(34.237.124.210) 您好!臺灣時間:2021/02/25 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李家銘
研究生(外文):Chia-Ming Lee
論文名稱:氣相傳輸法合成硒化銻一維奈米結構與其相變化記憶體特性的探討
論文名稱(外文):Synthesis of Sb2Se3 one-dimensional nanostructures by vapor transport process and their switching behavior
指導教授:何永鈞
口試委員:蔡松雨林延儒
口試日期:2011-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:66
中文關鍵詞:硒化銻奈米棒相變化記憶體
外文關鍵詞:Antimony selenidenanorodphase change memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用氣相傳輸法合成硒化銻一維奈米結構,並藉由中斷實驗觀察其生長機制。經由實驗發現,金觸媒扮演著異質成核的角色,金觸媒的尺寸會影響到合成出來硒化銻奈米棒的線徑。此外製程溫度與載流氣體流量會影響合成出來的硒化銻形貌,成長時間則會決定硒化銻奈米棒的產量與線長。我們透過SEM、XRD與TEM分析產物的形貌與結構,可證實合成出來的硒化銻奈米棒為單晶的正交晶體結構,線徑約100~200nm,線長約12~15μm。在中斷實驗中,我們分別利用SEM與TEM的EDX證實金觸媒顆粒殘留在奈米棒的底端,可知是硒化銻奈米棒的生長機制是屬於底部成長 (base-growth)的方式。在電性量測上,我們利用黃光微影製程製作出20μm線寬的銀(Ag)電極,並將硒化銻奈米棒灑在電極的線寬上,利用聚焦離子束系統(Focused ion beam technique)直接在銀電極與奈米棒間,鍍上線徑約150nm的白金(Pt)導線。在施加2.9V、100ns的電壓脈衝下,能夠使相變化記憶體由非晶態轉換為結晶態;接著施加2.1V、500ns的電壓脈衝,亦能使相變化記憶體結晶態轉換回非晶態。此外, RESET所需要的功耗只需1.6mW,因此,一維硒化銻奈米棒在相變化記憶體的應用上更加具有發展的潛力。

We reported the synthesis of one-dimension rod-like Sb2Se3 nanostructures by vapor transport process. The result shows that the Au catalysts acted as the heterogeneous nucleation sites and diameter of the Sb2Se3 nanorods strongly depended on the sizes of the Au catalysts. The growth temperature and gas flow rate influenced the morphologies of the Sb2Se3 products, and the growth time affects the diameters and coverage percentage of the Sb2Se3 nanorods. The diameter of the as-synthesized Sb2Se3 nanorods were about 100~200 nm, and length were 12~15μm. The crystal structures of the as-synthesized products were characterized by XRD and TEM. The results confirmed that the as-synthesized nanorods are single-crystalline Sb2Se3 with an Orthorhombic structure. It was also found that the Au catalysts remained at the bottom of the Sb2Se3 nanorods, implying that the Sb2Se3 nanorods were grown by a base-growth mechanism. The memory devices were fabricated by transferring a single Sb2Se3 nanorod onto a SiO2-coated silicon substrate with a 20μm prepatterned Ag pad array prepared by photolithography. Focused ion beam technique was used to directly write 150-nm-thick Pt interconnect lines between the nanorod and Ag pads. The results show that the initially crystalline nanorod reaches a RESET state with 100 ns voltage pulses above 2.9 V. Subsequently, SET voltage pulses with 500ns width were applied to the initially amorphized nanorod up to 2.1V. And the RESET power consumption is only 1.6mW. Therefore, Sb2Se3 nanorods can be an excellent candidate for applications in nonvolatile data storage.

目錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
第二章 文獻回顧 2
2.1 非揮發性記憶體的種類 2
2.1.1 鐵電性隨機存取記憶體(Ferroelectric random access memory, FeRAM) 2
2.1.2 磁阻式隨機存取記憶體(Magnetoresistive random access memory, MRAM) 3
2.1.3 相變化隨機存取記憶體(Phase change random access memory, PRAM) 4
2.2 相變化記憶體的介紹 5
2.2.1 相變化記憶體的發展 5
2.2.2 相變化記憶體的工作原理 7
2.2.3 相變化材料的分類 9
2.2.4 相變化記憶體所需面對的問題與解決方法 12
2.3 一維相變化奈米材料的優勢 18
2.4 一維相變化奈米材料的製備方法 19
2.4.1 水熱法 19
2.4.2 模板法 20
2.4.3 氣相傳輸法 21
2.5 一維相變化奈米材料的研究現況 22
2.6 硒化銻的簡介 28
2.7 研究動機與目的 31
第三章 實驗方法與步驟 32
3.1 實驗設計簡介 32
3.2 氣相傳輸法合成 33
3.3 成長機制與晶體結構分析 34
3.4 相變化記憶體元件製備 34
3.4.1 基材前清洗 34
3.4.2 電極製作 35
3.4.3 元件製作 35
3.5 相變化記憶體元件電性量測 36
第四章 結果與討論 37
4.1 製程參數的影響 37
4.1.1 觸媒層的影響 37
4.1.2 製程溫度的影響 40
4.1.3 氣體流量的影響 43
4.1.4 持溫時間的影響 45
4.2 晶體結構與成分分析 48
4.3 奈米棒的生長機制 50
4.4 相變化記憶體元件之電性探討 58
第五章 結論 60
參考文獻 61



參考文獻
[1]O. Auciello, J. F. Scott, and R. Ramesh, "The physics of ferroelectric memories," Physics Today, vol. 51, pp. 22-27, 1998.
[2]J. F. Scott, "Applications of modern ferroelectrics," Science, vol. 315, pp. 954-959, February 16, 2007.
[3]C. Chappert, A. Fert, and F. N. Van Dau, "The emergence of spin electronics in data storage," Nat Mater, vol. 6, pp. 813-823, 2007.
[4]S. Lai, "Current status of the phase change memory and its future," in Electron Devices Meeting, 2003. IEDM ''03 Technical Digest. IEEE International, 2003, pp. 10.1.1-10.1.4.
[5]S. R. Ovshinsky, "Reversible electrical switching phenomena in disordered structures," Physical Review Letters, vol. 21, p. 1450, 1968.
[6]http://www.computer.org/portal/web/computingnow/archive/news045
[7]J. Feinleib, J. deNeufville, S. C. Moss, and S. R. Ovshinsky, "Rapid reversible light-induced crystallization of amorphous semiconductors," Applied Physics Letters, vol. 18, pp. 254-257, 1971.
[8]S. Lai and T. Lowrey, "OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications," in Electron Devices Meeting, 2001. IEDM Technical Digest. International, 2001, pp. 36.5.1-36.5.4.
[9]K. DerChang, S. Tang, I. V. Karpov, R. Dodge, B. Klehn, J. A. Kalb, J. Strand, A. Diaz, N. Leung, J. Wu, S. Lee, T. Langtry, C. Kuo-wei, C. Papagianni, L. Jinwook, J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro, and G. Spadini, "A stackable cross point Phase Change Memory," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[10]http://www.eetimes.com/electronics-news/4211190/Phase-change-memory-found-in-handSET/
[11]Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, W. P. Risk, T. D. Happ, G. M. McClelland, M. Breitwisch, A. Schrott, J. B. Philipp, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. F. Chen, E. Joseph, S. Zaidi, B. Yee, H. L. Lung, R. Bergmann, and C. Lam, "Ultra-thin phase-change bridge memory device using GeSb," in Electron Devices Meeting, 2006. IEDM ''06. International, pp. 1-4, 2006.
[12]M. Wuttig and N. Yamada, "Phase-change materials for rewriteable data storage," Nat Mater, vol. 6, pp. 824-832, 2007.
[13]S. Hudgens and B. Johnson, "Overview of phase-change chalcogenide nonvolatile memory technology," MRS Bulletin, vol. 29, pp. 829-832, 2004.
[14]A. E. Bell and R. A. Bartolini, "High-performance Te trilayer for optical recording," Applied Physics Letters, vol. 34, pp. 275-276, 1979.
[15]N. Yamada, E. Ohno, N. Akahira, K. i. Nishiuchi, K. i. Nagata, and M. Takao, "High speed overwritable phase change optical disk material," Japanese Journal of Applied Physics, vol. 26S4, p. 61, 1987.
