵之化學激活-----------------------75
(三)複製囊胚核糖核酸的萃取與cDNA反轉錄聚合酶連鎖反應--------------76
(四)定量即時聚合酶連鎖反應--------------------------------------------76
(五)統計分析-----------------------------------------------------------------77
三、結果與討論
(一)定量反轉錄聚合酶連鎖反應在小鼠囊胚基因表現亮之數值分析---------78
(二)DNA甲基轉移酶於複製鼠囊胚的表現量-------------------------78
(三)Hat1與Hdac1在複製鼠囊胚中的表現量-------------------------79
(四)Dnmt3a和Dnmt1在囊胚中的表現情形---------------------------79
(五)TSA處理對DNA甲基化相關基因表現的影響-------------------80

第四章 以甲基化專一性核酸聚合酶擴增反應分析複製鼠胚胎發育中期多個銘印基因的上遺傳因子變異
一、前言------------------------------------------------------------------------------89
二、材料與方法
(一)卵母細胞與載卵丘細胞的收集與製備-----------------------------90
(二)卵丘細胞核注射及重組受精卵之電融合與激活-----------------90
(三)DNA萃取與亞硫酸鹽處理-------------------------------------------91
(四)甲基化專一性核酸聚合酶擴增反應--------------------------------92
(五)亞硫酸鹽核酸定序法--------------------------------------------------92
三、結果與討論
(一)以不同種類的供核細胞所產製出來複製鼠的效率--------------93
(二)在複製鼠胚中呈現不正常的銘印基因甲基化圖譜--------------93
(三)以亞硫酸定序法驗証MS-PCR的結果-----------------------------94
(四)在正常鼠胚中Igf2銘印機制建立的時間--------------------------94

第五章 利用差異性甲基化核酸雜合生物晶片分析複製鼠胚胎發育後期的基因體甲基化圖譜
一、前言----------------------------------------------------------------------------102
二、材料與方法
(一)胚移置-------------------------------------------------------------------103
(二)甲基化專一性核酸聚合酶擴增反應與亞硫酸鹽核酸定序法----------------103
(三)差異性甲基化核酸雜合生物晶片
1. 差異性甲基化核酸雜合生物晶片探針之製備---------------103
2. 螢光標定------------------------------------------------------------106
3. 螢光雜合反應------------------------------------------------------107
4. 螢光偵測------------------------------------------------------------108
(四)以Gene Spring軟體分析複製鼠異常基因群聚-----------------109
(五)電泳遷移率檢測---------------------------------- --------------------109
1. 製作探針------------------------------------------------------------110
2. 電泳反應------------------------------------------------------------110
3. 6%聚丙烯醯氨凝膠製備------------------------------------------111
4. 核蛋白萃取液製備-------------------------------------------------111
(六)整合性訊息途徑分析系統 (integrative pathway analysis; IPA) -------112
三、結果與討論
(一)甲基化差異性雜合生物晶片品質分析與基因群聚試驗----------112
(二)亞硫酸定序法印證晶片中挑出來之差異甲基化銘印基因-------113
(三)Dnmt3L在複製鼠中呈現低度甲基化狀態以及其啟動子甲基化對轉錄因子結合的影響----------------------------------------------------114
(四)利用IPA軟體分析複製鼠個體中受甲基化影響之基因群所參與的訊息傳遞鏈----------------------------------------------------------------115
(五)甲基化專一性核酸聚合酶擴增反應驗證IPA結果中挑出來之差異甲基化基因---------------------------------------------------------------116

第六章 利用差異性甲基化雜合生物晶片分析Dnmt3b過量表現之基因轉殖鼠其基因體甲基化的變異
一、前言----------------------------------------------------------------------------140
二、材料與方法
(一)DNA甲基轉移酶3b (Dnmt3b) 高度表現基因轉殖鼠的產製------------141
(二)差異性甲基化核酸雜合生物晶片
1. 螢光標定------------------------------------------------------------141
2. 螢光雜合反應------------------------------------------------------142
3. 螢光偵測------------------------------------------------------------143
(三)甲基化專一性核酸聚合酶擴增反應-------------------------------143
(四)整合性訊息途徑分析系統-------------------------------------------143
三、結果與討論
(一) 以甲基化差異基因晶片分析Dnmt3b過量表現之基因轉殖鼠與正常鼠於心臟之甲基化差異--------------------143
(二) 甲基化異常基因的基因剔除鼠-----------------------------------144
(三) 以甲基化專一性聚合酶擴增反應印證Cdk6與Adcy2於基因轉殖鼠與正常鼠之甲基化差異--------------------------------------145
(四) 利用IPA (ingenuity pathway analysis) 軟體分析Dnmt3b過量表現基因轉殖鼠中受甲基化影響之基因群所參與的訊息傳遞鏈------------------146
總結---------------------------------------------------------------------------------------158
參考文獻---------------------------------------------------------------------------------178
附錄一------------------------------------------------------------------------------------204

Aapola, U., Maenpaa, K., Kaipia, A., and Peterson, P. (2004). Epigenetic modifications affect Dnmt3L expression. Biochem J 380, 705-713.
Ahn, D. G., Kourakis, M. J., Rohde, L. A., Silver, L. M., and Ho, R. K. (2002). T-box gene tbx5 is essential for formation of the pectoral limb bud. Nature 417, 754-758.
Akagi, K., Kyun Park, E., Mood, K., and Daar, I. O. (2002). Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development. Dev Dyn 223, 216-228.
Allen, M. P., and Nilsen-Hamilton, M. (1998). Granzymes D, E, F, and G are regulated through pregnancy and by IL-2 and IL-15 in granulated metrial gland cells. J Immunol 161, 2772-2779.
Angerer, L. M., Oleksyn, D. W., Levine, A. M., Li, X., Klein, W. H., and Angerer, R. C. (2001). Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. Development 128, 4393-4404.
Anthony D. A., Daniel M. A., Sally V. W., Joseph A. T., Mark J. S., (2010). Functional dissection of the granzyme family: cell death and inflammation. Immunological Reviews 235, 73–92
Arima, T., Hata, K., Tanaka, S., Kusumi, M., Li, E., Kato, K., Shiota, K., Sasaki, H., and Wake, N. (2006). Loss of the maternal imprint in Dnmt3Lmat-/- mice leads to a differentiation defect in the extraembryonic tissue. Dev Biol 297, 361-373.
Baguisi, A., Behboodi, E., Melican, D. T., Pollock, J. S., Destrempes, M. M., Cammuso, C., Williams, J. L., Nims, S. D., Porter, C. A., Midura, P., et al. (1999). Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17, 456-461.
Baker BF, Khalili H, Wei N, Morrow JR. 1997. Cleavage of the 5_-cap structure of mRNA by a Europium(III) macrocyclic complex with pendant alcohol groups. J. Am. Chem. Soc. 119:8749–55
Barciszewska, M. Z., Barciszewska, A. M., and Rattan, S. I. (2007). TLC-based detection of methylated cytosine: application to aging epigenetics. Biogerontology 8, 673-678.
Barel, O., Shalev, S. A., Ofir, R., Cohen, A., Zlotogora, J., Shorer, Z., Mazor, G., Finer, G., Khateeb, S., Zilberberg, N., and Birk, O. S. (2008). Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am J Hum Genet 83, 193-199.
Barlow, D. P. (1995). Gametic imprinting in mammals. Science 270, 1610-1613.
Baylin, S. B., and Herman, J. G. (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16, 168-174.
Bestor, T. H., Hellewell, S. B., and Ingram, V. M. (1984). Differentiation of two mouse cell lines is associated with hypomethylation of their genomes. Mol Cell Biol 4, 1800-1806.
Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., Forsythe, T., Golueke, P., Jurgella, G., Koppang, R., et al. (2000). Production of cloned pigs from in vitro systems. Nat Biotechnol 18, 1055-1059.
Biniszkiewicz, D., Gribnau, J., Ramsahoye, B., Gaudet, F., Eggan, K., Humpherys, D., Mastrangelo, M. A., Jun, Z., Walter, J., and Jaenisch, R. (2002). Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol 22, 2124-2135.
Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev 16, 6-21.
Birger, Y., Shemer, R., Perk, J., and Razin, A. (1999). The imprinting box of the mouse Igf2r gene. Nature 397, 84-88.
Bourc''his, D., and Bestor, T. H. (2004). Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96-99.
Bourc''his, D., Le Bourhis, D., Patin, D., Niveleau, A., Comizzoli, P., Renard, J. P., and Viegas-Pequignot, E. (2001). Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 11, 1542-1546.
Brandeis, M., Ariel, M., and Cedar, H. (1993a). Dynamics of DNA methylation during development. Bioessays 15, 709-713.
Brandeis, M., Kafri, T., Ariel, M., Chaillet, J. R., McCarrey, J., Razin, A., and Cedar, H. (1993b). The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J 12, 3669-3677.
Brenner, T., and O''Shaughnessy, K. M. (2008). Both TASK-3 and TREK-1 two-pore loop K channels are expressed in H295R cells and modulate their membrane potential and aldosterone secretion. Am J Physiol Endocrinol Metab 295, E1480-1486.
Brock, G. J., Huang, T. H., Chen, C. M., and Johnson, K. J. (2001). A novel technique for the identification of CpG islands exhibiting altered methylation patterns (ICEAMP). Nucleic Acids Res 29, E123.
Casan, E. M., Raga, F., and Polan, M. L. (1999). GnRH mRNA and protein expression in human preimplantation embryos. Mol Hum Reprod 5, 234-239.
Cerritelli, S. M., and Crouch, R. J. (2009). Ribonuclease H: the enzymes in eukaryotes. FEBS J 276, 1494-1505.
Cezar, G. G., Bartolomei, M. S., Forsberg, E. J., First, N. L., Bishop, M. D., and Eilertsen, K. J. (2003). Genome-wide epigenetic alterations in cloned bovine fetuses. Biol Reprod 68, 1009-1014.
Chatot, C. L., Ziomek, C. A., Bavister, B. D., Lewis, J. L., and Torres, I. (1989). An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 86, 679-688.
Chen, C. M., Chen, H. L., Hsiau, T. H., Hsiau, A. H., Shi, H., Brock, G. J., Wei, S. H., Caldwell, C. W., Yan, P. S., and Huang, T. H. (2003a). Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am J Pathol 163, 37-45.
Chen, C. M., Wang, C. H., Wu, S. C., Lin, C. C., Lin, S. H., and Cheng, W. T. (2002). Temporal and spatial expression of biologically active human factor VIII in the milk of transgenic mice driven by mammary-specific bovine alpha-lactalbumin regulation sequences. Transgenic Res 11, 257-268.
Chen, H. L., Yen, C. C., Lu, C. Y., Yu, C. H., and Chen, C. M. (2006). Synthetic porcine lactoferricin with a 20-residue peptide exhibits antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. J Agric Food Chem 54, 3277-3282.
Chen, H. W., Chen, J. J., Yu, S. L., Li, H. N., Yang, P. C., Su, C. M., Au, H. K., Chang, C. W., Chien, L. W., Chen, C. S., and Tzeng, C. R. (2005). Transcriptome analysis in blastocyst hatching by cDNA microarray. Hum Reprod 20, 2492-2501.
Chen, T., Hevi, S., Gay, F., Tsujimoto, N., He, T., Zhang, B., Ueda, Y., and Li, E. (2007). Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 39, 391-396.
Chen, T., Ueda, Y., Dodge, J. E., Wang, Z., and Li, E. (2003b). Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 23, 5594-5605.
Cheng, X., and Blumenthal, R. M. (2008). Mammalian DNA methyltransferases: a structural perspective. Structure 16, 341-350.
Chesne, P., Adenot, P. G., Viglietta, C., Baratte, M., Boulanger, L., and Renard, J. P. (2002). Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20, 366-369.
Chow, J. F., Lee, K. F., Chan, S. T., and Yeung, W. S. (2001). Quantification of transforming growth factor beta1 (TGFbeta1) mRNA expression in mouse preimplantation embryos and determination of TGFbeta receptor (type I and type II) expression in mouse embryos and reproductive tract. Mol Hum Reprod 7, 1047-1056.
Chu, K., and Tsai, M. J. (2005). Neuronatin, a downstream target of BETA2/NeuroD1 in the pancreas, is involved in glucose-mediated insulin secretion. Diabetes 54, 1064-1073.
Chung, C. T., and Miller, R. H. (1988). A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res 16, 3580.
Chung, Y. G., Ratnam, S., Chaillet, J. R., and Latham, K. E. (2003). Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biol Reprod 69, 146-153.
Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Ponce de Leon, F. A., and Robl, J. M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256-1258.
Cirio, M. C., Ratnam, S., Ding, F., Reinhart, B., Navara, C., and Chaillet, J. R. (2008). Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Dev Biol 8, 9.
Coletta, P. L., Shimeld, S. M., and Sharpe, P. T. (1994). The molecular anatomy of Hox gene expression. J Anat 184 ( Pt 1), 15-22.
Coonrod, S. A., Bolling, L. C., Wright, P. W., Visconti, P. E., and Herr, J. C. (2001). A morpholino phenocopy of the mouse mos mutation. Genesis 30, 198-200.
Corps, A. N., Brigstock, D. R., Littlewood, C. J., and Brown, K. D. (1990). Receptors for epidermal growth factor and insulin-like growth factor-I on preimplantation trophoderm of the pig. Development 110, 221-227.
Cowell, I. G., Aucott, R., Mahadevaiah, S. K., Burgoyne, P. S., Huskisson, N., Bongiorni, S., Prantera, G., Fanti, L., Pimpinelli, S., Wu, R., et al. (2002). Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111, 22-36.
Croy, B. A. (1994). Granulated metrial gland cells: hypotheses concerning possible functions during murine gestation. J Reprod Immunol 27, 85-94.
Cui, X. S., Zhang, D. X., Ko, Y. G., and Kim, N. H. (2009). Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos. Biochem Biophys Res Commun 379, 390-394.
Daniels, R., Hall, V., and Trounson, A. O. (2000). Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biol Reprod 63, 1034-1040.
Daniels, R., Hall, V. J., French, A. J., Korfiatis, N. A., and Trounson, A. O. (2001). Comparison of gene transcription in cloned bovine embryos produced by different nuclear transfer techniques. Mol Reprod Dev 60, 281-288.
Daniels, R., Zuccotti, M., Kinis, T., Serhal, P., and Monk, M. (1997). XIST expression in human oocytes and preimplantation embryos. Am J Hum Genet 61, 33-39.
Dardik, A., and Schultz, R. M. (1991). Blastocoel expansion in the preimplantation mouse embryo: stimulatory effect of TGF-alpha and EGF. Development 113, 919-930.
Davis, R. J., Shen, W., Sandler, Y. I., Amoui, M., Purcell, P., Maas, R., Ou, C. N., Vogel, H., Beaudet, A. L., and Mardon, G. (2001). Dach1 mutant mice bear no gross abnormalities in eye, limb, and brain development and exhibit postnatal lethality. Mol Cell Biol 21, 1484-1490.
Davis, W., Jr., De Sousa, P. A., and Schultz, R. M. (1996). Transient expression of translation initiation factor eIF-4C during the 2-cell stage of the preimplantation mouse embryo: identification by mRNA differential display and the role of DNA replication in zygotic gene activation. Dev Biol 174, 190-201.
De Sousa, P. A., King, T., Harkness, L., Young, L. E., Walker, S. K., and Wilmut, I. (2001). Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol Reprod 65, 23-30.
Dean, W., Santos, F., and Reik, W. (2003). Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol 14, 93-100.
Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 98, 13734-13738.
Delhaise, F., Zhao, X., Bralion, V., Dessy, F., and Georges, M. (1993). Quantitative estimation of chimerism in mice using microsatellite markers. Mol Reprod Dev 34, 127-132.
