(18.210.12.229) 您好!臺灣時間:2021/02/26 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾瑋珊
研究生(外文):Wei-Shan Tseng
論文名稱:探討磷酸化激酶JNK在podosome形成過程中的角色
論文名稱(外文):Study on the Role of JNK in Podosome Formation
指導教授:陳鴻震
指導教授(外文):Hong-Chen Chen
口試委員:湯銘哲沈孟儒
口試日期:2011-06-09
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:61
中文關鍵詞:JNKpodosome
外文關鍵詞:JNKpodosome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Podosomes是一種存在於細胞腹面,以肌動蛋白 (actin) 為主體的動態結構,主要存在細胞的腹面,在具有侵犯能力的細胞中,對細胞移動及細胞外基質的瓦解扮演重要的角色。Podosomes在Src轉型的纖維母細胞會聚集成環型結構 (podosome rosettes),而會在蝕骨細胞邊緣圍繞成帶狀結構 (podosome belts)。c-Jun N-terminal kinases (JNKs) 被報導參與許多細胞功能,包含細胞增生、凋亡、移動及侵犯能力。在本篇研究中,發現JNK抑制劑SP600125在Src轉型的纖維母細胞和蝕骨細胞中,會分別抑制podosome rosettes和podosome belts的形成。實驗結果進一步顯示,在蝕骨細胞中,JNK1對於podosome belts的形成是重要的,而JNK2則無顯著影響。然而,在Src轉型的纖維母細胞中JNK1和JNK2皆對podosome rosettes的形成是重要的。雖然在JNK剔除 (JNK-/-) 的Src轉型之老鼠胚胎纖維母細胞中發現,JNK2對podosome rosettes形成的影響力較JNK1低,但對於細胞外基質瓦解的功能卻是重要的。另外,實驗結果也顯示位於細胞質的JNK會負責調控podosomes結構,也觀察到JNK1與JNK2會位於podosome rosettes 的位置,而活化後的JNK (pJNK) 也會聚集在podosome rosettes上。然而,在Src轉型之纖維母細胞中發現,在Src持續活化的狀態下,podosome rosettes的形成不必透過細胞質的支架結構性蛋白JNK interacting protein-1 (JIP-1) 調控。總括而論,此篇研究指出JNK對podosomes具有調控其結構組裝及侵犯功能的雙重角色。

中文摘要..................................................1
英文摘要..................................................2
I 文獻探討...............................................3
第一章 c-Jun N-terminal Kinases........................3
第一節 Mitogen-activated protein kinase (MAPK)......4
第二節 JNK具十種isoforms.............................6
第三節 JNK之下游受質.................................7
第四節 JNK為一種壓迫活化型蛋白質激酶.................8
第五節 由JNK1、JNK2和JNK3剔除小鼠探究其功能.........10
第六節 促進JNK訊息傳遞的支架性骨架蛋白..............12
第七節 JNK與MMP及腫瘤的關係.........................14
第二章 Podosomes......................................15
第一節 Podosomes的結構..............................16
第二節 Podosomes的功能與MMP.........................16
第三節 Src轉型細胞中的Podosomes.....................17
第四節 蝕骨細胞中的Podosomes........................18
第五節 樹突細胞中的Podosomes........................19
第六節 Invadopodia與Podosomes.......................19
II 研究動機..............................................21
III材料與方法............................................22
實驗材料
一、質體..............................................22
二、細胞株............................................23
三、抗體..............................................24
四、藥品..............................................25
五、儀器..............................................26
實驗方法
一、細胞培養..........................................27
二、細胞株建立........................................27
三、蝕骨細胞分化......................................27
四、質體建立..........................................29
五、細胞蛋白質萃取....................................29
六、西方點墨法........................................30
七、蛋白免疫螢光染色..................................30
八、細胞外基質瓦解分析................................31
九、核醣核酸干擾技術..................................32
十、統計分析..........................................32
IV結果...................................................33
一、在Src轉型的纖維母細胞中,JNK1和JNK2對於podosome
rosette的形成是重要的.............................33
二、在蝕骨細胞中,JNK1對於podosome belts的形成是重要的,
而JNK2則無顯著影響................................33
三、在JNK1和JNK2剔除的小鼠胚胎纖維母細胞中,活化的Src對
於促進podosome rosettes形成的能力下降.............34
四、JNK2對於podosome rosettes瓦解細胞外基質的能力是重要
的................................................35
五、podosome rosettes的結構由細胞質內的JNK調控........35
六、JNK1/2及活化的 (磷酸化的) JNK皆位於podosome rosettes
上................................................35
七、在Src轉型並持續活化的NIH-3T3中,JIP-1 不參與調控
poodsome rosettes的形成...........................36
V 討論..................................................37
VI 參考文獻..............................................41
VII結果圖................................................49


