跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐宇謙
研究生(外文):Yu-Chian Hsu
論文名稱:阿拉伯芥中調控生長發育相關基因AtS61與AtS62之特性及功能性分析
論文名稱(外文):Characterization and Functional Analysis of AtS61 and AtS62 in Regulating Growth and Development in Arabidopsis thaliana
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
口試委員:林彩雲王強生
口試日期:2011-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:82
中文關鍵詞:阿拉伯芥生長發育
外文關鍵詞:ArabidopsisGrowthDevelopment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The mammalian target of rapamycin (mTOR) 與regulatory-associated protein of TOR (RAPTOR) 兩者相互作用以活化p70核醣體 S6激酶 (p70s6k),進而活化它的下游 - 40S 核醣體蛋白S6 (rpS6),促使rpS6結合至5’TOP mRNAs上使其轉譯增加,此種特定類型的5’TOP mRNAs是在其5’端未轉錄區域 (5’-UTR) 富含連續嘧啶序列 (oligopyrimidine, CU序列),這一連串之訊息傳導稱為mTOR訊息傳遞路徑,此路徑在細胞生長發育過程中扮演重要的調控角色,但至目前為止,在植物界中對其確切功能仍不清楚。在模式植物阿拉伯芥中,AtPK6、AtPK19及AtS61、AtS62分別為p70s6k及rpS6的同源基因,為探討其功能,本研究從阿拉伯芥中選殖出rpS6基因 (AtS61、AtS62) 並進行特性及功能性分析。在阿拉伯芥中大量表現AtS61或AtS62反向基因 (antisense) 或利用核醣核酸干擾 (RNAi) 降低AtS61或AtS62基因之表現,造成細胞延展受到抑制,導致植株的高度、葉型、根長皆縮小,嚴重時,植株也會有頂芽分生組織 (shoot apical meristem, SAM) 發育受阻而難以存活,甚至致死的情形。另一方面,在阿拉伯芥中異位大量表現AtS61或AtS62正向 (sense) 基因則導致雄不稔,藉由亞歷山大染色法 (Alexander’s staining) 得知,轉殖株的花粉是正常具有活性的,因此其雄不稔之原因乃是由於花藥不開裂延遲了花粉釋放,導致無法正常授粉所造成。乙烯 (ethylene) 及茉莉酸 (jasmonic acid) 為調控花藥開裂之荷爾蒙,正常情況下,經過乙烯或茉莉酸處理之花藥會提早開裂,但將轉殖株處理乙烯和茉莉酸仍未開裂,利用即時定量聚合酶鏈鎖反應 (real-time PCR) 也偵測到乙烯訊息傳導路徑中各基因的表現都受到抑制,顯示AtS61及AtS62與乙烯及茉莉酸訊息傳遞之調控相關。為尋找被AtS61、AtS62所調控之5’TOP mRNAs,我們分析了一些基因之5’端未轉錄區域,包括WUSCHEL (WUS)、BONZAI1 (BON1)、PROMOTION OF CELLSURVIVAL 1 (PCS1)、BRASSINAZOLE RESISTANT1 (BZR1) 和BRI1-EMS-SUPPRESSOR 1 (BES1),確認在其5’端未轉錄區域均含連續嘧啶序列,而這些5’TOP mRNAs的突變株也都出現與AtS61、AtS62突變株相似之植株矮小或根長較短性狀。藉由菸草暫時性轉殖系統已初步證實這些基因之轉譯確實受到AtS61及AtS62影響。未來將利用阿拉伯芥轉殖系統深入研究這些基因彼此間在蛋白層次調控植物生長發育之功能。