Ding, F., and Chaillet, J. R. (2002). In vivo stabilization of the Dnmt1 (cytosine-5)- methyltransferase protein. Proc Natl Acad Sci U S A 99, 14861-14866.
Dodge, J. E., Okano, M., Dick, F., Tsujimoto, N., Chen, T., Wang, S., Ueda, Y., Dyson, N., and Li, E. (2005). Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J Biol Chem 280, 17986-17991.
Dong, A., Yoder, J. A., Zhang, X., Zhou, L., Bestor, T. H., and Cheng, X. (2001). Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res 29, 439-448.
Drapkin, P. T., Monard, D., and Silverman, A. J. (2002). The role of serine proteases and serine protease inhibitors in the migration of gonadotropin-releasing hormone neurons. BMC Dev Biol 2, 1.
Eckert, J., and Niemann, H. (1998). mRNA expression of leukaemia inhibitory factor (LIF) and its receptor subunits glycoprotein 130 and LIF-receptor-beta in bovine embryos derived in vitro or in vivo. Mol Hum Reprod 4, 957-965.
Eden, A., Gaudet, F., Waghmare, A., and Jaenisch, R. (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455.
Eden, S., Constancia, M., Hashimshony, T., Dean, W., Goldstein, B., Johnson, A. C., Keshet, I., Reik, W., and Cedar, H. (2001). An upstream repressor element plays a role in Igf2 imprinting. EMBO J 20, 3518-3525.
Engemann, S., Strodicke, M., Paulsen, M., Franck, O., Reinhardt, R., Lane, N., Reik, W., and Walter, J. (2000). Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting. Hum Mol Genet 9, 2691-2706.
Enright, B. P., Kubota, C., Yang, X., and Tian, X. C. (2003). Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2''-deoxycytidine. Biol Reprod 69, 896-901.
Epstein, C. J., Smith, S., Travis, B., and Tucker, G. (1978). Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature 274, 500-503.
Esteller, M. (2008). Epigenetics in cancer. N Engl J Med 358, 1148-1159.
Evsikov, A. V., Graber, J. H., Brockman, J. M., Hampl, A., Holbrook, A. E., Singh, P., Eppig, J. J., Solter, D., and Knowles, B. B. (2006). Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev 20, 2713-2727.
Fan, T., Hagan, J. P., Kozlov, S. V., Stewart, C. L., and Muegge, K. (2005). Lsh controls silencing of the imprinted Cdkn1c gene. Development 132, 635-644.
Fedoriw, A. M., Stein, P., Svoboda, P., Schultz, R. M., and Bartolomei, M. S. (2004). Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303, 238-240.
Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. (1992). A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89, 1827-1831.
Furumai, R., Komatsu, Y., Nishino, N., Khochbin, S., Yoshida, M., and Horinouchi, S. (2001). Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci U S A 98, 87-92.
Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R., and Lazzari, G. (2003). Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.
Gao, S., McGarry, M., Latham, K. E., and Wilmut, I. (2003). Cloning of mice by nuclear transfer. Cloning Stem Cells 5, 287-294.
Gao, X., Sadana, R., Dessauer, C. W., and Patel, T. B. (2007). Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits. J Biol Chem 282, 294-302.
Garcia-Cao, M., Gonzalo, S., Dean, D., and Blasco, M. A. (2002). A role for the Rb family of proteins in controlling telomere length. Nat Genet 32, 415-419.
Garcia-Sanz, J. A., MacDonald, H. R., Jenne, D. E., Tschopp, J., and Nabholz, M. (1990). Cell specificity of granzyme gene expression. J Immunol 145, 3111-3118.
Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., Leonhardt, H., and Jaenisch, R. (2003). Induction of tumors in mice by genomic hypomethylation. Science 300, 489-492.
Georgel, P. T., Horowitz-Scherer, R. A., Adkins, N., Woodcock, C. L., Wade, P. A., and Hansen, J. C. (2003). Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 278, 32181-32188.
Gibbons, R. J., McDowell, T. L., Raman, S., O''Rourke, D. M., Garrick, D., Ayyub, H., and Higgs, D. R. (2000). Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet 24, 368-371.
Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S., and Huang, T. H. (2002). Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12, 158-164.
Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C. L., Zhang, X., Golic, K. G., Jacobsen, S. E., and Bestor, T. H. (2006). Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395-398.
Gonzalgo, M. L., and Jones, P. A. (1997). Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res 25, 2529-2531.
Gonzalo, S., Garcia-Cao, M., Fraga, M. F., Schotta, G., Peters, A. H., Cotter, S. E., Eguia, R., Dean, D. C., Esteller, M., Jenuwein, T., and Blasco, M. A. (2005). Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7, 420-428.
Green, P. J., Pines, O., and Inouye, M. (1986). The role of antisense RNA in gene regulation. Annu Rev Biochem 55, 569-597.
Grossman, W. J., Revell, P. A., Lu, Z. H., Johnson, H., Bredemeyer, A. J., and Ley, T. J. (2003). The orphan granzymes of humans and mice. Curr Opin Immunol 15, 544-552.
Grossniklaus, U., Spillane, C., Page, D. R., and Kohler, C. (2001). Genomic imprinting and seed development: endosperm formation with and without sex. Curr Opin Plant Biol 4, 21-27.
Guimond, M. J., Luross, J. A., Wang, B., Terhorst, C., Danial, S., and Croy, B. A. (1997). Absence of natural killer cells during murine pregnancy is associated with reproductive compromise in TgE26 mice. Biol Reprod 56, 169-179.
Guimond, M. J., Wang, B., Fujita, J., Terhorst, C., and Croy, B. A. (1996). Pregnancy-associated uterine granulated metrial gland cells in mutant and transgenic mice. Am J Reprod Immunol 35, 501-509.
Guo, G., Wang, W., and Bradley, A. (2004). Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 429, 891-895.
Gupta, R., Thomas, P., Beddington, R. S., and Rigby, P. W. (1998). Isolation of developmentally regulated genes by differential display screening of cDNA libraries. Nucleic Acids Res 26, 4538-4539.
Hamatani, T., Carter, M. G., Sharov, A. A., and Ko, M. S. (2004). Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6, 117-131.
Hartmann, H., Schmitz, F., Christ, B., Jungermann, K., and Creutzfeldt, W. (1990). Metabolic actions of insulin-like growth factor-I in cultured hepatocytes from adult rats. Hepatology 12, 1139-1143.
Harvey, M. B., and Kaye, P. L. (1991). Visualization of insulin receptors on mouse pre-embryos. Reprod Fertil Dev 3, 9-15.
Hata, K., Okano, M., Lei, H., and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983-1993.
Hatada, I., Hayashizaki, Y., Hirotsune, S., Komatsubara, H., and Mukai, T. (1991). A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci U S A 88, 9523-9527.
Heard, E., Clerc, P., and Avner, P. (1997). X-chromosome inactivation in mammals. Annu Rev Genet 31, 571-610.
Heard, E., Mongelard, F., Arnaud, D., Chureau, C., Vourc''h, C., and Avner, P. (1999). Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells. Proc Natl Acad Sci U S A 96, 6841-6846.
Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93, 9821-9826.
Hermann, A., Gowher, H., and Jeltsch, A. (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61, 2571-2587.
Hill, J. R., Roussel, A. J., Cibelli, J. B., Edwards, J. F., Hooper, N. L., Miller, M. W., Thompson, J. A., Looney, C. R., Westhusin, M. E., Robl, J. M., and Stice, S. L. (1999). Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 51, 1451-1465.
Hirasawa, R., Chiba, H., Kaneda, M., Tajima, S., Li, E., Jaenisch, R., and Sasaki, H. (2008). Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 22, 1607-1616.
Holliday, R., and Pugh, J. E. (1975). DNA modification mechanisms and gene activity during development. Science 187, 226-232.
Horike, S., Mitsuya, K., Meguro, M., Kotobuki, N., Kashiwagi, A., Notsu, T., Schulz, T. C., Shirayoshi, Y., and Oshimura, M. (2000). Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet 9, 2075-2083.