Adler, V., Polotskaya, A., Wagner, F. and Kraft, A. S. (1992). Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. J. Biol. Chem. 267, 17001-17005.

Adler, V., Unlap, T. and Kraft, A. S. (1994). A peptide encoding the c-Jun 8 domain inhibits the activity of a c-Jun amino-terminal protein kinase. J. Biol. Chem. 269, 11186-11191.

Amato, P. A., Unanue, E. R. and Taylor, D. L. (1983). Distribution of actin in spreading macrophages: a comparative study on living and fixed cells. J. Cell Biol. 96, 750-761.

Antón, I. M., Jones, G. E., Wandosell, F., Geha, R. and Ramesh, N. (2007). WASP-interacting protein (WIP): working in polymerisation and much more. Trends Cell Biol. 17, 555-562.

Badowski, C., Pawlak, G., Grichine, A., Chabadel, A., Oddou, C., Jurdic, P., Pfaff, M., Albigès-Rizo, C. and Block, M. R. (2008). Paxillin phosphorylation controls invadopodia/podosomes spatiotemporal organization. Mol. Biol. Cell 19, 633-645.

Bain, J., Mclauchlan, H., Elliott, M. and Cohen, P. (2003). The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199-204.

Barr, R. K, Hopkins, R. M., Watt, P. M. and Bogoyevitch, M. A. (2004). Reverse two-hybrid screening identifies residues of JNK required for interaction with the kinase interaction motif of JNK-interacting protein-1. J. Biol. Chem. 279, 43178-43189.

Behrens, A., Jochum, W., Sibilia, M. and Wagner, E.F. (2000). Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 19, 2657-2663.

Bharti, S., Inoue, H., Bharti, K., Hirsch, D. S., Nie, Z., Yoon, H. Y., Artym, V., Yamada, K. M., Mueller, S. C., Barr, V. A. and Randazzo, P. A. (2007). Src-dependent phosphorylation of ASAP1 regulates podosomes. Mol. Cell Biol. 27, 8271-8283.

Björkblom, B., Ostman, N., Hongisto, V., Komarovski, V., Filén, J. J., Nyman, T. A., Kallunki, T., Courtney, M. J. and Coffey, E. T. (2005). Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J. Neurosci. 25, 6350-6361.

Bogoyevitch, M. A. (2006). The isoform-specific functions of the c-Jun N- terminal kinases (JNKs): differences revealed by gene targeting. BioEssays 28, 923-934.

Brábek, J., Constancio, S. S., Shin, N. Y., Pozzi, A., Weaver, A. M. and Hanks, S. K. (2004). CAS promotes invasiveness of Src-transformed cells. Oncogene 23, 7406-7415.

Burns, S., Thrasher, A. J., Blundell, M. P., Machesky, L. and Jones, G. E. (2001). Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 98, 1142-1149.

Byun, H. J., Hong, I. K., Kim, E., Jin, Y. J., Jeoung, D. I., Hahn, J. H., Kim, Y. M., Park, S. H. and Lee, H. (2006). A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways. J. Biol. Chem. 281, 34833-34847.

