跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/05 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯程景
研究生(外文):Cheng-Jing Hou
論文名稱:FT同源基因在開花與非開花植物中調控開花時間之功能性分析
論文名稱(外文):Functional Analysis of FT Homologs in Regulating the Flower Transition in Flowering and Non-Flowering Plants
指導教授:楊長賢楊長賢引用關係
口試委員:余天心葉開溫林彩雲呂維茗
口試日期:2011-07-15
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:111
中文關鍵詞:FTTFL1開花時間
外文關鍵詞:FTTFL1flowering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
開花基因FT及TFL1在調控植物營養生長與生殖生長之過渡期中扮演重要的角色,本實驗由文心蘭中選殖出OnFT與OnTFL1基因,分析其在植物中之功能。OnFT之mRNA可在腋芽、葉片、假球莖及花苞中測得。在成株花器中,年輕的花苞測得的OnFT mRNA高於成熟花苞,尤其是萼片與花瓣。OnFT的表現受到光週期的調控,其表現量在開燈後八小時會達到最大值,隨後漸漸減弱,在關燈後維持低量表現。另外,OnTFL1只在腋芽及假球莖表現,並且不受到光週期的調控。在阿拉伯芥中異位大量表現OnFT可發現,轉殖植物會有提早開花的現象及產生終結花序。而在ft-1晚開花突變株中大量表現OnFT,可部份挽救回其晚開花的現象。而35S::OnTFL1的轉殖株中發現,有較晚開花的趨勢,並且具有互補回tfl1-11終結花序的能力。更進一步的發現,突變關鍵胺基酸,第85位置的組胺酸突變成酪胺酸後,可將OnTFL1之功能轉變成OnFT,並具有提早開花的能力。深入研究下游基因的表現,發現35S::OnFT及35S::OnTFL1-H85Y之轉殖植株,皆可影響AP1之表現量。綜合以上的結果,顯示單子葉文心蘭中OnFT及OnTFL1為PEBP基因家族的一員,對於調控植物由營養生長進入生殖時期與雙子葉阿拉伯芥之調控相似。


The FLOWERING LUCUS T (FT) and TERMINAL FLOWER 1 (TFL1) genes play crucial roles in regulating the vegetative to reproductive phase transition. Orthologs of FT/TFL1 (OnFT and OnTFL1) were isolated and characterized from Oncidium Gower Ramsey. OnFT mRNA was detected in axillary buds, leaves, pseudobulb and flowers. In flowers, OnFT was expressed more in young flower buds than in mature flowers and was predominantly expressed in sepals and petals. The expression of OnFT was regulated by photoperiod, with the highest expression from the 8th to 12th hour of the light period and the lowest expression at dawn. In contrast, the expression of OnTFL1 was only detected in axillary bud and pseudobulb, and was not influenced by light. Ectopic expression of OnFT in transgenic Arabidopsis plants showed novel phenotypes by flowering early and losing inflorescence indeterminacy. In addition, ectopic expression of OnFT was able to partially complement the late flowering defect in transgenic Arabidopsis ft-1 mutants. In transgenic tfl1-11 mutant plants, 35S::OnTFL1 delayed flowering and rescued the phenotype of terminal flowers. Furthermore, substitution of the key single amino acid His85 to Tyr was able to convert the OnTFL1 function to OnFT by promoting flowering in 35S::OnTFL1-H85Y transgenic Arabidopsis plants. Further analysis indicated that the expression of APETALA1 (AP1) was significantly up-regulated in 35S::OnFT and 35S::OnTFL1-H85Y plants, and was down-regulated in 35S::OnTFL1 transgenic Arabidopsis plants. Our data indicated that OnFT and OnTFL1 are putative PEBP genes in orchids that regulate flower transition similar to their orthologs in Arabidopsis.