Houdebine, L. M. (2002). Animal transgenesis: recent data and perspectives. Biochimie 84, 1137-1141.
Houseley, J., and Tollervey, D. (2009). The many pathways of RNA degradation. Cell 136, 763-776.
Howell, C. Y., Bestor, T. H., Ding, F., Latham, K. E., Mertineit, C., Trasler, J. M., and Chaillet, J. R. (2001). Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104, 829-838.
Hu, Y. G., Hirasawa, R., Hu, J. L., Hata, K., Li, C. L., Jin, Y., Chen, T., Li, E., Rigolet, M., Viegas-Pequignot, E., et al. (2008). Regulation of DNA methylation activity through Dnmt3L promoter methylation by Dnmt3 enzymes in embryonic development. Hum Mol Genet 17, 2654-2664.
Hua, Y., Vickers, T. A., Okunola, H. L., Bennett, C. F., and Krainer, A. R. (2008). Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 82, 834-848.
Huang, C. C., Chuang, J. H., Huang, L. L., Chou, M. H., Wu, C. L., Chen, C. M., Hsieh, C. S., Lee, S. Y., and Chen, C. L. (2004). The human Delta-like 1 homologue is implicated in the progression of liver fibrosis in biliary atresia. J Pathol 202, 172-179.
Huang, T. H., Perry, M. R., and Laux, D. E. (1999). Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 8, 459-470.
Humpherys, D., Eggan, K., Akutsu, H., Friedman, A., Hochedlinger, K., Yanagimachi, R., Lander, E. S., Golub, T. R., and Jaenisch, R. (2002). Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci U S A 99, 12889-12894.
Humpherys, D., Eggan, K., Akutsu, H., Hochedlinger, K., Rideout, W. M., 3rd, Biniszkiewicz, D., Yanagimachi, R., and Jaenisch, R. (2001). Epigenetic instability in ES cells and cloned mice. Science 293, 95-97.
Ibrahim, M. M., Razmara, M., Nguyen, D., Donahue, R. J., Wubah, J. A., and Knudsen, T. B. (1998). Altered expression of mitochondrial 16S ribosomal RNA in p53-deficient mouse embryos revealed by differential display. Biochim Biophys Acta 1403, 254-264.
Inoue, K., Kohda, T., Lee, J., Ogonuki, N., Mochida, K., Noguchi, Y., Tanemura, K., Kaneko-Ishino, T., Ishino, F., and Ogura, A. (2002). Faithful expression of imprinted genes in cloned mice. Science 295, 297.
Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D., and Perucho, M. (1993). Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558-561.
Issa, J. P., Ottaviano, Y. L., Celano, P., Hamilton, S. R., Davidson, N. E., and Baylin, S. B. (1994). Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7, 536-540.
Iwatsubo, K., Minamisawa, S., Tsunematsu, T., Nakagome, M., Toya, Y., Tomlinson, J. E., Umemura, S., Scarborough, R. M., Levy, D. E., and Ishikawa, Y. (2004). Direct inhibition of type 5 adenylyl cyclase prevents myocardial apoptosis without functional deterioration. J Biol Chem 279, 40938-40945.
Jackson, M., Krassowska, A., Gilbert, N., Chevassut, T., Forrester, L., Ansell, J., and Ramsahoye, B. (2004). Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol 24, 8862-8871.
Jeltsch, A. (2006). On the enzymatic properties of Dnmt1: specificity, processivity, mechanism of linear diffusion and allosteric regulation of the enzyme. Epigenetics 1, 63-66.
Jenne, D. E., and Tschopp, J. (1988). Granzymes, a family of serine proteases released from granules of cytolytic T lymphocytes upon T cell receptor stimulation. Immunol Rev 103, 53-71.
Jeong, Y. J., Choi, H. W., Shin, H. S., Cui, X. S., Kim, N. H., Gerton, G. L., and Jun, J. H. (2005). Optimization of real time RT-PCR methods for the analysis of gene expression in mouse eggs and preimplantation embryos. Mol Reprod Dev 71, 284-289.
Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A., and Cheng, X. (2007). Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248-251.
Jorgensen, H. F., Ben-Porath, I., and Bird, A. P. (2004). Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Mol Cell Biol 24, 3387-3395.
Kaffer, C. R., Grinberg, A., and Pfeifer, K. (2001). Regulatory mechanisms at the mouse Igf2/H19 locus. Mol Cell Biol 21, 8189-8196.
Kalantry, S., Mills, K. C., Yee, D., Otte, A. P., Panning, B., and Magnuson, T. (2006). The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nat Cell Biol 8, 195-202.
Kaneda, M., Okano, M., Hata, K., Sado, T., Tsujimoto, N., Li, E., and Sasaki, H. (2004). Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900-903.
Kang, Y. K., Koo, D. B., Park, J. S., Choi, Y. H., Chung, A. S., Lee, K. K., and Han, Y. M. (2001a). Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 28, 173-177.
Kang, Y. K., Koo, D. B., Park, J. S., Choi, Y. H., Kim, H. N., Chang, W. K., Lee, K. K., and Han, Y. M. (2001b). Typical demethylation events in cloned pig embryos. Clues on species-specific differences in epigenetic reprogramming of a cloned donor genome. J Biol Chem 276, 39980-39984.
Kang, Y. K., Park, J. S., Koo, D. B., Choi, Y. H., Kim, S. U., Lee, K. K., and Han, Y. M. (2002). Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J 21, 1092-1100.
Kato, Y., Tani, T., Sotomaru, Y., Kurokawa, K., Kato, J., Doguchi, H., Yasue, H., and Tsunoda, Y. (1998). Eight calves cloned from somatic cells of a single adult. Science 282, 2095-2098.
Kaur, H., and Halliwell, B. (1996). Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection. Biochem J 318 ( Pt 1), 21-23.
Kawasaki, H., and Taira, K. (2004). Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431, 211-217.
Kaye, P. L., Bell, K. L., Beebe, L. F., Dunglison, G. F., Gardner, H. G., and Harvey, M. B. (1992). Insulin and the insulin-like growth factors (IGFs) in preimplantation development. Reprod Fertil Dev 4, 373-386.
Khalfallah, O., Faucon-Biguet, N., Nardelli, J., Meloni, R., and Mallet, J. (2008). Expression of the transcription factor Zfp191 during embryonic development in the mouse. Gene Expr Patterns 8, 148-154.
Kim, S. H., Kang, Y. K., Koo, D. B., Kang, M. J., Moon, S. J., Lee, K. K., and Han, Y. M. (2004). Differential DNA methylation reprogramming of various repetitive sequences in mouse preimplantation embryos. Biochem Biophys Res Commun 324, 58-63.
King, A., and Loke, Y. W. (1990). Human trophoblast and JEG choriocarcinoma cells are sensitive to lysis by IL-2-stimulated decidual NK cells. Cell Immunol 129, 435-448.
Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N. V., Wakayama, S., Bui, H. T., and Wakayama, T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340, 183-189.
Ko, Y. G., Nishino, K., Hattori, N., Arai, Y., Tanaka, S., and Shiota, K. (2005). Stage-by-stage change in DNA methylation status of Dnmt1 locus during mouse early development. J Biol Chem 280, 9627-9634.
Kohno, T., Kawanishi, M., Inazawa, J., and Yokota, J. (1998). Identification of CpG islands hypermethylated in human lung cancer by the arbitrarily primed-PCR method. Hum Genet 102, 258-264.
Kondo, Y., Shen, L., Cheng, A. S., Ahmed, S., Boumber, Y., Charo, C., Yamochi, T., Urano, T., Furukawa, K., Kwabi-Addo, B., et al. (2008). Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40, 741-750.
Kristensen, L. S., Nielsen, H. M., and Hansen, L. L. (2009). Epigenetics and cancer treatment. Eur J Pharmacol 625, 131-142.
Krumlauf, R. (1994). Hox genes in vertebrate development. Cell 78, 191-201.
Kubota, C., Yamakuchi, H., Todoroki, J., Mizoshita, K., Tabara, N., Barber, M., and Yang, X. (2000). Six cloned calves produced from adult fibroblast cells after long-term culture. Proc Natl Acad Sci U S A 97, 990-995.