[16]H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, and I. Fujimura, "Completely erasable phase change optical disk," Japanese Journal of Applied Physics, vol. 31, p. 461, 1992.
[17]L. v. Pieterson, M. H. R. Lankhorst, M. v. Schijndel, A. E. T. Kuiper, and J. H. J. Roosen, "Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview," Journal of Applied Physics, vol. 97, p. 083520, 2005.
[18]G. F. Zhou, H. J. Borg, J. C. N. Rijpers, and M. Lankhorst, "Crystallization behavior of phase change materials: comparison between nucleation- and growth-dominated crystallization," in Optical Data Storage, 2000. Conference Digest, 2000, pp. 74-76.
[19]F. Yeung, S. J. Ahn, Y. N. Hwang, C. W. Jeong, Y. J. Song, S. Y. Lee, S. H. Lee, K. C. Ryoo, J. H. Park, J. M. Shin, W. C. Jeong, Y. T. Kim, G. H. Koh, G. T. Jeong, H. S. Jeong, and K. Kim, "Ge2Sb2Te5 confined structures and integration of 64 Mb phase-change random access memory," Japanese Journal of Applied Physics, vol. 44, p. 2691, 2005.
[20]Y. Nishi, H. Kando, and M. Terao, "Simulation of recrystallization in phase-change recording materials," Japanese Journal of Applied Physics, vol. 41, p. 631, 2001.
[21]M. Terao, T. Morikawa, and T. Ohta, "Electrical phase-change memory: fundamentals and state of the art," Japanese Journal of Applied Physics, vol. 48, p. 080001, 2009.
[22]K. J. Choi, S. M. Yoon, N. Y. Lee, S. Y. Lee, Y. S. Park, B. G. Yu, and S. O. Ryu, "The effect of antimony-doping on Ge2Sb2Te5, a phase change material," Thin Solid Films, vol. 516, pp. 8810-8812, 2008.
[23]H. Zhu, K. Chen, Z. Ge, H. Xu, Y. Su, J. Yin, Y. Xia, and Z. Liu, "Binary semiconductor In2Te3 for the application of phase-change memory device," Journal of Materials Science, vol. 45, pp. 3569-3574, 2010.
[24]M. L. Lee, X. S. Miao, L. H. Ting, and L. P. Shi, "Ultrafast crystallization and thermal stability of In-Ge doped eutectic Sb70Te30 phase change material," Journal of Applied Physics, vol. 103, pp. 043501, 2008.
[25]H. Horii, J. H. Yi, J. H. Park, Y. H. Ha, I. G. Baek, S. O. Park, Y. N. Hwang, S. H. Lee, Y. T. Kim, K. H. Lee, U. I. Chung, and J. T. Moon, "A novel cell technology using N-doped GeSbTe films for phase change RAM," in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, pp. 177-178, 2003.
[26]K. H. Song, S. W. Kim, J. H. Seo, and H. Y. Lee, "Characteristics of amorphous Ag 0.1(Ge2Sb2Te5)0.9 thin film and its ultrafast crystallization," Journal of Applied Physics, vol. 104, pp. 103516, 2008.
[27]Y. H. Ha, J. H. Yi, H. Horii, J. H. Park, S. H. Joo, S. O. Park, U. I. Chung, and J. T. Moon, "An edge contact type cell for Phase Change RAM featuring very low power consumption," in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, pp. 175-176, 2003.
[28]E. Varesi, A. Modelli, P. Besana, T. Marangon, F. Pellizzer,A. Pirovano, R. Bez, "Advances in phase change memory technology," EPCOS’ 04
[29]M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, and R. A. M. Wolters, "Low-cost and nanoscale non-volatile memory concept for future silicon chips," Nat Mater, vol. 4, pp. 347-352, 2005.
[30]C. W. Jeong, S. J. Ahn, Y. N. Hwang, Y. J. Song, J. H. Oh, S. Y. Lee, S. H. Lee, K. C. Ryoo, J. H. Park, J. H. Park, J. M. Shin, F. Yeung, W. C. Jeong, J. I. Kim, G. H. Koh, G. T. Jeong, H. S. Jeong, and K. Kim, "Highly reliable ring-type contact for high-density phase change memory," Japanese Journal of Applied Physics, vol. 45, pp. 3233, 2006.