Contents

Chapter 1
Functional Analysis of FT and TFL1 Orthologs from Orchid (Oncidium Gower Ramsey) that Regulate the Vegetative to Reproductive Transition

List of Tables vii
List of Figures viiii
List of Appendix x

Abstract
Abstract in English 1
Abstract in Chinese 3

1 Introduction 4
1.1 Introduction of flowering regulation by photoperiod pathway 4
1.2 Flowering regulation by FT and related genes 5
1.3 TFL1 played a antagonist role to FT in flowering initiation 6

2 Materials and Methods 8

3 Results 17
3.1 Isolation of OnFT and OnTFL1 cDNA from O. Gower Ramsey 17
3.2 Gene expression of OnFT and OnTFL1 17
3.3 Ectopic expression of OnFT caused early flowering and partially
restored ft-1 mutant phenotypes in Arabidopsis 19
3.4 Ectopic expression of OnTFL1 delayed flowering and restored
tfl1-11 mutant phenotypes in Arabidopsis 20
3.5 A single amino acid substitution converts the function of
OnTFL1 in regulating flower transition 21
3.6 Cloning of the 5’-flanking region for OnFT 22

4 Discussion 23

5 Summary 29

6 References 30

7 Tables and Figures 39 Contents

Chapter 2
Functional analysis of the FT homologs from Arabidopsis and Adiantum reveals the possible role for exon 4 in controlling floral initiation

Abstract 59
Abstract in English 59
Abstract in Chinese 61

1 Introduction 62

2 Materials and Methods 64

3 Results 72
3.1 Isolation of AcMFT cDNA from Adiantum capillus-veneris 72
3.2 Ectopic expression of AcMFT caused early flowering and partially
restored ft-1 mutant phenotype in Arabidopsis 72
3.3 Ectopic expression of AcMFT-4th exon caused early flowering and
partially restored ft-1 mutant phenotype in Arabidopsis 73
3.4 FT promoter-mediated expression in transgenic Arabidopsis 75
3.5 Analysis of protein interaction between FT homologs and FD through
protein overlay and immunoprecipitation assays 75

