跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 11:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂瑛哲
研究生(外文):Ying-Che Lu
論文名稱:探討在A431細胞中細胞貼附引起Met與EGFR活化的機轉
論文名稱(外文):Study on the Mechanism How Cell Attachment-induced Activation of Met and EGFR in A431 Cells
指導教授:陳鴻震
指導教授(外文):Hong-Chen Chen
口試委員:湯銘哲沈孟儒
口試日期:2011-06-09
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:75
中文關鍵詞:MetEGFR細胞貼附lipid rafts
外文關鍵詞:MetEGFRcell adhesionlipid rafts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當細胞生長因子受體 (growth factor receptor) 過度表現,常導致受體以不需配體 (ligand-independent) 的方式活化。在人類表皮癌細胞A431中,持續活化的肝細胞生長因子受體 (hepatocyte growth factor receptor, Met) 及上皮細胞生長因子受體 (epidermal growth factor receptor, EGFR) 賦予細胞增生及侵犯的潛能。本研究發現在A431細胞中,不需配體方式活化的Met及EGFR依賴細胞附著到基質 (substratum) 上,且與細胞攤附 (cell spreading)、胞外基質蛋白的種類、基質的軟硬等無關;這種細胞附著引起的Met及EGFR活化亦非肇因於Src的活化,以及活性氧自由基 (reactive oxygen species, ROS) 的產生或者是細胞骨架的完整性。此外,細胞附著引起Met與EGFR的活化途徑係彼此相互獨立。但Met及EGFR表現量的降低,會影響細胞附著所引起的活化,因此受體的過度表現在此種細胞附著引起的自我活化是不可或缺的。本研究同時亦進一步發現當細胞重新貼附 (replating) 時,lipid rafts會聚集在細胞貼附基底的部分;且利用methyl-beta-cyclodextrin吸附細胞膜上膽固醇而擾亂lipid rafts的分布後,發現當細胞貼附時Met的活性受到抑制時,EGFR的活性反而上升。雖然活化的Met及EGFR均分布於0.04% Triton的可溶部分 (換言之,非rafts的部分),但是利用methyl-beta-cyclodextrin擾亂lipid rafts的分布,確實對Met及EGFR有著不同的影響。因此,本研究證明在A431細胞lipid rafts可能參與細胞附著所引起的Met及EGFR之活化。

Overexpression of growth factor receptors often leads to their activation in a ligand-independent manner. In this study, I demonstrate that the hepatocyte growth factor receptor Met and epidermal growth factor receptor (EGFR) are constitutively activated in human epidermal carcinoma A431 cells, which confers proliferative and invasive potentials to the cells. The ligand-independent activation of Met and EGFR in A431 cells relies on cell attachment to a substratum, but is independent of cell spreading, extracellular matrix proteins, and substratum stiffness. This cell attachment-induced activation of Met and EGFR cannot be attributed to Src activation, production of reactive oxygen species, and the integrity of the cytoskeleton. In addition, I demonstrate that Met and EGFR are independently activated upon cell attachment. However, partial depletion of Met and EGFR prevents their activation upon cell adhesion, suggesting that overexpression of the receptors is a prerequisite for their self-activation upon cell attachment. Moreover, I discover that the distribution of lipid rafts is limited at the area of basal surface when cells are replated. Disruption of lipid rafts by depletion of membrane cholesterol with methyl-beta-cyclodextrin impairs Met activation, but enhances EGFR activation upon cell attachment. Although the majority of both active Met and EGFR are detected in the 0.04% Triton-soluble fractions (i.e. non-raft fraction), disturbance of lipid rafts by methyl-beta-cyclodextrin has opposite impacts to Met and EGFR. Therefore, it is possible that lipid rafts are involved in regulation of attachment-induced activation of Met and EGFR in A431 cells.