Calle, Y., Chou, H. C., Thrasher, A. J. and Jones, G. E. (2004). Wiskott- Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells. J. Pathol. 204, 460-469.

Chang, L., Jones, Y., Ellisman, M. H., Goldstein, L. S. and Karin, M. (2003). JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell 4, 521-533.

Chen, T., Kablaoui, N., Little, J., Timofeevski, S., Tschantz, W. R., Chen, P., Feng, J., Charlton, M., Stanton, R. and Bauer, P. (2009). Identification of small-molecule inhibitors of the JIP-JNK interaction. Biochem. J. 420, 283-294.

Chen, W. T., Olden, K., Bernard, B. A. and Chu, F. F. (1984). Expression of transformation-associated protease(s) that degrade fibronectin at cell contact sites. J. Cell Biol. 98, 1546-1555.

Coffey, E. T., Hongisto, V., Dickens, M., Davis, R. J. and Courtney, M. J. (2000). Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J. Neurosci. 20, 7602-7613.

Davis, R. J. (2000). Signal Transduction by the JNK Group of MAP Kinases. Cell 103, 239-252.

Desai, A. and Mitchison, T. J. (1997). Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83-117.

Destaing, O., Saltel, F., Géminard, J. C., Jurdic, P. and Bard, F. (2003). Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol. Biol. Cell 14, 407- 416.

Destaing, O., Saltel, F., Gilquin, B., Chabadel, A., Khochbin, S., Ory, S. and Jurdic, P. (2005). A novel Rho-mDia2-HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts. J. Cell Sci. 118, 2901-2911.

Destaing, O., Sanjay, A., Itzstein, C., Horne, W. C., Toomre, D., De-Camilli, P. and Baron, R. (2008). The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Mol. Biol. Cell 19, 394-404.

Dickens, M., Rogers, J. S., Cavanagh, J., Raitano, A., Xia, Z., Halpern, J. R., Greenberg, M. E., Sawyers, C. L. and Davis, R. J. (1997). A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277, 693-696.

Dong, C., Davis, R. J. and Flavell, R. A. (2002). MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55-72.

Duong, L. T. and Rodan, G. A. (2000). PYK2 is an adhesion kinase in macrophages, localized in podosomes and activated by beta(2)-integrin ligation. Cell Motil. Cytoskeleton 47, 174-188.

Eckert, M. A., Lwin, T. M., Chang, A. T., Kim, J., Danis, E., Ohno-Machado, L. and Yang, J. (2011). Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 19, 372-86.

Eferl, R. and Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer 3, 859-868.

Fuchs, S. Y., Fried, V. A. and Ronai, Z. (1998). Stress-activated kinases regulate protein stability. Oncogene 17, 1483-1490.

Gimona, M., Buccione, R., Courtneidge, S. A. and Linder, S. (2008). Assembly and biological role of podosomes and invadopodia. Curr. Opin. Cell Biol. 20, 235-241.

Goldstein, L. S. and Yang, Z. (2000). Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39-71.

Gupta, S., Campbell, D., Derijard, B. and Davis, R. J. (1995). Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267, 389-393.

Gupta S., Barrett T., Whitmarsh A. J., Cavanagh J., Sluss H. K., Derijard B. and Davis R. J. (1996). Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760-2770.

Gutierrez, G. J., Tsuji, T., Chen, M., Jiang, W. and Ronai, Z. A. (2010). Interplay between Cdh1 and JNK activity during the cell cycle. Nat. Cell Biol. 12, 686-695.

Hakem, R., Hakem, A., Duncan, G. S., Henderson, J. T., Woo, M., Soengas, M. S., Elia, A., Pompa, J. L., Kagi, D., Khoo, W., Potter, J., Yoshida, R., Kaufman, S. A., Lowe, S. W., Penninger, J. M. and Mak, T. W. (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339-352.

Han, Z. (2001). c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J. Clin. Invest. 108, 73-81.