4 Discussion 77

5 Summary 81

6 References 82

7 Tables and Figures 87

Chapter 1
Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K. and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052-1056.
Ahn, J.H., Miller, D., Winter, V.J., Banfield, M.J., Lee, J.H., Yoo, S.J., Henz, S.R., Brady, R.L. and Weigel, D. (2006). A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 25: 605-614.
Aki, T., Shigyo, M., Nakano, R., Yoneyama, T. and Yanagisawa, S. (2008). Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol. 49: 767-790.
An, H., Roussot, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C. and Coupland, G. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131: 3615-3626.
Banfield, M.J. and Brady, R.L. (2000). The structure of Antirrhinum centroradialis protein (CEN) suggests a role as a kinase regulator. J. Mol. Biol. 297: 1159-1170.
Baurle, I. and Dean, C. (2006) The timing of developmental transitions in plants. Cell 125: 655-664.
Bohlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A.M., Jansson, S., Strauss, S.H. and Nilsson, O. (2006). CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312: 1040-1043.
Boss, P.K., Bastow, R.M., Mylne, J.S. and Dean, C. (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16: S18-S31.
Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M. and Smyth, D.R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 199: 721-743.
Bradley, D., Carpenter, R., Copsey, L., Vincent, C., Rothstein, S. and Coen, E. (1996). Control onf inflorescence architecture in Antirrhinum. Nature 379: 791-797.
Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. and Coen, E. (1997). Inflorescence commitment and architecture in Arabidopsis. Science 275: 80-83.
Carmona, M.J., Calonje, M. and Martinez-Zapater, J.M. (2007). The FT/TFL1 gene family in grapevine. Plant Mol. Biol. 63: 637-650.
Clough, S.J. and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
Conti, L. and Bradley, D. (2007). TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19: 767-778.
Corbesier, L., Gadisseur, I., Silvestre, G., Jacqmard, A. and Bernier, G. (1996) Design in Arabidopsis thaliana of a synchronous system of floral induction by one long day. Plant J. 9: 947-952.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C. and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030-1033.
Danilevskaya, O.N., Meng, X., Hou, Z., Ananiev, E.V. and Simmons, C.R. (2008). A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol. 146: 250-264.
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G. and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18: 4679-4688.
Fujiwara, S., Oda, A., Yoshida, R., Niinuma, K., Miyata, K., Tomozoe, Y., Tajima, T., Nakagawa, M., Hayashi, K., Coupland, G. and Mizoguchi, T. (2008). Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20: 2960-2971.
Gyllenstrand, N., Clapham, D., Kallman, T. and Lagercrantz, U. (2007). A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiol. 144: 248-257.
Halliday, K.J., Salter, M.G., Thingnaes, E. and Whitelam, G.C. (2003). Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J. 33: 875-885.
Hanzawa, Y., Money, T. and Bradley, D. (2005). A single amino acid converts a repressor to an activator of flowering. Proc. Natl. Acad. Sci. USA 102: 7748-7753.
Hassidim, H., Harir, Y., Yakir, E., Korn, I. and Green, G.M. (2009). Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta 228: 709-723.
Hayama, R., Yokoi, S., Tamaki, S., Yano, M. and Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719-722
Hayama, R., Agashe, B., Luley, E., King, R. and Coupland, G. (2007). A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19: 2988-3000.
Hew, C.S. and Yong, J.W.H. (1997). Physiology of tropical orchids in relation to the industry. World Scientific publishing, Singapore. pp. 331.
Hofgen, R. and Willmitzer, L. (1988). Storage of competent cells for Agrobacterium transformation. Nucl. Acids. Res. 16: 9877.
Hsu, C.Y., Liu, Y., Luthe, D.S. and Yuceer, C. (2006). Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18: 1846-1861.
Hsu, H.F. and Yang, C.H. (2002). An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol. 43: 1198-1209.
Hsu, H.F., Huang, C.H., Chou, L.T. and Yang, C.H. (2003). Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44: 783-794.
Huq, E., Tepperman, J.M. and Quail, P.H. (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 97: 9789-9794.
Igasaki, T., Watanabe, Y., Nishiguchi, M. and Kotoda, N. (2008). The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol. 49: 291-300.
Ishikawa, R., Tamaki, S., Yokoi, S., Inagaki, N., Shinomura, T., Takano, M., Takano, M. and Shimanoto, K. (2005). Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell 17: 3326-3336.
Izawa, T., Oikawa, T., Sugiyama, N., Tanisaka, T., Yano, M. and Shimamoto, K. (2002). Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes & Dev. 16: 2006-2020.
Jaeger, K.E. and Wigge, P.A. (2007). FT protein acts as a long-range signal in Arabidopsis. Current Biology 17: 1050-1054.
Jensen, C.S., Salchert, K. and Nielsen, K.K. (2001). A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol. 125: 1517-1528.
Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M. Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286: 1962-1965.
Ke, S.H. and Madison, E.L. (1997). Rapid and efficient site-directed mutagenesis by single-tube ‘megaprimer’ PCR method. Nucleic Acids Res. 25: 3371-3372.
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-1962.
Komeda, Y. (2004). Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55: 521-535.
Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S. and Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development 135: 767-774.
Kotake, T., Takada, S., Nakahigashi, K., Ohto, M. and Goto, K. (2003). Arabidosis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol. 44: 555-564.
Laubinger, S., Marchal, V., Gentilhomme, J., Wenkel, S., Adrian, J., Jang, S., Kulajta, C., Braun, H., Coupland, G. and Hoecker, U. (2006). Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133: 3213-3222.
Levy, Y.Y. and Dean, C. (1998). The transition to flowering. Plant Cell 10: 1973-1989.
Lifschitz, E., Eviatar, T., Rozman, A., Shalit, A., Goldshmidt, A., Amsellem, Z., Alvarez, J.P. and Eshed, Y. (2006). The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. USA 15: 6398-6403.
Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S. and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cel 11: 1007-1018.
Lin, M.K., Belanger, H., Lee, Y.J., Varkonyi-Gasic, E., Taoka, K.I., Miura, E., Xoconostle-Cazares, B., Gendler, K., Jorgensen, R.A., Phinney, B., Lough, T.J. and Lucas, W.J. (2007). FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19: 1488-1506.
Liu, Y.G. and Whittier, R.F. (1995). Thermal asymmetric interlanced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674-681.
Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
Michaels, S.D., Himelblau, E., Kim, S.Y., Schomburg, F.M. and Amasino, R.M. (2005). Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol. 137: 149-156.
Mimida, N., Kotoda, N., Ueda, T., Igarashi, M., Hatsuyama, Y., Iwanami, H., Moriya, S. and Abe, K. (2009). Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus x domestica Borkh.). Plant Cell Physiol. 50: 394-412.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-479.
Nakagawa, M., Shimomoto, K. and Kyozuka, J. (2002). Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J. 29: 743-750.
Notaguchi, M., Abe, M., Kimura, T., Daimon, Y., Kobayashi, T., Yamaguchi, A., Tomita, Y., Dohi, K., Mori, M. and Araki, T. (2008). Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol. 49: 1645-1658.
Nilsson, O., Lee, I., Blazquez, M.A. and Weigel, D. (1998). Flowering-time genes modulate the response to LEAFY activity. Genetics 150: 403-410.
Ohshima, S., Murata, M., Sakamoto, W., Ogura, Y. and Motoyoshi, F. (1997). Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol. Gen. Genet. 254: 186-194.
Onouchi, H., Igeno, M.I., Perilleux, C., Graves, K. and Coupland, G. (2000). Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12: 885-900.
Ordidge, M., Chiurugwi, T., Tooke, F. and Battey, N.H. (2005). LEAFY, TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina. Plant J. 44: 985-1000.
Pin, P.A., Benlloch, R., Bonnet, D., Wremerth-Weich, E., Kraft, T., Gielen, J.J.L. and Nilsson, O. (2010). An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330: 1397-1400.
Pillitteri, L.J., Lovatt, C.J. and Walling, L.L. (2004). Isolation and characterization of a TERMINAL FLOWER 1 homolog and its correlation with juvenility in Citrus. Plant Physiol. 135: 1540-1551.
Pnueli, L., Carmel-Goren, L., Hareven, D., Gutfinger, T., Alvarez, J., Ganal, M., Zamir, D. and Lifschitz, E. (1998). The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125: 1979-1989.
Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-857.
Ratcliffe, O.J., Amaya, I., Vincent, C.A., Rothstein, S., Carpenter, R., Coen, E.S. and Bradley, D.J. (1998). A common mechanism controls the life cycle and architecture of plants. Development 125: 1609-1615.
Ratcliffe, O.J., Bradley, D.J. and Coen, E.S. (1999). Separation of shoot and floral identity in Arabidopsis. Development 126: 1109-1120.
Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F. and Coupland, G. (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616.
Samach, A. and Wigge, P.A. (2005). Ambient temperature perception in plants. Current Opinion in Plant Biology 8: 483-486.
Schoentgen, F. and Jolles, P (1995). From structure to function: possible biological reles of a new wide-spread protein family binding hydrophobic ligands and displaying a nucleotide binding site. FEBS Letters 369: 22-26.
Shalit, A., Rozman, A., Goldshmidt, A., Alvarez, J.P., Bowman, J.L., Eshed, Y. and Lifschitz, E. (2009). The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl. Acad. Sci. USA 106: 8392-8397.
Simpson, G.G., Gendall, A.R. and Dean, C. (1999). When to switch to flowering. Annu. Rev. Cell Dev. Biol. 15: 519-550.
Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. and Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116-1120.
Takada, S. and Goto, K. (2003). TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15: 2856-65
Takahashi, Y., Teshima, K.M., Yokoi, S., Innan, H. and Shimamoto, K. (2009). Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc. Natl. Acad. Sci. USA 106: 4555-4560.
Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S. and Shimamoto, K. (2007) .Hd3a protein is a mobile flowering signal in rice. Science 316: 1033-1036.
Tan, J., Wang, H.L. and Yeh, K.W. (2005). Analysis of organ-specific, expressed genes in Oncidium orchid by subtractive expressed sequence tags library. Biotechnol. Letters 27: 1517-1528.
Terauchi, R. and Kahl, G. (2000). Rapid isolation of promoter sequences by TAIL-PCR: the 5’-flanking regins of Pal and Pgi genes from yams (Dioscorea). Mol. Gen. Genet. 263: 554-560.
Tzeng, T.Y. and Yang, C.H. (2001). A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol. 42: 1156-1168.
Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A. and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003-1006.
Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., Samach, A. and Coupland, G. (2006). CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18: 2971-2984.
Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F. and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.
Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U. and Weigel, D. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309: 1056-59.
Wu, C., You, C., Li, C., Long, T., Chen, G., Byrne, M.E. and Zhang, Q. (2008). RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc. Natl. Acad. Sci. USA 35: 12915-12920.
Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M. and Araki, T. (2005). TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol. 46: 1175-1189.
Yanovsky, M.J. and Kay, S.A. (2002). Molecular basis of seasonal time measurement in Arabidopsis. Nature 419: 308-312.
Yoo, S.Y., Kardailsky, I., Lee, J.S., Weigel, D. and Ahn, J.H. (2004). Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol. Cells 17: 95-101.
Yoo, S.J., Chung, K.S., Jun, S.H., Yoo, S.Y., Lee, J.S. and Ahn, J.H. (2010). BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J. 63: 241-253.
Zhang, S., Hu, W., Wang, L., Lin, C., Cong, B., Sun, C. and Luo, D. (2005). TFL1/CEN-like genes control intercalary meristem activity and phase transition in rice. Plant Science 168: 1393-1408.

