跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳秋嫺
研究生(外文):Chiu-Sien Ng
論文名稱:阿拉伯芥中NAC-like基因與ERD基因之功能性分析
論文名稱(外文):Characterization and Functional Analysis of NAC-like and ERD Genes in Arabidopsis thaliana
指導教授:楊長賢楊長賢引用關係
口試委員:王強生林彩雲
口試日期:2011-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:127
中文關鍵詞:NAC功能重複CRES-T
外文關鍵詞:NACgene redundantChimeric repressor silence technology
相關次數:
  • 被引用被引用:1
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
NAC (NAM, ATAF1, 2, CUC2)為一群植物特有的轉錄因子,被發現參與多種植物發育過程之調控。本研究從阿拉伯芥中選殖兩個NAC-like基因,分別為AtNAC3次群中的AtNACL2及NAC2次群中的AtNACL10。根據基因表現分析, AtNACL2和AtNACL10在葉片和花苞都有較高的表現量,而AtNACL10在根部及花序亦有較高的表現量。在性狀分析方面,AtNACL2和AtNACL10各別的T-DNA插入突變株並沒有明顯性狀,推測此二基因有功能重複(gene redundant)的現象,所以本實驗利用Chimeric repressor silence technology (CRES-T)技術來解決基因功能重疊的問題。本研究選殖上述兩個基因之序列,並構築至帶有抑制子(repressor) SRDX序列之載體上,進一步轉殖至阿拉伯芥中,藉由其表現之性狀來分析這些AtNACL基因之功能。結果顯示,在35S::AtNACL2-SRDX轉殖株中出現鋸齒葉性狀;而35S::AtNACL10-SRDX轉殖株則出現葉片上捲及叢生花序等性狀。在後期發育上,35S::AtNACL2-SRDX和35S::AtNACL10-SRDX的轉殖株也出現了花絲較短及花藥不開裂的現象。進一步利用real-time PCR分析顯示,與頂芽分生組織相關基因FAS (FASCIATA), WUS (WUSCHEL)及葉片發育相關基因KNAT1(Knotted-like from Arabidopsis thaliana1), IAMT1(IAA carboxyl methyltransferase1),在突變株中的表現量皆有受到影響。綜合上述分析結果,認為AtNACL2和AtNACL10透過不同路經,達到共同參與調控葉片及花器的發育。阿拉伯芥中的AtEPF1為Cys2/His2型鋅指基因,屬於具完整保守序列CX2CX3FX5LX2HX3H的EPF基因家族,而將之異位表現會造成植株極度矮小及近似乾燥的性狀。為了深入研究受到AtEPF1調控的基因,藉由生物晶片(microarray)分析,得到許多受AtEPF1調控的基因,本研究分別挑選了ERD4 (EARLY-RESPONSIVE TO DEHYDRATION 4)及ERD7 (EARLY-RESPONSIVE TO DEHYDRATION 7)進行深入研究。ERD4和ERD7基因分別屬於不同基因家族,但皆是一群在乾旱逆境早期被迅速誘導表現的基因。ERD4和ERD7在阿拉伯芥各個生長時期及組織器官都有表現。經過斷水逆境處理得知此二基因的表現量確實會受到外界環境水分缺乏的影響。在啟動子分析方面,在ERD4::GUS植株,子葉、根部、葉緣排水孔及成熟花花萼、花柱、花粉皆偵測到GUS活性;而在ERD7::GUS植株,子葉、根部、花柱及花粉都具GUS活性。另外當ERD4::GUS植株處於斷水逆境,葉緣排水孔的GUS活性會延伸至葉脈維管束。在35S::ERD7轉殖株中,亦觀察到植株矮小及葉片黃化皺縮的性狀。若進一步分析,發現35S::ERD7轉殖株葉綠素含量降低,丙二醛含量上升,且受乙烯誘導表現的ERF1 (ETHYLENE-RESPONSE-FACTOR 1)基因表現上升。據文獻指出,當植物處於淹水逆境,葉綠素會因崩解而降低,且植物體內乙烯含量會上升。基於上述,認為受AtEPF1負調控的ERD4及ERD7在阿拉伯芥中可能參與水分的調控,以達到保護植物的目的。