摘要 1
Abstract 2
目錄 3
Ⅰ. 前言 6
Ⅱ. 文獻探討 7
一、肝細胞生長因子受體 7
二、上皮細胞生長因子受體 9
三、RTKs與腫瘤 10
四、Lipid rafts 11
五、細胞貼附與lipid rafts 13
六、Lipid rafts與腫瘤 14
七、細胞貼附與RTKs 14
八、機械性感受器 16
Ⅲ. 材料與方法 18
一、實驗材料 18
1. 細胞株 18
2. Short hairpin RNAs (shRNAs) and the target sequences 18
3. 抗體 18
4. 藥品 19
5. 儀器 21
二、實驗方法 21
1. 細胞培養 21
2. 細胞蛋白質之萃取 21
3. 西方墨點法 22
4. 慢病毒的製造與感染 22
5. 細胞侵犯實驗 23
6. 細胞聚集實驗 23
7. 製備polyacrylamide膠 23
8. 免疫螢光染色及共軛焦顯微鏡掃描 24
9. 倒立式雷射全內反射顯微鏡 25
10.分離lipid rafts 25
Ⅳ. 結果 26
一、以不需配體方式活化的Met與EGFR提供A431細胞生長及侵犯的優勢 26
二、以不需配體方式活化的Met與EGFR需依賴細胞貼附至細胞外基質 27
三、細胞貼附引起的Met與EGFR活化,與Src、活性氧自由基、或細胞骨架的完整性等無關 28
四、細胞貼附引起的Met與EGFR活化是彼此獨立並不互相影響 29
五、Met與EGFR的過度表現與自我聚集對細胞貼附引起的活化是必要的 30
六、Lipid rafts可能參與細胞貼附所引起的Met與EGFR活化 30
Ⅴ. 討論 32
Ⅵ. 引用文獻 38
Ⅶ. 附圖 49
圖1. A431細胞株中的Met與EGFR都持續活化 49
圖2. 抑制Met與EGFR的表現,分別選擇性抑制下游ERK或STAT3磷酸化 50
圖3. 以不需配體方式活化的Met與EGFR提供A431細胞生長上的優勢 51
圖4. 以不需配體方式活化的Met與EGFR提供A431細胞侵犯能力的優勢 52
圖5. 細胞與細胞間的貼附不能引起Met與EGFR的活化 53
圖6. 細胞貼附引起Met與EGFR以不需配體的方式活化 54
圖7. 細胞貼附引起Met與EGFR的活化與細胞外基質種類無關 55
圖8. 抑制Integrin β1的表現不影響細胞貼附引起的Met與EGFR活化 56
圖9. 基質的軟硬度不影響細胞貼附引起的Met與EGFR活化 57
圖10. 細胞貼附引起的Met與EGFR活化不倚賴Src 58
圖11. 細胞貼附引起的Met與EGFR活化不倚賴reactive oxygen species (ROS) 59
圖12. 細胞貼附引起的Met與EGFR活化不倚賴肌動蛋白絲 60
圖13. 細胞貼附引起的Met與EGFR活化不倚賴微小管 61
圖14. 抑制Met活性不影響EGFR的活性 62
圖15. 抑制Met表現不影響EGFR的活性 63
圖16. 抑制EGFR表現不影響Met的活性 64
圖17. Met的過度表現對其自我活化是必要的 65
圖18. EGFR的過度表現對其自我活化是必要的 66
圖19. 降低Met表現量不影響它們接受HGF的刺激活化 67
圖20. 降低EGFR表現量不影響它們接受EGF的刺激活化 68
圖21. Lipid rafts與Met在細胞貼附時的分布 69
圖22. Lipid rafts與EGFR在細胞貼附時的分布 70
圖23. Lipid rafts被侷限分布在細胞貼附的底部 71
圖24. MβCD擾亂lipid rafts的分布 72
圖25. 活化的Met與EGFR都位在非lipid rafts的部分 73
圖26. MβCD作用下對Met及EGFR的活性有相反的影響 74
圖27. 細胞重新貼附時MβCD的作用對Met及EGFR的活性有相反的影響 75


Aratyn-Schaus Y, Gardel ML (2010). Transient frictional slip between integrin and the ECM in focal adhesions under myosin II tension. Curr Biol 20: 1145-1153.