The mammalian target of rapamycin (mTOR) interacts with the regulatory-associated protein of TOR (RAPTOR) to activate p70 ribosomal S6 kinase (p70s6k), and further activates its downstream - the 40S ribosomal protein S6 (rpS6), resulting in an increase of translation for 5’TOP mRNAs. 5’TOP mRNAs are specific mRNAs including an oligopyrimidine tract (CU rich) in 5’-UTR. The mTOR signaling pathway plays an important role in regulating cell growth and development. However, its function remains unclear in plants. In Arabidopsis thaliana, AtPK6, AtPK19 and AtS61, AtS62 are homologues to p70s6k and rpS6, respectively. To perform functional studies, AtS61 and AtS62 were cloned and characterized. Ectopic expression of RNAi and antisense of AtS61 or AtS62 inhibited the cell expansion and significantly reduced the plant size and root length. Moreover, the prohibition of the shoot apical meristem (SAM) development and the influence on survival were observed in some transgenic plants. On the other hand, ectopically expressing AtS61 or AtS62 in Arabidopsis caused male sterility. By Alexander’s staining, pollen of transgenic lines were normal and active, thus the male sterility was caused by the delayed anther dehiscence and pollen release. Normally, treatment of Arabidopsis with ethylene (ET) or jasmonic acid (JA) will promote anther dehiscence. However, the anther in transgenic lines did not dehiscent after ethylene or jasmonic acid treatment. The transgenic lines showed reduced expression levels of genes involved in ethylene signaling pathway. These data suggest that AtS61 and AtS62 were involved in ethylene and jasmonic acid signaling pathway to regulate anther dehiscence. To investigate 5’TOP mRNAs regulated by AtS61/AtS62, the 5’-UTR of candidate genes such as WUSCHEL (WUS), BONZAI1 (BON1), PROMOTION OF CELLSURVIVAL 1 (PCS1), BRASSINAZOLE-RESISTANT 1 (BZR1) and BRI1-EMS-SUPPRESSOR 1 (BES1) were analyzed and oligopyrimidine tracts in the 5’-UTR were identified. We found that the mutants of these genes encoded putative 5’TOP mRNAs caused the similar phenotype as the mutant lines of AtS61 and AtS62. By transient transfection of tobacco, we found that the translation levels of these 5’TOP mRNAs were affected by AtS61 and AtS62. Further characterization and analysis of the mechanisms regulated by AtS61/AtS62 and the candidates of 5’TOP mRNAs are in progress.