NAC (NAM, ATAF1,2 and CUC2 ) proteins have been considered as one of the plant-specific transcription factors that are involved in the regulation of diverse plant developmental processes. Two Arabidopsis NAC-like genes AtNACL2 and AtNACL10 were isolated and analyzed in this study. AtNACL2 and AtNACL10 were highly expressed in the leaves and flowers. Interestingly, AtNACL10 is also highly detected in root and inflorescence in Arabidopsis thaliana. T-DNA mutants of AtNACL2 and AtNACL10 were phenotypically indistinguishable from wild-type. To solve the problem caused by functional redundancy, the chimeric repressor silencing technology (CRES-T) was used. In 35S::AtNACL2-SRDX plants, the abnormal phenotype with serrated leaves was observed. 35S::AtNACL10-SRDX plants exhibited dramatic leaf curvature and multiple branches with secondary inflorescence or flowers at the same position of an internode. In addition, 35S::AtNACL2-SRDX and 35S::AtNACL10-SRDX showed serious sterility due to the production of short stamen and indehiscence of the anther. Further analysis indicated that these mutant phenotypes were correlated with the alteration of the expression for genes involved in meristematic development such as FAS (FASCIATA), WUS (WUSCHEL) and leaf development such as KNAT1(Knotted-like from Arabidopsis thaliana1), IAMT1(IAA carboxyl methyltransferase1). The results suggest that AtNACL2 and AtNACL10 are key regulators in regulating leaf morphology and floral development in Arabidopsis thaliana. A conserved sequence of CX2CX3FX5LX2HX3H identified in the Cys2/His2 zinc finger region of the AtEPF1 was present in EPF family genes. Ectopic expression of AtEPF1 in transgenic Arabidopsis plants showed phenotypes by significantly reducing the plant size and producing curled and dehydrated leaves. To investigate the target genes regulated by AtEPF1, microarray analysis was performed. Two of AtEPF1 regulated genes, ERD4 (EARLY-RESPONSIVE TO DEHYDRATION 4) and ERD7, were further analyzed. ERD4 and ERD7 were originally described as a rapidly drought-responsive gene in Arabidopsis. When exposing plants to progressive drought stress, we obtained elevated levels of the ERD4 and ERD7. In ERD4::GUS plants, GUS activity was detected in cotyledons, roots, hydathodes, sepal, style and pollens. In ERD7::GUS plants, the GUS activity was detected in cotyledons, roots, style and pollens. Interestingly, GUS activity in ERD4::GUS plants was detected in leaf veins by drought treatment. Ectopic expression of ERD7 showed novel phenotypes by reducing the plant size and producing yellow wrinkled leaf. Further analysis indicated that the chlorophyll relative contents also decreased, lipid peroxidation tended to increase and ERF1 (ETHYLENE-RESPONSE-FACTOR 1) expression up-regulated. The present evidence indicated that ERD4 and ERD7 may play roles in protection of the plants with water retention. These results support our speculation for the ERD4 and ERD7 function based on its regulation by AtEPF1.