Balasubramanian N, Scott DW, Castle JD, Casanova JE, Schwartz MA (2007). Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nat Cell Biol 9: 1381-1391.
Balasubramanian N, Meier JA, Scott DW, Norambuena A, White MA, Schwartz MA (2010). RalA-exocyst complex regulates integrin-dependent membrane raft exocytosis and growth signaling. Curr Biol 20: 75-79.
Balbis A, Posner BI (2010). Compartmentalization of EGFR in cellular membranes: role of membrane rafts. J Cell Biochem 109: 1103-1108.
Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T et al. (1995). Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol 73: 349-365.
Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003). Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4: 915-925.
Blume-Jensen P, Hunter T (2001). Oncogenic kinase signalling. Nature 411: 355-365.
Boccaccio C, Comoglio PM (2006). Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6: 637-645.
Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251: 802-804.
Burden S, Yarden Y (1997). Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron 18: 847-855.
Campbell ID, Humphries MJ (2011). Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a004994.
Chartier NT, Laine MG, Ducarouge B, Oddou C, Bonaz B, Albiges-Rizo C et al. (2011). Enterocytic differentiation is modulated by lipid rafts-dependent assembly of adherens junctions. Exp Cell Res 317: 1422-1436.
Cheng J, Huang H, Zhang ZT, Shapiro E, Pellicer A, Sun TT et al. (2002). Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res 62: 4157-4163.
Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G et al. (2003). Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161: 933-944.
Ciardiello F, Caputo R, Troiani T, Borriello G, Kandimalla ER, Agrawal S et al. (2001). Antisense oligonucleotides targeting the epidermal growth factor receptor inhibit proliferation, induce apoptosis, and cooperate with cytotoxic drugs in human cancer cell lines. Int J Cancer 93: 172-178.
Cohen S, Carpenter G, King L Jr. (1980). Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem 255: 4834-4842.
Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM et al. (1984). Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311: 29-33.
Davies PF (1995). Flow-mediated endothelial mechanotransduction. Physiol Rev 75: 519-560.
de Diesbach MT, Cominelli A, N''Kuli F, Tyteca D, Courtoy PJ (2010). Acute ligand-independent Src activation mimics low EGF-induced EGFR surface signalling and redistribution into recycling endosomes. Exp Cell Res 316: 3239-3253.
del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-Garcia A, Anderson RG et al. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 7: 901-908.
Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L et al. (1995). Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1: 147-154.
Donepudi M, Resh MD (2008). c-Src trafficking and co-localization with the EGF receptor promotes EGF ligand-independent EGF receptor activation and signaling. Cell Signal 20: 1359-1367.
Dulak AM, Gubish CT, Stabile LP, Henry C, Siegfried JM (2011). HGF-independent potentiation of EGFR action by c-Met. Oncogene doi: 10.1038/onc.2011.84.
Freeman MR, Solomon KR (2004). Cholesterol and prostate cancer. J Cell Biochem 91: 54-69.
Gagnoux-Palacios L, Dans M, van''t Hof W, Mariotti A, Pepe A, Meneguzzi G et al. (2003). Compartmentalization of integrin alpha6beta4 signaling in lipid rafts. J Cell Biol 162: 1189-1196.
Gajate C, Mollinedo F (2001). The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98: 3860-3863.
Gajate C, Mollinedo F (2007). Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109: 711-719.
Gaus K, Le Lay S, Balasubramanian N, Schwartz MA (2006). Integrin-mediated adhesion regulates membrane order. J Cell Biol 174: 725-734.
Gentile A, Trusolino L, Comoglio PM (2008). The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev 27: 85-94.
Giancotti FG, Ruoslahti E (1999). Integrin signaling. Science 285: 1028-1032.
Goetz JG, Joshi B, Lajoie P, Strugnell SS, Scudamore T, Kojic LD et al. (2008). Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol 180: 1261-1275.