Chapter 2

Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K. and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052-1056.
Adrian, J., Farrona, S., Reimer, J.J., Albani, M.C., Coupland, G. and Turck, F. (2010). cis-regulator elements and chromatin state coordiantely control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22: 1425-1440.
Ahn, J.H., Miller, D., Winter, V.J., Banfield, M.J., Lee, J.H., Yoo, S.J., Henz, S.R., Brady, R.L. and Weigel, D. (2006). A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 25: 605-614.
Aki, T., Shigyo, M., Nakano, R., Yoneyama, T. and Yanagisawa, S. (2008). Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol. 49: 767-790.
Becker, A., Winter, K.U., Meyer, B., Saedler, H. and Theisen, G. (2000). MADS-box gene diversity in seed plants 300 million years ago. Mol. Biol. Evol. 17: 1425-1434.
Bernier, I., Tresca, J.P. and Jolles, P. (1986). Ligand-binding studies with a 23 kDa protein purified from bovine brain cytosol. Bioch. Biophys. Acta. 871: 19-23.
Blackman, B.K., Strasburg, J.L., Raduski, A.R., Michaels, S.D. and Rieseberg, L.H. (2010). The role of recently derived FT paralogs in sunflower domestication. Current Biol. 20: 629-635.
Chardon, F. and Damerval, C. (2005). Phylogenomic analysis of the PEBP gene family in cereals. J. Mol. Evol. 61: 579-590.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C. and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030-1033.
Frayne, J., Ingram, C., Love, S. and Hall, L. (1999). Localisation of phosphatidylethanolamine-binding protein in the brain and other tissues of the rat. Cell Tissue Res. 298: 415-423.
Granovsky, A.E. and Rosner, M.R. (2008). Raf kinase inhibitory protein: a single transduction modulator and metastasis suppressor. Cell Res. 18: 452-457.
Danilevskaya, O., Meng, X., Hou, Z., Ananiev, E. and Simmons, C. (2008). A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol. 146: 250-264.
Danilevskaya, O., Meng, X. and Ananiev, E.V. (2010). Concerted modification of flowering time and inflorescence architecture by ectopic expression of TFL1-like genes in maize. Plant Physiol. 153: 238-251.
Frischmeyer, P.A., van Hoof, A., O’Donnell, K., Guerrerio, A.L., Parker, R. and Dietz, H.C. (2002). An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295: 2238-2261.
Hagiwara, W.E., Uwatoko, N., Sasaki, A., Matsubara, K., Nagano, H., Onishi, K. and Sano, Y. (2009). Diversification in flowering time due to tandem FT-like gene duplication, generating novel Mendelian factors in wild and cultivated rice. Mol. Ecol. 18: 1537-1549.
Hayes, C.S., Bose, B. and Sauer, R. (2002). Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 3440-3445.
Hedman, H., Kallman, T., and Lagercrantz, U. (2009). Early evolution of the MFT-like gene family in plants. Plant Mol. Biol. 70: 359–369.
Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Munster, T. and Theiβen, G. (2002). Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19: 801-814.
Hisamoto, Y., Kashiwagi, H. and Kobayashi, M. (2008). Use of flowering gene FLOWERING LOCUS T (FT) homologs in the phylogenetic analysis of bambusoid and early diverging grasses. J. Plant Res. 121: 451-161.
Hou, C.J. and Yang, C.H. (2009). Functional analysis of FT and TFL1 orthologs form orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol. 50: 1544-1557.
Ikeda, Y., Kogayashi, Y., Yamaguchi, A., Abe, M. and Araki, T. (2007). Molecular basis of late-flowering phenotype caused by dominant epi-alleles of the FWA locus in Arabidopsis. Plant Cell Physiol. 48: 205-220.
Jaeger, K.E. and Wigge, P.A. (2007). FT protein acts as a long-range signal in Arabidopsis. Current Biology 17: 1050-1054.
Karzai, A.W., Roche, E.D. and Sauer, R. (2000). The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nature 7: 449-455.
Kim, M., Cui, M.L., Cubas, P., Gillies, A., Lee, K., Chapman, M.A., Abbott, R.J. and Coen, E. (2008). Regulatory genes control a key morphological and ecological trait transferred between species. Science 322: 1116-1119.