第一章 阿拉伯芥中NAC-like基因之功能性分析
摘要..................................................1
前言..................................................2
材料與方法............................................8
結果
一、阿拉伯芥AtNACL2及AtNACL10基因之選殖及序列分析.....16
二、野生型阿拉伯芥中AtNACL2及AtNACL10基因表現量的偵測.16
三、阿拉伯芥中AtNACL2、AtNACL10 之選殖及35S::AtNACL2-SRDX、35S::AtNACL10-SRDX之構築..............................17
四、35S::AtNACL2-SRDX轉殖株之性狀分析.................18
五、利用即時定量聚合酵素連鎖反應偵測AtNACL2可能下游基因的表現情況................................................19
六、35S::AtNACL10-SRDX轉殖株之性狀分析................19
七、利用即時定量聚合酵素連鎖反應偵測AtNACL10可能下游基因的表現情況................................................21
八、阿拉伯芥中AtNACL2及AtNACL10蛋白在次細胞層次之分布.21
討論..................................................23
參考文獻..............................................26
圖表
表1-1、本研究中所使用之引子(primer)序列...............35
表1-2、35S::AtNACL10-SRDX轉殖株開花天數及開花葉片數之統計....................................................36
圖1-1、阿拉伯芥AtNACL2之mRNA及胺基酸序列..............37
圖1-2、阿拉伯芥AtNACL10之mRNA及胺基酸序列.............38
圖1-3、阿拉伯芥NAC-like蛋白質之演化樹圖譜.............39
圖1-4、AtNACL2 、 AtNACL4及AtNACL6和AtNACL8 及AtNACL10之胺基酸序列比對............................................40
圖1-5、利用即時定量聚合酵素連鎖反應偵測AtNACL2與AtNACL10基因於野生型阿拉伯芥中的表現情況..........................41
圖1-6、阿拉伯芥AtNACL2之選殖..........................42
圖1-7、阿拉伯芥AtNACL10之選殖.........................43
圖1-8、將AtNACL2構築到含repression domain之pEpyon-3aK載體....................................................44
圖1-9、將AtNACL10構築到含repression domain之pEpyon-3aK載體 ............................................45
圖1-10、35S::AtNACL2-SRDX轉殖株之性狀分析.............46
圖1-11、35S::AtNACL2-SRDX轉殖株之性狀分析.............47
圖1-12、35S::AtNACL2-SRDX轉殖株中與葉片形態發育相關基因偵測....................................................48
圖1-13、35S::AtNACL10-SRDX轉殖株之性狀分析............49
圖1-14、35S::AtNACL10-SRDX轉殖株之性狀分析............50
圖1-15、35S::AtNACL10-SRDX轉殖株之性狀分析............51
圖1-16、35S:: AtNACL10-SRDX轉殖株中AtNACL10的表現情況.52
圖1-17、35S::AtNACL10-SRDX轉殖株之性狀分析............53
圖1-18、35S::AtNACL10-SRDX轉殖株中AtNACL10的表現情況..54
圖1-19、35S::AtNACL10-SRDX轉殖株之性狀分析............55
圖1-20、35S::AtNACL10-SRDX轉殖株之性狀分析............56
圖1-21、35S::AtNACL10-SRDX轉殖株胚珠之受孕性分析......57
圖1-22、以Alexander’s staining檢測35S::AtNACL10-SRDX不孕轉殖株之花粉活性........................................58
圖1-23、以掃描式電子顯微鏡(SEM)觀察35S::AtNACL10-SRDX不孕轉殖株花藥及花粉表面結構................................59
圖1-24、AtNACL10可能下游基因的表現偵測................60
圖1-25、分別將AtNACL2及AtNACL10構築到pBIm-GFP3載體....61
圖1-26、以螢光顯微鏡觀察基因次細胞層次之分布..........62
附錄
附圖1-1、pGEM®-T Easy vector之載體圖譜................63
附圖1-2、pEpyon-3aK之載體圖譜.........................64
附圖1-3、pBI-mGFP3之載體圖譜..........................65
附圖1-4、植物頂芽分生組織(SAM)基本細胞結構及基因之調控66
附圖1-5、植物頂芽分生組織(SAM)基本細胞結構及基因之調控67
附圖1-6、花發育時期之比較圖...........................68
附圖1-7、Gen-KB DNA Ladder............................69