Grigg P (1986). Biophysical studies of mechanoreceptors. J Appl Physiol 60: 1107-1115.
Guo W, Giancotti FG (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5: 816-826.
Hanahan D, Weinberg RA (2000). The hallmarks of cancer. Cell 100: 57-70.
Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell 144: 646-674.
Hanna JA, Bordeaux J, Rimm DL, Agarwal S (2009). The function, proteolytic processing, and histopathology of Met in cancer. Adv Cancer Res 103: 1-23.
Helin K, Beguinot L (1991). Internalization and down-regulation of the human epidermal growth factor receptor are regulated by the carboxyl-terminal tyrosines. J Biol Chem 266: 8363-8368.
Hirsch FR, Varella-Garcia M, Bunn PA, Jr., Di Maria MV, Veve R, Bremmes RM et al. (2003). Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21: 3798-3807.
Hua SZ, Gottlieb PA, Heo J, Sachs F (2010). A mechanosensitive ion channel regulating cell volume. Am J Physiol Cell Physiol 298: C1424-1430.
Hui AY, Meens JA, Schick C, Organ SL, Qiao H, Tremblay EA et al. (2009). Src and FAK mediate cell-matrix adhesion-dependent activation of Met during transformation of breast epithelial cells. J Cell Biochem 107: 1168-1181.
Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC (2000). Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J Biol Chem 275: 8806-8811.
Kawaguchi K, Murakami H, Taniguchi T, Fujii M, Kawata S, Fukui T et al. (2009). Combined inhibition of MET and EGFR suppresses proliferation of malignant mesothelioma cells. Carcinogenesis 30: 1097-1105.
Kim JH, Asthagiri AR (2011). Matrix stiffening sensitizes epithelial cells to EGF and enables the loss of contact inhibition of proliferation. J Cell Sci 124: 1280-1287.
Krause DS, Van Etten RA (2005). Tyrosine kinases as targets for cancer therapy. N Engl J Med 353: 172-187.
Lajoie P, Partridge EA, Guay G, Goetz JG, Pawling J, Lagana A et al. (2007). Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol 179: 341-356.
Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009). Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185: 381-385.
Lemmon MA, Schlessinger J (2010). Cell signaling by receptor tyrosine kinases. Cell 141: 1117-1134.
Margolis BL, Lax I, Kris R, Dombalagian M, Honegger AM, Howk R et al. (1989). All autophosphorylation sites of epidermal growth factor (EGF) receptor and HER2/neu are located in their carboxyl-terminal tails. Identification of a novel site in EGF receptor. J Biol Chem 264: 10667-10671.
Medema JP, Sark MW, Backendorf C, Bos JL (1994). Calcium inhibits epidermal growth factor-induced activation of p21ras in human primary keratinocytes. Mol Cell Biol 14: 7078-7085.
Mitra AK, Sawada K, Tiwari P, Mui K, Gwin K, Lengyel E (2011). Ligand-independent activation of c-Met by fibronectin and α5β1-integrin regulates ovarian cancer invasion and metastasis. Oncogene 30: 1566-1576.
Miyamoto S, Teramoto H, Gutkind JS, Yamada KM (1996). Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135: 1633-1642.
Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, Campanero MA et al. (2010). Lipid raft-targeted therapy in multiple myeloma. Oncogene 29: 3748-3757.
Morandell S, Stasyk T, Skvortsov S, Ascher S, Huber LA (2008). Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network. Proteomics 8: 4383-4401.
Moro L, Venturino M, Bozzo C, Silengo L, Altruda F, Beguinot L et al. (1998). Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J 17: 6622-6632.
Moro L, Dolce L, Cabodi S, Bergatto E, Boeri Erba E, Smeriglio M et al. (2002). Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem 277: 9405-9414.
Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW et al. (1995). Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 55: 5536-5539.
Nakamura Y, Matsubara D, Goto A, Ota S, Sachiko O, Ishikawa S et al. (2008). Constitutive activation of c-Met is correlated with c-Met overexpression and dependent on cell-matrix adhesion in lung adenocarcinoma cell lines. Cancer Sci 99: 14-22.
Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C et al. (1991). Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 10: 2867-2878.
Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W et al. (2000). Tight junctions are membrane microdomains. J Cell Sci 113: 1771-1781.
Parsons JT, Horwitz AR, Schwartz MA (2010). Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11: 633-643.
Patel HH, Insel PA (2009). Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 11: 1357-1372.
Peghini PL, Iwamoto M, Raffeld M, Chen YJ, Goebel SU, Serrano J et al. (2002). Overexpression of epidermal growth factor and hepatocyte growth factor receptors in a proportion of gastrinomas correlates with aggressive growth and lower curability. Clin Cancer Res 8: 2273-2285.
Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S et al. (1994). A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77: 261-271.
Putnam EA, Yen N, Gallick GE, Steck PA, Fang K, Akpakip B et al. (1992). Autocrine growth stimulation by transforming growth factor-alpha in human non-small cell lung cancer. Surg Oncol 1: 49-60.
Rodrigues GA, Naujokas MA, Park M (1991). Alternative splicing generates isoforms of the met receptor tyrosine kinase which undergo differential processing. Mol Cell Biol 11: 2962-2970.
Rosen LB, Greenberg ME (1996). Stimulation of growth factor receptor signal transduction by activation of voltage-sensitive calcium channels. Proc Natl Acad Sci U S A 93: 1113-1118.
Rusch V, Baselga J, Cordon-Cardo C, Orazem J, Zaman M, Hoda S et al. (1993). Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res 53: 2379-2385.
Schwartz MA, Assoian RK (2001). Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114: 2553-2560.
Schwartz MA, Ginsberg MH (2002). Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4: E65-68.
Schwartz MA (2010). Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2: a005066.
Shin SI, Freedman VH, Risser R, Pollack R (1975). Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci U S A 72: 4435-4439.
Simons K, van Meer G (1988). Lipid sorting in epithelial cells. Biochemistry 27: 6197-6202.
Simons K, Ikonen E (1997). Functional rafts in cell membranes. Nature 387: 569-572.
Simons K, Toomre D (2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31-39.
Simons K, Gerl MJ (2010). Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11: 688-699.
Soung YH, Chung J (2011). Curcumin inhibition of the functional interaction between integrin α6β4 and the epidermal growth factor receptor. Mol Cancer Ther 10: 883-891.
Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R et al. (2007). Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318: 287-290.
Trusolino L, Bertotti A, Comoglio PM (2001). A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell 107: 643-654.
Trusolino L, Comoglio PM (2002). Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2: 289-300.
Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E et al. (2010). Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17: 77-88.
Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW et al. (1984). Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309: 418-425.
Ullrich A, Schlessinger J (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203-212.
Vacaresse N, Moller B, Danielsen EM, Okada M, Sap J (2008). Activation of c-Src and Fyn kinases by protein-tyrosine phosphatase RPTPα is substrate-specific and compatible with lipid raft localization. J Biol Chem 283: 35815-35824.
Wang HB, Dembo M, Wang YL (2000). Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol 279: C1345-1350.
Wang R, Kobayashi R, Bishop JM (1996). Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proc Natl Acad Sci U S A 93: 8425-8430.
Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM (2001). Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 153: 1023-1034.
Wolf AA, Jobling MG, Wimer-Mackin S, Ferguson-Maltzman M, Madara JL, Holmes RK et al. (1998). Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J Cell Biol 141: 917-927.
Yarden Y, Sliwkowski MX (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127-137.
Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M et al. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60: 24-34.
Zhang SZ, Pan FY, Xu JF, Yuan J, Guo SY, Dai G et al. (2005). Knockdown of c-Met by adenovirus-delivered small interfering RNA inhibits hepatocellular carcinoma growth in vitro and in vivo. Mol Cancer Ther 4: 1577-1584.
Zhuang L, Lin J, Lu ML, Solomon KR, Freeman MR (2002). Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res 62: 2227-2231.
Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR (2005). Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest 115: 959-968.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top