中文摘要 Ⅴ
英文摘要 Ⅵ
前言
ㄧ、植物器官之發育
(ㄧ)頂芽分生組織 (SAM) 和根尖分生組織 (RAM) 之發育 01
(二)葉片之發育 02
二、植物之防禦反應 03
三、賀爾蒙對植物之影響
(ㄧ)油菜固醇 (Brassinosteroid) 與植物生長之相關性 04
(二)乙烯 (Ethylene) 和茉莉酸 (Jasmonic acid) 與花藥開裂之相關性 05
四、TOR訊息傳遞路徑 (Target of rapamycin signaling pathway)
(ㄧ)動物界中p70核醣體S6激酶 (p70s6k) 與40S核醣體蛋白S6 (RPS6) 05
(二)植物界中p70核醣體S6激酶 (p70s6k) 與40S核醣體蛋白S6 (RPS6) 06
五、本研究之動機及目的 08
材料與方法
ㄧ、實驗材料
(ㄧ)阿拉伯芥之種植 09
(二)菸草之種植 09
二、基因片段之選殖
(ㄧ)阿拉伯芥總體核糖核酸 (Total RNA) 之萃取 09
(二) RNA反轉錄合成cDNA (Reverse transcription, RT) 10
(三)植物染色體DNA (Genomic DNA) 之萃取 10
(四)瓊脂凝膠電泳 (Agarose gel electrophoresis) 10
(五)聚合酶鏈鎖反應 (Polymerase chain reaction, PCR) 11
(六)接合反應 (Ligation) 11
(七)勝任細胞之製備 (Preparation of competent cell) 11
(八)細胞轉型作用(Transformation) 12
(九)轉型菌落進行聚合酶鏈鎖反應篩選 (Colony PCR) 12
(十)高純度質體DNA之萃取 (Purification of plasmid DNA) 12
(十一)酵素截切 (Digestion) 12
(十二)DNA定序 (Autosequencing) 13
(十三)DNA序列比對 (Sequence alignment) 13
三、阿拉伯芥之基因轉殖
(ㄧ)DNA片段之回收與純化 (DNA clean and extraction) 13
(二)載體DNA之去磷酸根處理 (Dephosphorylation) 13
(三)農桿菌GV3101勝任細胞之製備 (Preparation of GV3101 competent cell) 14
(四)農桿菌GV3101快速冷凍轉型 (Freeze-thaw transformation) 14
(五)阿拉伯芥之轉殖 (Arabidopsis transformation) 14
(六)快速大量篩選轉殖植株 (Screening) 14
(七)轉殖植株之確認 (Check of transgenic plant) 15
四、菸草之暫時性基因轉殖
(ㄧ)農桿菌C58C1勝任細胞之製備 (Preparation of C58C1competent cell) 15
(二)農桿菌C58C1快速冷凍轉型 (Freeze-thaw transformation) 15
(三)菸草之暫時性轉殖 (Transient transfection) 15
五、AtS61與AtS62之功能分析
(ㄧ)即時定量聚合酶鏈鎖反應 (Real-time PCR) 分析 16
(二)共軛焦顯微鏡 (Confocal) 16
(三)亞歷山大染色法 (Alexander’s staining) 16
(四)乙烯處理 (Treatment of ethylene) 17
(五)茉莉酸處理 (Treatment of jasmonic acid) 17
結果
ㄧ、AtS61與AtS62之選殖 18
二、AtS61與AtS62轉殖株之功能性分析
(ㄧ)大量表現正向 (sense) 與反向 (antisense) 基因載體之構築 19
(二)核醣核酸干擾 (RNA interference, RNAi) 基因載體之構築 19
(三) RNAi與大量表現反向 (antisense) 轉殖株之性狀分析 20
(四)大量表現反向 (antisense) 轉殖株表皮細胞之數量變化 20
(五)大量表現正向 (sense) 轉殖株之性狀分析 21
(六)亞歷山大染色法觀察大量表現正向 (sense) 轉殖株之花粉活性 21
(七)大量表現正向 (sense) 轉殖株之乙烯 (ET) 與茉莉酸 (JA) 處理 22
三、受AtS61和AtS62所調控的5''TOP mRNA之研究
(ㄧ) 5''TOP mRNA 5’端未轉錄區域之選殖 23
(二) 5’TOP mRNA突變株性狀之觀察 23
(三) 5''TOP mRNA 5’端未轉錄區域與AtS61或AtS62之菸草暫時性轉殖系統 24
(四) 5''TOP mRNA 5’端未轉錄區域與AtS61或AtS62共轉殖入阿拉伯芥 24
討論 25
參考文獻 29
圖表 38


宮力仁 (2007) Molecular cloning and characterization of genes in regulation cell division and differentionation from various plant species. 植物中調控細胞分裂與分化的基因之選殖與功能性分析 國立中興大學生物科技研究所博士論文。

Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119: 109-120

Ali SM, Sabatini DM (2005) Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site. J Biol Chem 280: 19445-19448

Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119: 57-70

Bogre L, Okresz L, Henriques R, Anthony RG (2003) Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci 8: 424-431

Bäurle I, Laux T (2003) Apical meristems: the plant''s fountain of youth. BioEssays 25: 961-970

Carvalho CM, Santos AA, Pires SR, Rocha CS, Saraiva DI, Machado JP, Mattos EC, Fietto LG, Fontes EP (2008) Regulated nuclear trafficking of rpL10A mediated by NIK1 represents a defense strategy of plant cells against virus. PLoS Pathog 4: e1000247

Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22 alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10: 231-243