Han, Z., Chang, L., Yamanishi, Y., Karin, M. and Firestein, G. S. (2002). Joint damage and inflammation in c-Jun N-terminal kinase 2 knockout mice with passive murine collagen-induced arthritis. Arthritis Rheum. 46, 818-823.

Herskowitz, I. (1995). MAP kinase pathways in yeast: for mating and more. Cell 80, 187-197.

Hibi, M., Lin, A., Smeal, T., Minden, A. and Karin, M. (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135-2148.

Hirokawa, N., Noda, Y. and Okada, Y. (1998). Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10, 60-73.

Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M. and Hotamisligil, G. S. (2002). A central role for JNK in obesity and insulin resistance. Nature 420, 333-336.

Hotokezaka, H., Sakai, E., Kanaoka, K., Saito, K., Matsuo, K., Kitaura, H., Yoshida, N. and Nakayama, K. (2002). U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast- like cells. J. Biol. Chem. 277, 47366-47372.

Huang, C., Ni, Y., Wang, T., Gao, Y., Haudenschild, C. and Zhan, X. (1997). Downregulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 13911-13915.

Huang, C., Rajfur, Z., Borchers, C., Schaller, M. D. and Jacobson, K. (2003). JNK phosphorylates paxillin and regulates cell migration. Nature 424, 219-223.

Huang, C., Jacobson, K. and Schaller, M. D. (2004) A role for JNK-Paxillin signaling in cell migration. Cell Cycle 3, 4-6.

Ip, Y.T. and Davis, R.J. (1998). Signal transduction by the c-Jun N-terminal kinase (JNK): from inflammation to development. Curr. Opin. Cell Biol. 10, 205-219.

Jaeschke, A., Czech, M. P., Davis, R. J. (2004). An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev. 18, 1976-1980.

Jaeschke A., Rincón M., Doran B., Reilly J., Neuberg D., Greiner D. L., Shultz L. D., Rossini A. A., Flavell R. A. and Davis R. J. (2005). Disruption of the Jnk2 (Mapk9) gene reduces destructive insulitis and diabetes in a mouse model of type I diabetes. Proc. Natl. Acad. Sci. USA 102, 6931-6935.

Johnson, G.L. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912.

Jochum, W., Passegué, E. and Wagner, E. F. (2001). AP-1 in mouse development and tumorigenesis. Oncogene 20, 2401-2412.

Kallunki, T., Su, B., Tsigelny, I., Sluss, H. K., Derijard, B., Moore, G., Davis, R. J. and Karin, M. (1994). JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev. 8, 2996-3007.

Kawasaki, H., Schiltz, L., Chiu, R., Itakura, K., Taira, K., Nakatani, Y. and Yokoyama, K. K. (2000). ATF-2 has intrinsic histone acetyl-transferase activity which is modulated by phosphorylation. Nature 405, 195-200.

Kuan, C. Y., Yang, D. D., Samanta Roy, D. R., Davis, R. J., Rakic, P. and Flavell, R. A. (1999). The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667-676.

Kuan, C. Y., Whitmarsh, A. J., Yang, D. D., Liao, G., Schloemer, A. J. and Dong, C. (2003). A critical role of neural-specific JNK3 for ischemic apoptosis. Proc. Natl. Acad. Sci. USA 100, 15184-15189.

Kuida, K., Haydar, T. F., Kuan, C. Y., Gu, Y., Taya, C., Karasuyama, H., Su, M. S., Rakic, P. and Flavell, R. A. (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325-337.

Kukekov, N. V., Xu, Z. and Greene, L. A. (2006). Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs. J. Biol. Chem. 281, 15517-24.

Lehto, V. P., Hovi, T., Vartio, T., Badley, R. A. and Virtanen, I. (1982). Reorganization of cytoskeletal and contractile elements during transition of human monocytes into adherent macrophages. Lab. Invest. 47, 391-399.

Li, K., Li, Y., Shelton, J. M., Richardson, J. A., Spencer, E., Chen, Z. J., Wang, X. and Williams, R. S. (2000). Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101, 389-399.