第二章 阿拉伯芥中ERD基因之功能性分析
摘要..................................................70
前言..................................................71
材料與方法............................................76
結果
一、阿拉伯芥ERD4及ERD7基因之鑑別......................79
二、野生型阿拉伯芥中ERD4及ERD7基因表現量的偵測........79
三、ERD4及ERD7基因於斷水逆境下的表現情形..............80
四、阿拉伯芥中ERD4及ERD7基因之啟動子表現分析..........80
五、阿拉伯芥中ERD4及ERD7之選殖與野生型阿拉伯芥轉殖....82
六、利用real-time PCR偵測乙烯誘導相關基因的表現.......84
七、35S:: ERD4 cDNA sense及35S::ERD7 cDNA sense轉殖株
缺水逆境之耐度........................................85
八、ERD4及ERD7 RNAi 靜默(RNA interference)質體之構築與野生型阿拉伯芥之轉殖....................................... 85
討論..................................................88
參考文獻..............................................90
圖表
表2-1、本研究中所使用之引子(primer)序列...............97
圖2-1、阿拉伯芥ERD4之mRNA及胺基酸序列.................99
圖2-2、阿拉伯芥ERD7之mRNA及胺基酸序列.................100
圖2-3、利用即時定量聚合酵素連鎖反應偵測ERD4與ERD7基因於野生型阿拉伯芥中的表現情況................................101
圖2-4、利用即時定量聚合酵素連鎖反應偵測野生型阿拉伯芥於斷水逆境下ERD4與ERD7基因的表現情況........................102
圖2-5、阿拉伯芥中ERD4上游啟動子之選殖.................103
圖2-6、阿拉伯芥中ERD7上游啟動子之選殖.................104
圖2-7、以GUS組織化學染色進行ERD4基因啟動子之分析......105
圖2-8、以GUS組織化學染色進行ERD7基因啟動子之分析......106
圖2-9、以GUS組織化學染色進行ERD4基因於斷水逆境下啟動子表現之分析..................................................107
圖2-10、阿拉伯芥中ERD4之選殖..........................108
圖2-11、將ERD4構築到pEpyon-22K載體....................109
圖2-12、阿拉伯芥中ERD7之選殖..........................110
圖2-13、將ERD7構築到pEpyon-22K載體....................111
圖2-14、35S::ERD4 cDNA sense轉殖株之鑑定..............112
圖2-15、35S::ERD7 cDNA sense轉殖株之性狀分析..........113
圖2-16、35S::ERD7 cDNA sense轉殖株葉片中葉綠素含量及脂質過氧化的偵測..............................................114
圖2-17、受乙烯誘導表現之下游基因的表現偵測............115
圖2-18、35S::ERD4 cDNA sense及35S::ERD7 cDNA sense轉殖株之斷水逆境耐受度分析......................................116
圖2-19、在斷水逆境中35S::ERD4 cDNA sense及35S::ERD7 cDNA sense轉殖株之重量變化情形.............................117
圖2-20、選殖ERD4 RNAi之sense與anti-sense片段..........118
圖2-21、將ERD4 RNAi片段構築到pBlueACTi和pBI-mGFP1載體.119
圖2-22、選殖ERD7 RNAi之sense與anti-sense片段..........120
圖2-23、將ERD7 RNAi片段構築到pBlueACTi和pBI-mGFP1載體.121
附錄
附圖2-1、pGEM®-T Easy vector之載體圖譜................122
附圖2-2、pEpyon-01K之載體圖譜.........................123
附圖2-3、pEpyon-22K之載體圖譜.........................124
附圖2-4、pBlueACTi之載體圖譜..........................125
附圖2-5、pBI-mGFP1之載體圖譜..........................126
附圖2-6、植物於淹水逆境下之調控路經...................127


第一章
林建鑫. (2007).阿拉伯芥中NAC-like基因之分子選殖與功能性分析. 國立中興大學生物科技學研究所. 碩士論文. 台中.台灣.