Kunert, N., Marhold, J., Stanke, J., Stach, D., and Lyko, F. (2003). A Dnmt2-like protein mediates DNA methylation in Drosophila. Development 130, 5083-5090.
Kuo, K. C., McCune, R. A., Gehrke, C. W., Midgett, R., and Ehrlich, M. (1980). Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res 8, 4763-4776.
Kuppuswamy, M. N., Hoffmann, J. W., Kasper, C. K., Spitzer, S. G., Groce, S. L., and Bajaj, S. P. (1991). Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proc Natl Acad Sci U S A 88, 1143-1147.
Kurmasheva, R. T., Peterson, C. A., Parham, D. M., Chen, B., McDonald, R. E., and Cooney, C. A. (2005). Upstream CpG island methylation of the PAX3 gene in human rhabdomyosarcomas. Pediatr Blood Cancer 44, 328-337.
Kurukuti, S., Tiwari, V. K., Tavoosidana, G., Pugacheva, E., Murrell, A., Zhao, Z., Lobanenkov, V., Reik, W., and Ohlsson, R. (2006). CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 103, 10684-10689.
Lacham-Kaplan, O., Diamente, M., Pushett, D., Lewis, I., and Trounson, A. (2000). Developmental competence of nuclear transfer cow oocytes after direct injection of fetal fibroblast nuclei. Cloning 2, 55-62.
Lamontagne, B., Larose, S., Boulanger, J., and Elela, S. A. (2001). The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism. Curr Issues Mol Biol 3, 71-78.
Lanza, R. P., Cibelli, J. B., Blackwell, C., Cristofalo, V. J., Francis, M. K., Baerlocher, G. M., Mak, J., Schertzer, M., Chavez, E. A., Sawyer, N., et al. (2000). Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 288, 665-669.
Latham, K. E., Garrels, J. I., Chang, C., and Solter, D. (1991). Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development 112, 921-932.
Latham, K. E., Rambhatla, L., Hayashizaki, Y., and Chapman, V. M. (1995). Stage-specific induction and regulation by genomic imprinting of the mouse U2afbp-rs gene during preimplantation development. Dev Biol 168, 670-676.
Lawitts, J. A., and Biggers, J. D. (1991). Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil 91, 543-556.
Lee, J., Inoue, K., Ono, R., Ogonuki, N., Kohda, T., Kaneko-Ishino, T., Ogura, A., and Ishino, F. (2002). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129, 1807-1817.
Lee, K. F., Chow, J. F., Xu, J. S., Chan, S. T., Ip, S. M., and Yeung, W. S. (2001). A comparative study of gene expression in murine embryos developed in vivo, cultured in vitro, and cocultured with human oviductal cells using messenger ribonucleic acid differential display. Biol Reprod 64, 910-917.
Lefebvre, C., Terret, M. E., Djiane, A., Rassinier, P., Maro, B., and Verlhac, M. H. (2002). Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. J Cell Biol 157, 603-613.
Leighton, P. A., Ingram, R. S., Eggenschwiler, J., Efstratiadis, A., and Tilghman, S. M. (1995). Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34-39.
Ley, T. J., DeSimone, J., Anagnou, N. P., Keller, G. H., Humphries, R. K., Turner, P. H., Young, N. S., Keller, P., and Nienhuis, A. W. (1982). 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med 307, 1469-1475.
Li, C., Bin, Y., Curchoe, C., Yang, L., Feng, D., Jiang, Q., O''Neill, M., Tian, X. C., and Zhang, S. (2008a). Genetic imprinting of H19 and IGF2 in domestic pigs (Sus scrofa). Anim Biotechnol 19, 22-27.
Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3, 662-673.
Li, E., Bestor, T. H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915-926.
Li, X., Kato, Y., Tsuji, Y., and Tsunoda, Y. (2008b). The effects of trichostatin A on mRNA expression of chromatin structure-, DNA methylation-, and development-related genes in cloned mouse blastocysts. Cloning Stem Cells 10, 133-142.
Li, X., Kato, Y., and Tsunoda, Y. (2005). Comparative analysis of development-related gene expression in mouse preimplantation embryos with different developmental potential. Mol Reprod Dev 72, 152-160.
Liang, G., Chan, M. F., Tomigahara, Y., Tsai, Y. C., Gonzales, F. A., Li, E., Laird, P. W., and Jones, P. A. (2002). Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22, 480-491.
Liang, P., and Pardee, A. B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967-971.
Lim, H., Ma, L., Ma, W. G., Maas, R. L., and Dey, S. K. (1999). Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Mol Endocrinol 13, 1005-1017.
Lin, H., Yamada, Y., Nguyen, S., Linhart, H., Jackson-Grusby, L., Meissner, A., Meletis, K., Lo, G., and Jaenisch, R. (2006). Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol Cell Biol 26, 2976-2983.
Lin, S. P., Coan, P., da Rocha, S. T., Seitz, H., Cavaille, J., Teng, P. W., Takada, S., and Ferguson-Smith, A. C. (2007). Differential regulation of imprinting in the murine embryo and placenta by the Dlk1-Dio3 imprinting control region. Development 134, 417-426.
Linnemeyer, P. A., and Pollack, S. B. (1994). Stage-specific expression of activation antigens on NK cells at uterine implantation sites in mice. J Immunol 153, 1478-1486.
Liou, Y. C., Ryo, A., Huang, H. K., Lu, P. J., Bronson, R., Fujimori, F., Uchida, T., Hunter, T., and Lu, K. P. (2002). Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci U S A 99, 1335-1340.
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
Lopes, S., Lewis, A., Hajkova, P., Dean, W., Oswald, J., Forne, T., Murrell, A., Constancia, M., Bartolomei, M., Walter, J., and Reik, W. (2003). Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum Mol Genet 12, 295-305.
Mandel, J. L., and Chambon, P. (1979). DNA methylation: organ specific variations in the methylation pattern within and around ovalbumin and other chicken genes. Nucleic Acids Res 7, 2081-2103.
Mann, M. R., Chung, Y. G., Nolen, L. D., Verona, R. I., Latham, K. E., and Bartolomei, M. S. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol Reprod 69, 902-914.
Margot, J. B., Ehrenhofer-Murray, A. E., and Leonhardt, H. (2003). Interactions within the mammalian DNA methyltransferase family. BMC Mol Biol 4, 7.
Massague, J. (1983). Epidermal growth factor-like transforming growth factor. II. Interaction with epidermal growth factor receptors in human placenta membranes and A431 cells. J Biol Chem 258, 13614-13620.
Masson, D., and Tschopp, J. (1987). A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 49, 679-685.
Mattson, B. A., Rosenblum, I. Y., Smith, R. M., and Heyner, S. (1988). Autoradiographic evidence for insulin and insulin-like growth factor binding to early mouse embryos. Diabetes 37, 585-589.
McCreath, K. J., Howcroft, J., Campbell, K. H., Colman, A., Schnieke, A. E., and Kind, A. J. (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066-1069.
McGhee, J. D., and Ginder, G. D. (1979). Specific DNA methylation sites in the vicinity of the chicken beta-globin genes. Nature 280, 419-420.
Mertineit, C., Yoder, J. A., Taketo, T., Laird, D. W., Trasler, J. M., and Bestor, T. H. (1998). Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125, 889-897.
Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A., and Matzke, A. J. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19, 5194-5201.
Mishra D. K., Chen Z., Wu Y., Sarkissyan M., Koeffler H. P.and Vadgama j. V.. (2010) Global Methylation Pattern of Genes in Androgen-Sensitive and Androgen-Independent Prostate Cancer Cells. Mol Cancer Ther January 9:33-45
Monk, M. (1990). Changes in DNA methylation during mouse embryonic development in relation to X-chromosome activity and imprinting. Philos Trans R Soc Lond B Biol Sci 326, 299-312.
Monk, M., and Harper, M. I. (1979). Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 281, 311-313.