[31]D. H. Im, J. I. Lee, S. L. Cho, H. G. An, D. H. Kim, I. S. Kim, H. Park, D. H. Ahn, H. Horii, S. O. Park, U. I. Chung, and J. T. Moon, "A unified 7.5nm dash-type confined cell for high performance PRAM device," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp. 1-4, 2008.
[32]S. H. Lee, D. K. Ko, Y. Jung, and R. Agarwal, "Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires," Applied Physics Letters, vol. 89, pp. 223116, 2006.
[33]S. H. Lee, Y. Jung, and R. Agarwal, "Highly scalable non-volatile and ultra-low-power phase-change nanowire memory," Nat Nano, vol. 2, pp. 626-630, 2007.
[34]S. Xuhui, Y. Bin, G. Ng, M. Meyyappan, J. Sanghyun, and D. B. Janes, "Germanium antimonide phase-change nanowires for memory applications," Electron Devices, IEEE Transactions on, vol. 55, pp. 3131-3135, 2008.
[35]S. H. Lee, Y. Jung, H. S. Chung, A. T. Jennings, and R. Agarwal, "Comparative study of memory-switching phenomena in phase change GeTe and Ge2Sb2Te5 nanowire devices," Physica E: Low-dimensional Systems and Nanostructures, vol. 40, pp. 2474-2480, 2008.
[36]R. I. Walton, "Subcritical solvothermal synthesis of condensed inorganic materials," Chemical Society Reviews, vol. 31, pp. 230-238, 2002.
[37]J. Ma, Y. Wang, Y. Wang, Q. Chen, J. Lian, and W. Zheng, "Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties," The Journal of Physical Chemistry C, vol. 113, pp. 13588-13592, 2009.
[38]J. J. Kim, S. H. Kim, S. W. Suh, D. U. Choe, B. K. Park, J. R. Lee, and Y. S. Lee, "Hydrothermal synthesis of Bi2Te3 nanowires through the solid-state interdiffusion of Bi and Te atoms on the surface of Te nanowires," Journal of Crystal Growth, vol. 312, pp. 3410-3415, 2010.
[39]C. Jin, G. Zhang, T. Qian, X. Li, and Z. Yao, "Large-Area Sb2Te3 nanowire arrays," The Journal of Physical Chemistry B, vol. 109, pp. 1430-1432, 2005.
[40]D. Yu, J. Wu, Q. Gu, and H. Park, "Germanium Telluride nanowires and nanohelices with memory-switching behavior," Journal of the American Chemical Society, vol. 128, pp. 8148-8149, 2006.
[41]B. Yu, S. Ju, X. Sun, G. Ng, T. D. Nguyen, M. Meyyappan, and D. B. Janes, "Indium selenide nanowire phase-change memory," Applied Physics Letters, vol. 91, pp. 133119-133119-3, 2007.
[42]Y. Jung, S.-H. Lee, A. T. Jennings, and R. Agarwal, "Core−Shell heterostructured phase change nanowire multistate memory," Nano Letters, vol. 8, pp. 2056-2062, 2008.
[43]J. K. Ahn, K. W. Park, H. J. Jung, and S. G. Yoon, "Phase-Change InSbTe nanowires grown in situ at low temperature by Metal−Organic Chemical Vapor Deposition," Nano Letters, vol. 10, pp. 472-477, 2009.
[44]N. Han, S. I. Kim, J.-D. Yang, K. Lee, H. Sohn, H.-M. So, C. W. Ahn, and K.-H. Yoo, "Phase-change memory in Bi2Te3 nanowires," Advanced Materials, vol. 23, pp. 1871-1875, 2011.
[45]Y. Jung, S. H. Lee, D. K. Ko, and R. Agarwal, "Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect," Journal of the American Chemical Society, vol. 128, pp. 14026-14027, 2006.
[46]J. S. Lee, S. Brittman, D. Yu, and H. Park, "Vapor–liquid–solid and vapor–solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures," Journal of the American Chemical Society, vol. 130, pp. 6252-6258, 2008.
[47]Y. Jung, C. Y. Yang, S. H. Lee, and R. Agarwal, "Phase-change Ge-Sb nanowires: synthesis, memory switching, and phase-instability," Nano Letters, vol. 9, pp. 2103-2108, 2009.