劉祥欽. (2003).擬南芥中E3 RING Finger基因之分子選殖及特性分析. 國立中興大學生物科技學研究所. 碩士論文. 台中.台灣.

Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9: 841-857

Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126: 1563-1570

Aida M, Vernoux T, Furutani M, Traas J, Tasaka M (2002) Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129: 3965-3974

Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44: 117-122

Barton MK (1998) Cell type specification and self renewal in the vegetative shoot apical meristem. Curr Opin Plant Biol 1: 37-42

Bowman JL (2004) Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? Bioessays 26: 938-942

Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617-619

Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18: 756-767

Byrne ME, Kidner CA, Martienssen RA (2003) Plant stem cells: divergent pathways and common themes in shoots and roots. Curr Opin Genet Dev 13: 551-557

Byrne ME, Simorowski J, Martienssen RA (2002) ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 129: 1957-1965

Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20: 1760-1774

Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119: 397-418

Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46: 521-529

Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43: 745-757

Doerner P (2003) Plant meristems: a merry-go-round of signals. Curr Biol 13: R368-374

Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50: 237-248

Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13: 1768-1774

Ernst HA, Olsen AN, Larsen S, Lo Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5: 297-303

Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11: 1251-1260
Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280: 547-563

Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283: 1911-1914

Garcia-Hernandez M, Berardini TZ, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA, Mundodi S, Reiser L, Rhee SY, Scholl R, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2002) TAIR: a resource for integrated Arabidopsis data. Funct Integr Genomics 2: 239-253

Guo M, Rupe MA, Danilevskaya ON, Yang X, Hu Z (2003) Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J 36: 30-44

Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53: 383-397

Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16: 9877

Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67: 169-181

Irish VF (1991) Cell lineage in plant development. Curr Opin Cell Biol 3: 983-987

Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65: 137-150

Jurgens G (2001) Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 20: 3609-3616

Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Cell 104: 131-142

Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411: 706-709

Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124: 3045-3054

Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428: 81-84

Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262: 1047-1051

Kim SG, Lee AK, Yoon HK, Park CM (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J 55: 77-88

Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK, Park CM (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35: 203-213

Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, Park CM (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18: 3132-3144

Ko JH, Yang SH, Park AH, Lerouxel O, Han KH (2007) ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J 50: 1035-1048

Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19: 1855-1860

Laux T, Mayer KF, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122: 87-96

Lenhard M, Laux T (1999) Shoot meristem formation and maintenance. Curr Opin Plant Biol 2: 44-50

Lenhard M, Laux T (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130: 3163-3173

Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2: 1071-1080

Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem 262: 247-257

Long JA, Barton MK (1998) The development of apical embryonic pattern in Arabidopsis. Development 125: 3027-3035

Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66-69

Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95: 805-815

McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411: 709-713

McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139: 949-959

Meyerowitz EM (1997) Genetic control of cell division patterns in developing plants. Cell 88: 299-308

Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19: 270-280

Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17: 2993-3006

Olsen AN, Ernst HA, Lo Leggio L, Johansson E, Larsen S, Skriver K (2004) Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family. Acta Crystallogr D Biol Crystallogr 60: 112-115

Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10: 79-87

Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10: 239-247

Ori N, Eshed Y, Chuck G, Bowman JL, Hake S (2000) Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127: 5523-5532

Poethig S (1989) Genetic mosaics and cell lineage analysis in plants. Trends Genet 5: 273-277

Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17: 61-76

Qin G, Gu H, Zhao Y, Ma Z, Shi G, Yang Y, Pichersky E, Chen H, Liu M, Chen Z, Qu LJ (2005) An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17: 2693-2704

Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12: 1917-1926

Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110

Robertson M (2004) Two transcription factors are negative regulators of gibberellin response in the HvSPY-signaling pathway in barley aleurone. Plant Physiol 136: 2747-2761

Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126: 4405-4419

Sablowski RW, Meyerowitz EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92: 93-103

Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12: 1041-1061

Satina, S. (1940) Demonstrations of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot. 27: 895-905

Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100: 635-644

Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y (2001) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128: 1771-1783

Shen WH, Xu L (2009) Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. Mol Plant 2: 600-609

Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126: 4117-4128

Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85: 159-170

Szymkowiak EJ, Sussex IM (1992) The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras. Plant Cell 4: 1089-1100

Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128: 1127-1135

Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: 2481-2498

Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350: 241-243

Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131: 915-922

Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95: 707-735

Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14: 3024-3036

Xie Q, Sanz-Burgos AP, Guo H, Garcia JA, Gutierrez C (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol 39: 647-656

Xue GP (2005) A CELD-fusion method for rapid determination of the DNA-binding sequence specificity of novel plant DNA-binding proteins. Plant J 41: 638-649

Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH (2007) Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One 2: 642

Zhao Y, Medrano L, Ohashi K, Fletcher JC, Yu H, Sakai H, Meyerowitz EM (2004) HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis. Plant Cell 16: 2586-2600

第二章

宮力仁. (2007).植物中調控細胞分裂與分化的基因之選殖與功能性分析. 國立中興大學生物科技學研究所. 博士論文. 台中.台灣.

呂官杰. (2009).阿拉伯芥中兩個EPF基因的特性分析及功能性探討. 國立中興大學生物科技學研究所. 碩士論文. 台中.台灣.

Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278: 40882-40889

Arnon DI (1949) COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol 24: 1-15

Bailey-Serres J, Voesenek LA (2010) Life in the balance: a signaling network controlling survival of flooding. Curr Opin Plant Biol 13: 489-494

Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4: 879-887

Bedinger PA, Hardeman KJ, Loukides CA (1994) Travelling in style: the cell biology of pollen. Trends Cell Biol 4: 132-138

Berger F, Hamamura Y, Ingouff M, Higashiyama T (2008) Double fertilization - caught in the act. Trends Plant Sci 13: 437-443

Bots M, Vergeldt F, Wolters-Arts M, Weterings K, van As H, Mariani C (2005) Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant Physiol 137: 1049-1056

Bowman JL (2004) Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? Bioessays 26: 938-942

Bowman JL, Sakai H, Jack T, Weigel D, Mayer U, Meyerowitz EM (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114: 599-615

Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43: 745-757

Dhindsa RS, Matowe W (1981) Drought Tolerance in Two Mosses: Correlated with Enzymatic Defence Against Lipid Peroxidation. Journal of Experimental Botany 32: 79-91

Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14: 1935-1940

Eady C, Twell D, Lindsey K (1995) Pollen viability and transgene expression following storage in honey. Transgenic Res 4: 226-231

Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16 Suppl: S84-97

Englbrecht CC, Schoof H, Bohm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5: 39

Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76: 131-143

Heslop-Harrison J (1985) Germination of stress-tolerant Eucalyptus pollen. J Cell Sci 73: 135-157

Hiratsu K, Ohta M, Matsui K, Ohme-Takagi M (2002) The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. FEBS Lett 514: 351-354

Huijser P, Klein J, Lonnig WE, Meijer H, Saedler H, Sommer H (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11: 1239-1249

Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58: 625-635

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907

Kariola T, Brader G, Helenius E, Li J, Heino P, Palva ET (2006) EARLY RESPONSIVE TO DEHYDRATION 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol 142: 1559-1573

Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183-198

Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K (1998) ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim Biophys Acta 1370: 187-191

Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of two cDNAs (ERD11 and ERD13) for dehydration-inducible genes that encode putative glutathione S-transferases in Arabidopsis thaliana L. FEBS Lett 335: 189-192

Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994a) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol 35: 225-231

Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994b) Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol Biol 25: 791-798