Li, J. P., Fu, Y. N., Chen, Y. R. and Tan, T. H. (2010). JNK pathway- associated phosphatase dephosphorylates focal adhesion kinase and suppresses cell migration. J. Biol. Chem. 285, 5472-5478.

Linder, S. and Aepfelbacher, M. (2003). Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol. 13, 376-385.

Linder, S. (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol. 17, 107-117.

Livingstone, C., Patel, G. and Jones, N. (1995). ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J. 14, 1785-1797.

Madhani, H. D. and G. R. Fink. (1998). The riddle of MAP kinase signaling specificity. Trends Genet. 14, 151-155.

Malinin, N. L., Zhang, L., Choi, J., Ciocea, A., Razorenova, O., Ma, Y. Q., Podrez, E. A., Tosi, M., Lennon, D. P., Caplan, A. I., Shurin, S. B., Plow, E. F. and Byzova, T. V. (2009). A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat. Med. 15, 313-318.

Manning, A. M. and Davis, R. J. (2003). Targeting JNK for therapeutic benefit from junk to gold? Nat. Rev. Drug Discov. 2, 554-565.

Marchisio, P. C., Cirillo, D., Naldini, L., Primavera, M. V., Teti, A. and Zambonin-Zallone, A. (1984). Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J. Cell Biol. 99, 1696-1705.

Mielke K. (2008). Growth-arrest-dependent expression and phosphorylation of p27kip at serine10 is mediated by the JNK pathway in C6 glioma cells. Mol. Cell. Neurosci. 38, 301-311.

Minkin, C. and Marinho, V. C. (1999). Role of the osteoclast at the bone-implant interface. Adv. Dent. Res. 13, 49-56.

Mitra, S. K. and Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 18, 516-523.

Mohit, A. A., Martin, J. H. and Miller, C. A. (1995). p493F12 kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron 14, 67-78.


Mooney, L. M. (2004). Docking interactions in the c-Jun N-terminal kinase pathway. J. Biol. Chem. 279, 11843-11852.

Mukhopadhyay, U. K., Eves, R., Jia, L., Mooney, P. and Mak A. S. (2009). p53 suppresses Src-induced podosome and rosette formation and cellular invasiveness through the upregulation of caldesmon. Mol. Cell Biol. 29, 3088-3098.

Nakamoto, T., Sakai, R., Honda, H., Ogawa, S., Ueno, H., Suzuki, T., Aizawa, S., Yazaki, Y. and Hirai, H. (1997). Requirements for localization of p130cas to focal adhesions. Mol. Cell Biol. 17, 3884-3897.

Nermut, M. V., Eason, P., Hirst, A. and Kellie, S. (1991). Cell/substratum adhesions in RSV-transformed rat fibroblasts. Exp. Cell Res. 193, 382-397.

Nihalani, D. (2003). Recruitment of JNK to JIP1 and JNK-dependent JIP1 phosphorylation regulates JNK module dynamics and activation. J. Biol. Chem. 278, 28694-28702.

Oser, M., Dovas, A., Cox, D. and Condeelis, J. (2010). Nck1 and Grb2 localization patterns can distinguish invadopodia from podosomes. Eur. J. Cell Biol. 90, 181-188.

Pulverer, B. J., Kyriakis, J. M., Avruch, J., Nikolakaki, E. and Woodgett, J. R. (1991). Phosphorylation of c-jun mediated by MAP kinases. Nature 353, 670-674.

Rinco´n, M. and Davis, R. J. (2009) Regulation of the immune response by stress-activated protein kinases. Immunol. Rev. 228, 212-224.

Sabapathy, K., Jochum, W., Hochedlinger, K., Chang, L., Karin, M. and Wagner, E. F. (1999). Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech. Dev. 89, 115-124.

Saltel, F., Destaing, O., Bard, F., Eichert, D. and Jurdic, P. (2004). Apatite-mediated actin dynamics in resorbing osteoclasts. Mol. Biol. Cell 15, 5231-541.