Lin, M.K., Belanger, H., Lee, Y.J., Varkonyi-Gasic, E., Taoka, K.I., Miura, E., Xoconostle-Cazares, B., Gendler, K., Jorgensen, R.A., Phinney, B., Lough, T.J. and Lucas, W.J. (2007). FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19: 1488-1506.
Munster, T., Pahnke, J., Di Rose, A., Kim, J.T., Martin, W., Saedler, H. and Theisen, G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexising in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA 94: 2415-2420.
Notaguchi, M., Abe, M., Kimura, T., Daimon, Y., Kobayashi, T., Yamaguchi, A., Tomita, Y., Dohi, K., Mori, M. and Araki, T. (2008) Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol. 49: 1645-1658.
Parcy, F., Nilsson, O., Busch, M.A., Lee, I. and Weigel, D. (1998). A genetic framework for floral patterning. Nature 395: 561-566.
Pin, P.A., Benlloch, R., Bonnet, D., Wremerth-Weich, E., Kraft, T., Gielen, J.J.L. and Nilsson, O. (2010). An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330: 1397-1400.
Pnueli, L., Gutfinger, T., Hareven, D., Ben-Naim, O., Ron, N., Adir, N. and Lifschitz, E. (2001). Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13: 2687-2702.
Purwestri, Y.A., Ogaki, Y., Tamaki, S., Tsuju, H. and Shimamoto, K. (2009). The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol. 50: 429-438.
Reiser L, Sanchez-Baracaldo P, and Hake S. (2000). Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Molecular Biol. 42: 151-166.
Samigullin, T.K., Martin, W.F., Troitsky, A.V. and Antonov, A.S. (1999). Molecular data from the chloroplast cpoC1 gene suggest a deep and distinct dichotomy of contemporary sepermatophytes into two monophyla: gymnosperms (including Gnetales) and angiosperms. J. Mol. Evol. 49: 310-315.
Schneider, H. Schuettpelz, E., Pryer, K.M., Cranfill, R., Magallon, S. and Lupia, R. (2004). Ferns diversified in the shadow of angiosperms. Nature 428: 553-557.
Shetty, S., Velusamy, T., Idell, S., Shetty, P., Mazar, A.P., Bhandary, Y.P. and Shetty, R.S. (2007). Regulation of urokinase receptor expression by p53: novel role in stabilization of uPAR mRNA. Mol. Cell. Biol. 27: 5607-5618.
Takada, S. and Goto, K. (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTERIN1, conteracts the activation of FLOWER LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15: 2856-2865.
Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S. and Shimamoto, K. (2007) .Hd3a protein is a mobile flowering signal in rice. Science 316: 1033-1036.
Takahashi, Y., Teshima, K.M., Yokoi, S., Innan, H. and Shimamoto, K. (2009). Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc. Natl. Acad. Sci. USA 106: 4555-4560.
Theissen, G., Becker, A., Rosa, A.D., Kanno, A., Kim, J.T., Munster, T., Winter, K.U. and Saedler, H. (2000). A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149.
Tolia, N.H. and Joshua-Tor, L. (2006). Strategies for protein coexpression in Escherichia coli. Nature Methods 3: 55-64.
Wada, M. (2007). The fern as a model system to study photomorphogenesis. J. Plant Res. 120: 3-16.
Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U. and Weigel, D. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309: 1056-59.
Wikstrom, N., Savolainen, V. and Chase, M.W. (2001). Evolution of the angiosperms: calibrating the family tree. Proc. R. Soc. 268: 2211-2220.
Xi, W., Liu, C., Hou, X. and Yu, H. (2010). MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22: 1733-1748.
Yamamoto, Y., Sunohara, T., Jojima, K., Inada, T. and Aiba, H. (2003). SsrA-mediated trans-translation plays a role in mRNA quality control by facilitating degradation of truncated mRNAs. RNA 9: 408-418.
Yamauchi, D., Sutoh, K., Kanegae, H., Horiguchi, T., Matsuoka, K., Fukuda, H. and Wada, M. (2005). Analysis of expressed sequence tags in prothallia of Adiantum capillus-veneris. J. Plant Res. 118: 223-227.
Yoo, S.Y., Kardailsky, I., Lee, J.S., Weigel, D. and Ahn, J.H. (2004). Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol. Cells 17: 95-101.
Yoo, S.Y., Chung, K.S., Jung, S.H., Yoo, S.Y., Lee, J.S. and Ahn, J.H. (2010). BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J. 63: 241-253.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