Moon, Y. S., Smas, C. M., Lee, K., Villena, J. A., Kim, K. H., Yun, E. J., and Sul, H. S. (2002). Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol 22, 5585-5592.
Moore, T., and Haig, D. (1991). Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7, 45-49.
Morrow, J. R., and Iranzo, O. (2004). Synthetic metallonucleases for RNA cleavage. Curr Opin Chem Biol 8, 192-200.
Mukherjee, P., Cao, T. V., Winter, S. L., and Alexandrow, M. G. (2009). Mammalian MCM loading in late-G(1) coincides with Rb hyperphosphorylation and the transition to post-transcriptional control of progression into S-phase. PLoS One 4, e5462.
Mund, C., Musch, T., Strodicke, M., Assmann, B., Li, E., and Lyko, F. (2004). Comparative analysis of DNA methylation patterns in transgenic Drosophila overexpressing mouse DNA methyltransferases. Biochem J 378, 763-768.
Murrell, A., Heeson, S., Bowden, L., Constancia, M., Dean, W., Kelsey, G., and Reik, W. (2001). An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep 2, 1101-1106.
Myers, M. G., Jr., Wang, L. M., Sun, X. J., Zhang, Y., Yenush, L., Schlessinger, J., Pierce, J. H., and White, M. F. (1994). Role of IRS-1-GRB-2 complexes in insulin signaling. Mol Cell Biol 14, 3577-3587.
Nakabayashi, K., Makino, S., Minagawa, S., Smith, A. C., Bamforth, J. S., Stanier, P., Preece, M., Parker-Katiraee, L., Paton, T., Oshimura, M., et al. (2004). Genomic imprinting of PPP1R9A encoding neurabin I in skeletal muscle and extra-embryonic tissues. J Med Genet 41, 601-608.
Nan, X., Hou, J., Maclean, A., Nasir, J., Lafuente, M. J., Shu, X., Kriaucionis, S., and Bird, A. (2007). Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc Natl Acad Sci U S A 104, 2709-2714.
Ng, H. H., and Bird, A. (1999). DNA methylation and chromatin modification. Curr Opin Genet Dev 9, 158-163.
Nikitina, T., Shi, X., Ghosh, R. P., Horowitz-Scherer, R. A., Hansen, J. C., and Woodcock, C. L. (2007). Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol Cell Biol 27, 864-877.
Norris D. P., Neil B. and Sohaila R.. (1991). Methylation status of CpG-rich islands on active and inactive mouse X chromosomes. Mammalian Genome.1, 78-83.
Nosho, K., Shima, K., Irahara, N., Kure, S., Baba, Y., Kirkner, G. J., Chen, L., Gokhale, S., Hazra, A., Spiegelman, D., et al. (2009). DNMT3B expression might contribute to CpG island methylator phenotype in colorectal cancer. Clin Cancer Res 15, 3663-3671.
Ogawa, H., Ono, Y., Shimozawa, N., Sotomaru, Y., Katsuzawa, Y., Hiura, H., Ito, M., and Kono, T. (2003). Disruption of imprinting in cloned mouse fetuses from embryonic stem cells. Reproduction 126, 549-557.
Ogura, A., Inoue, K., Ogonuki, N., Noguchi, A., Takano, K., Nagano, R., Suzuki, O., Lee, J., Ishino, F., and Matsuda, J. (2000a). Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol Reprod 62, 1579-1584.
Ogura, A., Inoue, K., Takano, K., Wakayama, T., and Yanagimachi, R. (2000b). Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol Reprod Dev 57, 55-59.
Okano, M., Bell, D. W., Haber, D. A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257.
Okano, M., Xie, S., and Li, E. (1998). Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res 26, 2536-2540.
Okazaki, T., Takita, J., Kohno, T., Handa, H., and Yokota, J. (1996). Detection of amplified genomic sequences in human small-cell lung carcinoma cells by arbitrarily primed-PCR genomic fingerprinting. Hum Genet 98, 253-258.
Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H., and Perry, A. C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188-1190.
Ono, Y., Shimozawa, N., Ito, M., and Kono, T. (2001). Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol Reprod 64, 44-50.
Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., Dean, W., Reik, W., and Walter, J. (2000). Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10, 475-478.
Pampfer, S., de Hertogh, R., Vanderheyden, I., Michiels, B., and Vercheval, M. (1990). Decreased inner cell mass proportion in blastocysts from diabetic rats. Diabetes 39, 471-476.
Pandey, R. R., Ceribelli, M., Singh, P. B., Ericsson, J., Mantovani, R., and Kanduri, C. (2004). NF-Y regulates the antisense promoter, bidirectional silencing, and differential epigenetic marks of the Kcnq1 imprinting control region. J Biol Chem 279, 52685-52693.
Pantaleon, M., Jericho, H., Rabnott, G., and Kaye, P. L. (2003). The role of insulin-like growth factor II and its receptor in mouse preimplantation development. Reprod Fertil Dev 15, 37-45.
Park, H. J., Yu, E., and Shim, Y. H. (2006). DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma. Cancer Lett 233, 271-278.
Peinado, M. A., Malkhosyan, S., Velazquez, A., and Perucho, M. (1992). Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc Natl Acad Sci U S A 89, 10065-10069.
Perini, G., Diolaiti, D., Porro, A., and Della Valle, G. (2005). In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci U S A 102, 12117-12122.
Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R., Worringer, K. A., Wang, H., de la Cruz, C. C., Otte, A. P., Panning, B., and Zhang, Y. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131-135.
Polejaeva, I. A., Chen, S. H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D. L., et al. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86-90.
Raga, F., Casan, E. M., Kruessel, J., Wen, Y., Bonilla-Musoles, F., and Polan, M. L. (1999). The role of gonadotropin-releasing hormone in murine preimplantation embryonic development. Endocrinology 140, 3705-3712.
Rai, K., Chidester, S., Zavala, C. V., Manos, E. J., James, S. R., Karpf, A. R., Jones, D. A., and Cairns, B. R. (2007). Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev 21, 261-266.
Rappolee, D. A., Sturm, K. S., Behrendtsen, O., Schultz, G. A., Pedersen, R. A., and Werb, Z. (1992). Insulin-like growth factor II acts through an endogenous growth pathway regulated by imprinting in early mouse embryos. Genes Dev 6, 939-952.
Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089-1093.
Reik, W., and Walter, J. (1998). Imprinting mechanisms in mammals. Curr Opin Genet Dev 8, 154-164.
Reik, W., and Walter, J. (2001). Genomic imprinting: parental influence on the genome. Nat Rev Genet 2, 21-32.
Renard, J. P., Chastant, S., Chesne, P., Richard, C., Marchal, J., Cordonnier, N., Chavatte, P., and Vignon, X. (1999). Lymphoid hypoplasia and somatic cloning. Lancet 353, 1489-1491.
Rideout, W. M., 3rd, Eggan, K., and Jaenisch, R. (2001). Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093-1098.
Riggs, A. D. (1975). X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14, 9-25.
Robertson, K. D. (2005). DNA methylation and human disease. Nat Rev Genet 6, 597-610.
Roh, S., Guo, J., Malakooti, N., Morrison, J. R., Trounson, A. O., and Du, Z. T. (2003). Birth of rats following nuclear exchange at the 2-cell stage. Zygote 11, 317-321.
Roll, J. D., Rivenbark, A. G., Jones, W. D., and Coleman, W. B. (2008). DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer 7, 15.
Rosenblum, I. Y., Mattson, B. A., and Heyner, S. (1986). Stage-specific insulin binding in mouse preimplantation embryos. Dev Biol 116, 261-263.
Ruf, N., Bahring, S., Galetzka, D., Pliushch, G., Luft, F. C., Nurnberg, P., Haaf, T., Kelsey, G., and Zechner, U. (2007). Sequence-based bioinformatic prediction and QUASEP identify genomic imprinting of the KCNK9 potassium channel gene in mouse and human. Hum Mol Genet 16, 2591-2599.