Schaeffer, H. J. and Weber, M. J. (1999). Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435- 2444.

Schaller, M. D. and Parsons, J. T. (1995). pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol. Cell Biol. 15, 2635-2645.

Schmidt, S., Nakchbandi, I., Ruppert, R., Kawelke, N., Hess, M. W., Pfaller, K., Jurdic, P., Fässler, R. and Moser, M. (2011). Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J. Cell Biol. 7, 883-897.

Schramp, M., Ying, O., Kim, T. Y. and Martin, G. S. (2008). ERK5 promotes Src-induced podosome formation by limiting Rho activation. J. Cell Biol. 181, 1195-1210.

Sluss, H. K., Barrett, T., Derijard, B. and Davis, R. J. (1994). Signal transduction by tumor necrosis factor mediated by JNK protein kinases. Mol. Cell. Biol. 14, 8376-8384.
Smeal, T., Binetruy, B., Mercola, D. A., Birrer, M., and Karin, M. (1991). Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354, 494-496.

Teng, C. H., Huang, W. N. and Meng, T. C. (2007). Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J. Biol. Chem. 282, 28395-28407.

Tarone, G., Cirillo, D., Giancotti, F. G., Comoglio, P. M. and Marchisio, P. C. (1985). Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp. Cell Res. 159, 141-157.

Teti, A., Grano, M., Carano, A., Colucci, S. and Zambonin, Z. A. (1989). Immunolocalization of beta 3 subunit of integrins in osteoclast membrane. Boll. Soc. Ital. Biol. Sper. 65, 1031-1037.

Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Bar-Sagi, D., Jones, S. N., Flavell, R. A. and Davis, R. J. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870-874.

Vallés, A. M., Beuvin, M. and Boyer, B. (2004). Activation of Rac1 by paxillin-Crk-DOCK180 signaling complex is antagonized by Rap1 in migrating NBT-II cells. J. Biol. Chem. 279, 44490-44496.

Ventura, J. J., Kennedy, N. J., Lamb, J. A., Flavell, R. A. and Davis, R. J. (2003). c-Jun NH2-terminal kinase is essential for the regulation of AP-1 by tumor necrosis factor. Mol. Cell. Biol. 23, 2871-2882.

Wang, J., Kuiatse, I., Lee, A. V., Pan, J., Giuliano, A. and Cui, X. (2010). Sustained c-Jun-NH2-kinase activity promotes epithelial-mesenchymal transition, invasion, and survival of breast cancer cells by regulating extracellular signal-regulated kinase activation. Mol. Cancer Res. 8, 266-277.

Weed, S. A., Karginov, A. V., Schafer, D. A., Weaver, A. M., Kinley, A. W., Cooper, J. A. and Parsons, J. T. (2000). Cortactin localization to sites of actin assembly in lamellipodia requires interaction with F-actin and the Arp2/3 complex. J. Cell Biol. 151, 29-40.

Whitmarsh, A. J. (2006). The JIP family of MAPK scaffold proteins. Biochem. Soc. Trans. 34, 828-832.

Woo, M., Hakem, R., Soengas, M. S., Duncan, G. S., Shahinian, A., Kagi, D., Hakem, A., McCurrach, M., Khoo, W. and Kaufman, S. A. (1998). Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12, 806-819.

Wu, H. and Parsons, J. T. (1993). Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J. Cell Biol. 120, 1417-1426.

Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. and Greenberg M. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331.


Yang, D. D., Kuan, C. Y., Whitmarsh, A. J., Rincon, M., Zheng, T. S., Davis, R. J., Rakic, P. and Flavell, R. A. (1997). Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865-870.

Zhang, Y. H., Wang, S. Q., Sun, C. R., Wang, M., Wang, B. and Tang, J. W. (2010). Inhibition of JNK1 expression decreases migration and invasion of mouse hepatocellular carcinoma cell line in vitro. Med. Oncol.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