Chung J, Kuo CJ, Crabtree GR, Blenis J (1992) Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69: 1227-1236

Degenhardt RF, Bonham-Smith PC (2008) Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are disparately required for normal development. Plant Physiology 147: 128-142

Divi U (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnology 26: 131-136

Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119: 71-84

Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215: 407-419

Dufner A, Thomas G (1999) Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 253: 100-109

Durrant WE, Dong X (2004) Systemic acquired resistance. Annual Review of Phytopathology 42: 185-209

Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10: 967-979

Ferrari S, Bannwarth W, Morley SJ, Totty NF, Thomas G (1992) Activation of p70s6k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs. Proc Natl Acad Sci U S A 89: 7282-7286

Gallois JL, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129: 3207-3217

Ge X, Dietrich C, Matsuno M, Li G, Berg H, Xia Y (2005) An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO reports 6: 282-288

Geisler M, Nadeau J, Sack FD (2000) Oriented asymmetric divisions that generate the stomatal spacing pattern in arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12: 2075-2086

Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5: 1217-1229

Gutierrez (2009) The Arabidopsis Cell Division Cycle. The Arabidopsis Book

Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T (2007) The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes & Amp; Development 21: 1720-1725

Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177-189

Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T (2009) Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant and Cell Physiology 50: 1019-1031

Hu Z, Qin Z, Wang M, Xu C, Feng G, Liu J, Meng Z, Hu Y (2010) The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth. The Plant Journal 61: 600-610

Hua J, Grisafi P, Cheng SH, Fink GR (2001) Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 15: 2263-2272

Hunt L, Gray JE (2009) The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Current Biology 19: 864-869

Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191-2209

Ito T, Kim GT, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22: 257-264

Jacinto E, Lorberg A (2008) TOR regulation of AGC kinases in yeast and mammals. Biochem J 410: 19-37

Jager S, Maughan S, Dewitte W, Scofield S, Murray J (2005) The developmental context of cell-cycle control in plants. Seminars in Cell & Developmental Biology 16: 385-396

Jefferies HB, Reinhard C, Kozma SC, Thomas G (1994) Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proc Natl Acad Sci U S A 91: 4441-4445

Joubes J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43: 735-745

Kim CY (2003) Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. The Plant Cell Online 15: 2707-2718

Laux T, Mayer KF, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122: 87-96

Lenhard M, Jurgens G, Laux T (2002) The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129: 3195-3206

Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O (1991) Oligopyrimidine tract at the 5'' end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci U S A 88: 3319-3323

Linke B, Nothnagel T, Borner T (2003) Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34: 27-37

Mahfouz MM (2006) Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress Signals. The Plant Cell Online 18: 477-490

Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N (2006) mTOR, translation initiation and cancer. Oncogene 25: 6416-6422

Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95: 805-815

Medford JI (1992) Vegetative Apical Meristems. Plant Cell 4: 1029-1039

Meyuhas O (2008) Physiological roles of ribosomal protein S6: one of its kind. Int Rev Cell Mol Biol 268: 1-37

Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Kamada H, Shinozaki K (1995) Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Lett 358: 199-204

Molina A, Volrath S, Guyer D, Maleck K, Ryals J, Ward E (1999) Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J 17: 667-678

Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G (1999) Drosophila S6 kinase: a regulator of cell size. Science 285: 2126-2129

Mora-Garcia S (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes & Development 18: 448-460

Morimoto T, Suzuki Y, Yamaguchi I (2002) Effects of partial suppression of ribosomal protein S6 on organ formation in Arabidopsis thaliana. Biosci Biotechnol Biochem 66: 2437-2443

Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S, Avruch J, Yonezawa K (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9: 359-366

Otterhag L, Gustavsson N, Alsterfjord M, Pical C, Lehrach H, Gobom J, Sommarin M (2006) Arabidopsis PDK1: identification of sites important for activity and downstream phosphorylation of S6 kinase. Biochimie 88: 11-21

Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, Klumperman J, Thorens B, Thomas G (2000) Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408: 994-997

Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S, Kozma SC, Thomas G (2004) S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5''-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24: 3112-3124

Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9: 1157-1168

Reyes de la Cruz H, Aguilar R, Sanchez de Jimenez E (2004) Functional characterization of a maize ribosomal S6 protein kinase (ZmS6K), a plant ortholog of metazoan p70(S6K). Biochemistry 43: 533-539

Rieu I, Wolters-Arts M, Derksen J, Mariani C, Weterings K (2003) Ethylene regulates the timing of anther dehiscence in tobacco. Planta 217: 131-137

Rocha CS, Santos AA, Machado JP, Fontes EP (2008) The ribosomal protein L10/QM-like protein is a component of the NIK-mediated antiviral signaling. Virology 380: 165-169

Rosado A, Sohn EJ, Drakakaki G, Pan S, Swidergal A, Xiong Y, Kang BH, Bressan RA, Raikhel NV (2010) Auxin-mediated ribosomal biogenesis regulates vacuolar trafficking in Arabidopsis. Plant Cell 22: 143-158

Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nature Reviews Cancer 3: 179-192

Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends in Biochemical Sciences 31: 342-348

Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, Dor Y, Zisman P, Meyuhas O (2005) Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19: 2199-2211

Sasse JM (2003) physiological actions of brassinosteroids: An Update. J Plant Growth Regul 22: 276-288

Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100: 635-644

Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16 Suppl: S46-60

Shen WH, Xu L (2009) Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. Molecular Plant 2: 600-609

Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC (1998) Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17: 6649-6659

Stolovich M (2004) Lithium Can Relieve Translational Repression of TOP mRNAs Elicited by Various Blocks along the Cell Cycle in a Glycogen Synthase Kinase-3- and S6-Kinase-independent Manner. Journal of Biological Chemistry 280: 5336-5342

Stolovich M, Tang H, Hornstein E, Levy G, Cohen R, Bae SS, Birnbaum MJ, Meyuhas O (2002) Transduction of growth or mitogenic signals into translational Activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Molecular and Cellular Biology 22: 8101-8113

Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Current Opinion in Plant Biology 6: 544-553

Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171-182

Tang D (2005) Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiology 138: 1018-1026

Tang W, Deng Z, Oses-Prieto JA, Suzuki N, Zhu S, Zhang X, Burlingame AL, Wang ZY (2008) Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. Mol Cell Proteomics 7: 728-738

Turck F (2004) Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiology 134: 1527-1535

Turck F, Kozma SC, Thomas G, Nagy F (1998) A heat-sensitive Arabidopsis thaliana kinase substitutes for human p70s6k function in vivo. Mol Cell Biol 18: 2038-2044

Tzeng TY, Kong LR, Chen CH, Shaw CC, Yang CH (2009) Overexpression of the lily p70s6k gene in arabidopsis affects elongation of flower organs and indicates TOR-dependent regulation of AP3, PI and SUP Translation. Plant and Cell Physiology 50: 1695-1709

van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287-289

Volarevic S, Stewart MJ, Ledermann B, Zilberman F, Terracciano L, Montini E, Grompe M, Kozma SC, Thomas G (2000) Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288: 2045-2047

Wang X (2006) brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313: 1118-1122

Wang Y, Li J (2008) Molecular basis of plant architecture. Annual Review of Plant Biology 59: 253-279

Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495-500

Weijers D, Franke-van Dijk M, Vencken RJ, Quint A, Hooykaas P, Offringa R (2001) An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128: 4289-4299

Williams AJ (2003) Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize. Plant Physiology 132: 2086-2097

Yang S (2004) A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. The Plant Cell Online 16: 1060-1071

Zhang SH, Lawton MA, Hunter T, Lamb CJ (1994) atpk1, a novel ribosomal protein kinase gene from Arabidopsis. I. Isolation, characterization, and expression. J Biol Chem 269: 17586-17592


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