Kobayashi A, Sakamoto A, Kubo K, Rybka Z, Kanno Y, Takatsuji H (1998) Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia. Plant J 13: 571-576

Kubo K, Sakamoto A, Kobayashi A, Rybka Z, Kanno Y, Nakagawa H, Takatsuji H (1998) Cys2/His2 zinc-finger protein family of petunia: evolution and general mechanism of target-sequence recognition. Nucleic Acids Res 26: 608-615

Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19: 1855-1860

Laux T, Mayer KF, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122: 87-96

Lenhard M, Bohnert A, Jurgens G, Laux T (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105: 805-814

Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11: 1007-1018

Lind JL, Bacic A, Clarke AE, Anderson MA (1994) A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. Plant J 6: 491-502

Lippuner V, Cyert MS, Gasser CS (1996) Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem 271: 12859-12866

Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem 262: 247-257

Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105: 793-803

Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10: 427-435

Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277

Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377: 522-524

Martin CE, von Willert DJ Leaf Epidermal Hydathodes and the Ecophysiological Consequences of Foliar Water Uptake in Species of Crassula from the Namib Desert in Southern Africa. Plant Biology 2: 229–242

Mascarenhas JP (1992) Pollen gene expression: molecular evidence. Int Rev Cytol 140: 3-18

McCormick S (2004) Control of male gametophyte development. Plant Cell 16 Suppl: S142-153

McCormick S, Twell D, Vancanneyt G, Yamaguchi J (1991) Molecular analysis of gene regulation and function during male gametophyte development. Symp Soc Exp Biol 45: 229-244

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-410

Nakabayashi K, Ito M, Kiyosue T, Shinozaki K, Watanabe A (1999) Identification of clp genes expressed in senescing Arabidopsis leaves. Plant Cell Physiol 40: 504-514

Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J 12: 851-861

Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K (2003) Toxicity of free proline revealed in an arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol 44: 541-548

Noctor G, Foyer CH (1998) Ascorbate and Glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49: 249-279

Pacini E, Guarnieri M, Nepi M (2006) Pollen carbohydrates and water content during development, presentation, and dispersal: a short review. Protoplasma 228: 73-77

Qu LJ, Zhu YX (2006) Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr Opin Plant Biol 9: 544-549

Rhee SY, Osborne E, Poindexter PD, Somerville CR (2003) Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiol 133: 1170-1180

Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110

Sakai H, Medrano LJ, Meyerowitz EM (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378: 199-203

Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16 Suppl: S46-60

Seo PJ, Kim SG, Park CM (2008) Membrane-bound transcription factors in plants. Trends Plant Sci 13: 550-556

Sessions A, Yanofsky MF, Weigel D (1998) Patterning the floral meristem. Semin Cell Dev Biol 9: 221-226

Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene Expression and Signal Transduction in Water-Stress Response. Plant Physiol 115: 327-334

Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33: 259-270

Stadler R, Truernit E, Gahrtz M, Sauer N (1999) The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J 19: 269-278

Tague BW, Gallant P, Goodman HM (1996) Expression analysis of an Arabidopsis C2H2 zinc finger protein gene. Plant Mol Biol 32: 785-796

Takatsuji H (1998) Zinc-finger transcription factors in plants. Cell Mol Life Sci 54: 582-596

Takatsuji H (1999) Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39: 1073-1078

Takatsuji H, Matsumoto T (1996) Target-sequence recognition by separate-type Cys2/His2 zinc finger proteins in plants. J Biol Chem 271: 23368-23373

Takatsuji H, Mori M, Benfey PN, Ren L, Chua NH (1992) Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings. EMBO J 11: 241-249

Takatsuji H, Nakamura N, Katsumoto Y (1994) A new family of zinc finger proteins in petunia: structure, DNA sequence recognition, and floral organ-specific expression. Plant Cell 6: 947-958

Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4: 75-85






QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top