[48]K. Kolev, M. Wautelet, and L. D. Laude, "CW laser-induced transformation of thin Sb, Se and Sb2Se3 films in air," Applied Surface Science, vol. 46, pp. 418-421, 1990.
[49]Z. Hurych, R. Mueller, C. C. Wang, and C. Wood, "Photoconductivity in amorphous Sb1-xSex layers," Journal of Non-Crystalline Solids, vol. 11, pp. 153-160, 1972.
[50]J. L. Murray, L. H. Bennett, H. B. B. Massalski, "Binary alloy phase diagrams," Metals Park, Ohio American Society for Metals, 1986
[51]G. P. Voutsas, A. G. Papazoglou, P. J. Rentzeperis, and D. Siapkas, "The crystal structure of antimony selenide, Sb2Se3," Zeitschrift für Kristallographie, vol. 171, pp. 261-268, 1985.
[52]T. Zhai, M. Ye, L. Li, X. Fang, M. Liao, Y. Li, Y. Koide, Y. Bando, and D. Golberg, "Single-crystalline Sb2Se3 nanowires for high-performance field emitters and photodetectors," Advanced Materials, vol. 22, pp. 4530-4533, 2010.
[53]J. Ma, Y. Wang, Y. Wang, P. Peng, J. Lian, X. Duan, Z. Liu, X. Liu, Q. Chen, T. Kim, G. Yao, and W. Zheng, "One-dimensional Sb2Se3 nanostructures: solvothermal synthesis, growth mechanism, optical and electrochemical properties," CrystEngComm, vol. 13, pp. 2369-2374, 2011.
[54]J. Ota and S. K. Srivastava, "Synthesis and optical properties of Sb2Se3 nanorods," Optical Materials, vol. 32, pp. 1488-1492, 2010.
[55]Y. Sung-Min, L. Nam-Yeal, R. Sang-Ouk, C. Kyu-Jeong, Y. S. Park, L. Seung-Yun, Y. Byoung-Gon, K. Myung-Jin, C. Se-Young, and M. Wuttig, "Sb-Se-based phase-change memory device with lower power and higher speed operations," Electron Device Letters, IEEE, vol. 27, pp. 445-447, 2006.
[56]A. T. Jennings, Y. Jung, J. Engel, and R. Agarwal, "Diameter-Controlled Synthesis of phase-change germanium telluride nanowires via the vapor−liquid−solid mechanism," The Journal of Physical Chemistry C, vol. 113, pp. 6898-6901, 2009.
[57]L. S. Brooks, "The Vapor Pressures of Tellurium and Selenium," Journal of the American Chemical Society, vol. 74, pp. 227-229, 1952.
[58]A. T. Aldred and J. N. Pratt, "Vapor Pressures or Zinc, Cadmium, Antimony, and Thallium," Journal of Chemical & Engineering Data, vol. 8, pp. 429-431, 1963.
[59]Jung Soon-Won, Yoon Sung-Min, Park Young-Sam, Lee Seung-Yun and Yu Byoung-Gon, "Control of the thickness and the length of germanium-telluride nanowires fabricated via the vapor-liquid-solid method," Journal of Korean Physical Society, vol. 54, 2009.
[60]R. S. Wagner and W. C. Ellis, "The vapor-liquid-solid mechanism of crystal growth and its application to silicon," Transactions Of The Metallurgical Society Of AIME, vol. 233, 1965
[61]X. Xiang, C. B. Cao, Y. J. Guo, and H. S. Zhu, "A simple method to synthesize gallium oxide nanosheets and nanobelts," Chemical Physics Letters, vol. 378, pp. 660-664, 2003.
[62]H. Yuan and Y. Zhang, "Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD," Journal of Crystal Growth, vol. 263, pp. 119-124, 2004.
[63]S.Y. Pung, K.L. Choy, and X. Hou, "Tip-growth mode and base-growth mode of Au-catalyzed zinc oxide nanowires using chemical vapor deposition technique," Journal of Crystal Growth, vol. 312, pp. 2049-2055, 2010.
[64]K. W. Kolasinski, "Catalytic growth of nanowires: Vapor-liquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth," Current Opinion in Solid State and Materials Science, vol. 10, pp. 182-191, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