Russo, G. L., Kyozuka, K., Antonazzo, L., Tosti, E., and Dale, B. (1996). Maturation promoting factor in ascidian oocytes is regulated by different intracellular signals at meiosis I and II. Development 122, 1995-2003.
Sado, T., Fenner, M. H., Tan, S. S., Tam, P., Shioda, T., and Li, E. (2000). X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev Biol 225, 294-303.
Santos, F., and Dean, W. (2004). Epigenetic reprogramming during early development in mammals. Reproduction 127, 643-651.
Sasson, R., Dantes, A., Tajima, K., and Amsterdam, A. (2003). Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. FASEB J 17, 1256-1266.
Sato, S., Yoshimizu, T., Sato, E., and Matsui, Y. (2003). Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development. Mol Reprod Dev 65, 41-50.
Schepers U: RNA interference in practice. John Wiley and Sons Ltd. Chichester, UK 2005, 261-99.
Schmitt, F., Oakeley, E. J., and Jost, J. P. (1997). Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem 272, 1534-1540.
Schultz, R. M. (1993). Regulation of zygotic gene activation in the mouse. Bioessays 15, 531-538.
Schultz, R. M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8, 323-331.
Sedelies, K. A., Sayers, T. J., Edwards, K. M., Chen, W., Pellicci, D. G., Godfrey, D. I., and Trapani, J. A. (2004). Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J Biol Chem 279, 26581-26587.
Seidah, N. G., and Chretien, M. (1999). Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848, 45-62.
Shao, W. J., Tao, L. Y., Gao, C., Xie, J. Y., and Zhao, R. Q. (2008). Alterations in methylation and expression levels of imprinted genes H19 and Igf2 in the fetuses of diabetic mice. Comp Med 58, 341-346.
Shibata, H., Yoda, Y., Kato, R., Ueda, T., Kamiya, M., Hiraiwa, N., Yoshiki, A., Plass, C., Pearsall, R. S., Held, W. A., et al. (1998). A methylation imprint mark in the mouse imprinted gene Grf1/Cdc25Mm locus shares a common feature with the U2afbp-rs gene: an association with a short tandem repeat and a hypermethylated region. Genomics 49, 30-37.
Shin, T., Kraemer, D., Pryor, J., Liu, L., Rugila, J., Howe, L., Buck, S., Murphy, K., Lyons, L., and Westhusin, M. (2002). A cat cloned by nuclear transplantation. Nature 415, 859.
Siddall, L. S., Barcroft, L. C., and Watson, A. J. (2002). Targeting gene expression in the preimplantation mouse embryo using morpholino antisense oligonucleotides. Mol Reprod Dev 63, 413-421.
Singal, R., and Ginder, G. D. (1999). DNA methylation. Blood 93, 4059-4070.
Sleutels, F., Zwart, R., and Barlow, D. P. (2002). The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810-813.
Starkey, P. M. (1991). Expression on cells of early human pregnancy decidua, of the p75, IL-2 and p145, IL-4 receptor proteins. Immunology 73, 64-70.
Stebbins-Boaz, B., and Richter, J. D. (1997). Translational control during early development. Crit Rev Eukaryot Gene Expr 7, 73-94.
Stein, P., Svoboda, P., and Schultz, R. M. (2003). Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev Biol 256, 187-193.
Stewart, I., and Mukhtar, D. D. (1988). The killing of mouse trophoblast cells by granulated metrial gland cells in vitro. Placenta 9, 417-425.
Stitzel, M. L., and Seydoux, G. (2007). Regulation of the oocyte-to-zygote transition. Science 316, 407-408.
Stoger, R., Kubicka, P., Liu, C. G., Kafri, T., Razin, A., Cedar, H., and Barlow, D. P. (1993). Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61-71.
Stopka, T., and Skoultchi, A. I. (2003). The ISWI ATPase Snf2h is required for early mouse development. Proc Natl Acad Sci U S A 100, 14097-14102.
Strasser, A., Jost, P. J., and Nagata, S. (2009). The many roles of FAS receptor signaling in the immune system. Immunity 30, 180-192.
Suemizu, H., Aiba, K., Yoshikawa, T., Sharov, A. A., Shimozawa, N., Tamaoki, N., and Ko, M. S. (2003). Expression profiling of placentomegaly associated with nuclear transplantation of mouse ES cells. Dev Biol 253, 36-53.
Suetake, I., Shinozaki, F., Miyagawa, J., Takeshima, H., and Tajima, S. (2004). DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279, 27816-27823.
Suteevun, T., Smith, S. L., Muenthaisong, S., Yang, X., Parnpai, R., and Tian, X. C. (2006). Anomalous mRNA levels of chromatin remodeling genes in swamp buffalo (Bubalus bubalis) cloned embryos. Theriogenology 65, 1704-1715.
Suzuki, S., Ono, R., Narita, T., Pask, A. J., Shaw, G., Wang, C., Kohda, T., Alsop, A. E., Marshall Graves, J. A., Kohara, Y., et al. (2007). Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet 3, e55.
Tada, T., Tada, M., Hilton, K., Barton, S. C., Sado, T., Takagi, N., and Surani, M. A. (1998). Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207, 551-561.
Takamiya, T., Hosobuchi, S., Asai, K., Nakamura, E., Tomioka, K., Kawase, M., Kakutani, T., Paterson, A. H., Murakami, Y., and Okuizumi, H. (2006). Restriction landmark genome scanning method using isoschizomers (MspI/HpaII) for DNA methylation analysis. Electrophoresis 27, 2846-2856.
Takano, N., Matusi, H., and Takahashi, T. (2004). Granzyme N, a novel granzyme, is expressed in spermatocytes and spermatids of the mouse testis. Biol Reprod 71, 1785-1795.
Tamada, H., and Kikyo, N. (2004). Nuclear reprogramming in mammalian somatic cell nuclear cloning. Cytogenet Genome Res 105, 285-291.
Tang, T., Gao, M. H., Lai, N. C., Firth, A. L., Takahashi, T., Guo, T., Yuan, J. X., Roth, D. M., and Hammond, H. K. (2008). Adenylyl cyclase type 6 deletion decreases left ventricular function via impaired calcium handling. Circulation 117, 61-69.
Tarachand, U. (1986). Decidualisation: origin and role of associated cells. Biol Cell 57, 9-16.
Taya, Y., Mizusawa, S., and Nishimura, S. (1986). Nucleotide sequence of the coding region of the mouse N-myc gene. EMBO J 5, 1215-1219.
Taylor, N. A., Van De Ven, W. J., and Creemers, J. W. (2003). Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J 17, 1215-1227.
Teneja M., R. French, H. Levine, D. Tauro-Miller and X. Yang , Clinical and pathological status of cloned calves born pre-term. Theriogenology 55 (2001), p. 293.
Theil, T., Frain, M., Gilardi-Hebenstreit, P., Flenniken, A., Charnay, P., and Wilkinson, D. G. (1998). Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development 125, 443-452.
Thompson, E. M., Legouy, E., Christians, E., and Renard, J. P. (1995). Progressive maturation of chromatin structure regulates HSP70.1 gene expression in the preimplantation mouse embryo. Development 121, 3425-3437.
Thorvaldsen, J. L., Duran, K. L., and Bartolomei, M. S. (1998). Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 12, 3693-3702.
Tong, G. Q., Heng, B. C., Tan, L. G., and Ng, S. C. (2006). Aberrant profile of gene expression in cloned mouse embryos derived from donor cumulus nuclei. Cell Tissue Res 325, 231-243.
Toyota, M., Ho, C., Ahuja, N., Jair, K. W., Li, Q., Ohe-Toyota, M., Baylin, S. B., and Issa, J. P. (1999). Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59, 2307-2312.
Trapani, J. A., and Smyth, M. J. (2002). Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2, 735-747.
Tschopp, C. M., Spiegl, N., Didichenko, S., Lutmann, W., Julius, P., Virchow, J. C., Hack, C. E., and Dahinden, C. A. (2006). Granzyme B, a novel mediator of allergic inflammation: its induction and release in blood basophils and human asthma. Blood 108, 2290-2299.
Ura, K., Kurumizaka, H., Dimitrov, S., Almouzni, G., and Wolffe, A. P. (1997). Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J 16, 2096-2107.
Van den Wyngaert, I., Sprengel, J., Kass, S. U., and Luyten, W. H. (1998). Cloning and analysis of a novel human putative DNA methyltransferase. FEBS Lett 426, 283-289.
van der Neut, R., Krimpenfort, P., Calafat, J., Niessen, C. M., and Sonnenberg, A. (1996). Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet 13, 366-369.
van Genderen, C., Okamura, R. M., Farinas, I., Quo, R. G., Parslow, T. G., Bruhn, L., and Grosschedl, R. (1994). Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 8, 2691-2703.
Varmuza, S., and Mann, M. (1994). Genomic imprinting--defusing the ovarian time bomb. Trends Genet 10, 118-123.
Vassena, R., Dee Schramm, R., and Latham, K. E. (2005). Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preimplantation embryos. Mol Reprod Dev 72, 430-436.
Waalwijk, C., and Flavell, R. A. (1978). DNA methylation at a CCGG sequence in the large intron of the rabbit beta-globin gene: tissue-specific variations. Nucleic Acids Res 5, 4631-4634.
Wakayama, S., Mizutani, E., Kishigami, S., Thuan, N. V., Ohta, H., Hikichi, T., Bui, H. T., Miyake, M., and Wakayama, T. (2005). Mice cloned by nuclear transfer from somatic and ntES cells derived from the same individuals. J Reprod Dev 51, 765-772.
Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369-374.
Wakayama, T., Rodriguez, I., Perry, A. C., Yanagimachi, R., and Mombaerts, P. (1999). Mice cloned from embryonic stem cells. Proc Natl Acad Sci U S A 96, 14984-14989.
Walsh, C. P., Chaillet, J. R., and Bestor, T. H. (1998). Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20, 116-117.
Wang, J., Hevi, S., Kurash, J. K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al. (2009). The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41, 125-129.
Wang, Q. T., Piotrowska, K., Ciemerych, M. A., Milenkovic, L., Scott, M. P., Davis, R. W., and Zernicka-Goetz, M. (2004). A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6, 133-144.
Warnecke, P. M., Mann, J. R., Frommer, M., and Clark, S. J. (1998). Bisulfite sequencing in preimplantation embryos: DNA methylation profile of the upstream region of the mouse imprinted H19 gene. Genomics 51, 182-190.
Watanabe, D., Suetake, I., Tada, T., and Tajima, S. (2002). Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev 118, 187-190.
Webster, K. E., O''Bryan, M. K., Fletcher, S., Crewther, P. E., Aapola, U., Craig, J., Harrison, D. K., Aung, H., Phutikanit, N., Lyle, R., et al. (2005). Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A 102, 4068-4073.
Wells, D. N., Misica, P. M., and Tervit, H. R. (1999). Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod 60, 996-1005.
Welsh, J., and McClelland, M. (1991). Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acids Res 19, 5275-5279.
Weng, D. E., and Usman, N. (2001). Angiozyme: a novel angiogenesis inhibitor. Curr Oncol Rep 3, 141-146.
Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810-813.
Woodard, S. L., Fraser, S. A., Winkler, U., Jackson, D. S., Kam, C. M., Powers, J. C., and Hudig, D. (1998). Purification and characterization of lymphocyte chymase I, a granzyme implicated in perforin-mediated lysis. J Immunol 160, 4988-4993.
Woods, G. L., White, K. L., Vanderwall, D. K., Li, G. P., Aston, K. I., Bunch, T. D., Meerdo, L. N., and Pate, B. J. (2003). A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.
Worrad, D. M., Turner, B. M., and Schultz, R. M. (1995). Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo. Development 121, 2949-2959.
Wrenzycki, C., Wells, D., Herrmann, D., Miller, A., Oliver, J., Tervit, R., and Niemann, H. (2001). Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol Reprod 65, 309-317.
Wu, X., Viveiros, M. M., Eppig, J. J., Bai, Y., Fitzpatrick, S. L., and Matzuk, M. M. (2003). Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 33, 187-191.
Xiong, Z., and Laird, P. W. (1997). COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25, 2532-2534.
Yan, K., and Gautam, N. (1996). A domain on the G protein beta subunit interacts with both adenylyl cyclase 2 and the muscarinic atrial potassium channel. J Biol Chem 271, 17597-17600.
Yan, P. S., Chen, C. M., Shi, H., Rahmatpanah, F., Wei, S. H., Caldwell, C. W., and Huang, T. H. (2001). Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res 61, 8375-8380.
Yan, P. S., Perry, M. R., Laux, D. E., Asare, A. L., Caldwell, C. W., and Huang, T. H. (2000). CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin Cancer Res 6, 1432-1438.
Yan, Q., Huang, J., Fan, T., Zhu, H., and Muegge, K. (2003). Lsh, a modulator of CpG methylation, is crucial for normal histone methylation. EMBO J 22, 5154-5162.
Yanagimachi, R. (2002). Cloning: experience from the mouse and other animals. Mol Cell Endocrinol 187, 241-248.
Yen, C. C., Lin, C. Y., Chong, K. Y., Tsai, T. C., Shen, C. J., Lin, M. F., Su, C. Y., Chen, H. L., and Chen, C. M. (2009). Lactoferrin as a natural regimen for selective decontamination of the digestive tract: recombinant porcine lactoferrin expressed in the milk of transgenic mice protects neonates from pathogenic challenge in the gastrointestinal tract. J Infect Dis 199, 590-598.
Yevtodiyenko, A., and Schmidt, J. V. (2006). Dlk1 expression marks developing endothelium and sites of branching morphogenesis in the mouse embryo and placenta. Dev Dyn 235, 1115-1123.
Yokoi, A., Kina, T., and Minato, N. (1999). Selective expression and function of granzyme D in lymphohematopoietic stromal cells. Biochem Biophys Res Commun 264, 768-773.
Young, L. E., Sinclair, K. D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev Reprod 3, 155-163.
Yu, F., Hao, X., Zhao, H., Ge, C., Yao, M., Yang, S., and Li, J. (2010). Delta-like 1 contributes to cell growth by increasing the interferon-inducible protein 16 expression in hepatocellular carcinoma. Liver Int 30, 703-714.
Yu, J., Hecht, N. B., and Schultz, R. M. (2001). Expression of MSY2 in mouse oocytes and preimplantation embryos. Biol Reprod 65, 1260-1270.
Zeng, F., Baldwin, D. A., and Schultz, R. M. (2004). Transcript profiling during preimplantation mouse development. Dev Biol 272, 483-496.
Zhao, Z., and Rivkees, S. A. (2003). Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation. Dev Dyn 226, 24-32.
Zhou, A., Webb, G., Zhu, X., and Steiner, D. F. (1999). Proteolytic processing in the secretory pathway. J Biol Chem 274, 20745-20748.
Zhou S., Ding C, Zhao X, Wang E, Dai X, Liu L, Li W, Liu Z, Wan H, Feng C, Hai T, Wang L and Zhou Q. (2010) Successful generation of cloned mice using nuclear transfer from induced pluripotent stem cells. Cell Research 20: 850-853
Zhou, Q., Jouneau, A., Brochard, V., Adenot, P., and Renard, J. P. (2001). Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei. Biol Reprod 65, 412-419.
Zhou, Q., Renard, J. P., Le Friec, G., Brochard, V., Beaujean, N., Cherifi, Y., Fraichard, A., and Cozzi, J. (2003). Generation of fertile cloned rats by regulating oocyte activation. Science 302, 1179.
Zhu, H., Geiman, T. M., Xi, S., Jiang, Q., Schmidtmann, A., Chen, T., Li, E., and Muegge, K. (2006). Lsh is involved in de novo methylation of DNA. EMBO J 25, 335-345.
Zimmermann, J. W., and Schultz, R. M. (1994). Analysis of gene expression in the preimplantation mouse embryo: use of mRNA differential display. Proc Natl Acad Sci U S A 91, 5456-5460.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top