(3.235.11.178) 您好!臺灣時間:2021/03/07 07:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴伯誠
研究生(外文):Bo-Cheng Lai
論文名稱:單晶基板及離子束轟擊對氧化鎳/鎳鐵交換偏壓薄膜之效應
論文名稱(外文):The effects of single crystalline substrates and ion-beam bombardment of exchange-biased NiO/NiFe bilayers
指導教授:林克偉林克偉引用關係
口試委員:張文成歐陽浩
口試日期:2011-05-06
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:103
中文關鍵詞:交換偏壓離子束轟擊
外文關鍵詞:exchange biasion-beam bombardment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用雙離子束濺鍍系統製備氧化鎳(NiO)/鎳鐵(NiFe)雙層薄膜,並分成兩大部分: (I)於平行膜面施加一外加磁場(145 Oe),分別在不同基板上製備氧化鎳(20 nm)/鎳鐵(80 nm)雙層薄膜,以探討使用不同的基板對薄膜結構與磁性質所造成之影響;(II)利用輔助離子束以不同電壓對鎳鐵(18 nm)薄膜表面進行轟擊,並改變上層氧化鎳之厚度(5, 35nm),分別討論轟擊電壓及反鐵磁層厚度之效應,而此部分於無外加磁場下進行製程。

在基板效應部分,由結構分析中發現成長於MgO(111)單晶基板之雙層薄膜具有不同的從優取向。室溫之磁性質方面,鍍膜在SiO2基板上的雙層膜之矯頑磁力(Hc)約為2 Oe,且無明顯交換偏壓場(Hex ~ −2 Oe)。然而,使用MgO(100)、MgO(110)、MgO(111)和Al2O3(0001)、Al2O3(112 ¯0)單晶基板皆使氧化鎳/鎳鐵雙層膜之矯頑磁力增加,鍍在MgO(111)單晶基板上具有最大的矯頑磁力(~ 8 Oe),而對交換偏壓場則產生不同的結果,使用Al2O3單晶基板較MgO單晶基板能引發交換耦合效應,最大的交換偏壓場(~ 5 Oe)出現在鍍於Al2O3(112 ¯0)單晶基板之雙層薄膜。經由場冷至50 K,其磁性質顯示雙層膜鍍在Al2O3(112 ¯0)單晶基板上之矯頑磁力明顯增加至26 Oe,並且具有最大的交換偏壓場(Hex ~ −11 Oe)。

在離子束轟擊鎳鐵表面研究結果顯示,鎳鐵層厚度隨轟擊電壓上升而變薄(蝕刻作用),此可由X光繞射分析中NiFe(111)繞射峰減弱而得證。磁性質方面,氧化鎳厚度為5 nm之氧化鎳/鎳鐵雙層薄膜中,室溫和場冷至5K後皆無交換耦合效應的產生。然而將氧化鎳厚度增加至35 nm後,室溫中即具有交換偏壓場,在雙層膜界面未受離子束轟擊(Hex ~ −7 Oe)及轟擊電壓為70 V時(Hex~ −30 Oe)具有負交換偏壓場,而增加電壓至100 V以上均具有正的交換偏壓場(+Hex),且當電壓為130 V時有最大的正交換偏壓場(~ +40 Oe),矯頑磁力方面則隨著轟擊能量增強而增加。經場冷至5 K後,未受離子束轟擊之雙層薄膜具有最大的正交換偏壓場(~ +85 Oe),隨著離子束電壓增強,交換偏壓場逐漸降低並且其符號呈現正負值震盪的現象。

When spins at the interface between a ferromagnet (FM) and an antiferromagnet (AF) couple, a unidirectional anisotropy occurs, resulting in exchange bias. Our previous work on NiFe/NiO bilayers has shown that the exchange bias depends on the whole AF layer spin structures that have been altered with ion-beam bombardment during film deposition. Since exchange bias is dominated by interface magnetism, we wish to identify the dependence of the exchange bias on the interface microstructure by changing the deposition sequence. In this study, we have shown the effects of (1) different single crystalline substrates and (2) ion-beam bombardment on exchange-bias in NiO/NiFe bilayers. Firstly, different substrates showed at room temperature enhanced coercivities bilayers deposited on single crystalline MgO and Al2O3. However, when field cooling (12 kOe FC) the films to 50 K only the NiO(20nm)/NiFe(80nm) bilayer grown on a Al2O3 (112 ¯0) substrate exhibited an enhanced Hc (~ 26 Oe) as well as Hex (~ −11 Oe). Secondly, for different ion-beam bombardment energies (VEH) at room temperature a both positive and negative Hex was found in NiO(35nm)/NiFe bilayers, where the polarity of Hex depended on the energy used for Ar+ bombardment on the NiFe surface. The increased Hc with increasing VEH indicated that the NiFe layer was etched away with increasing Ar+ bombardment energies. In addition, the changes between magnetic easy and hard axis after ion-beam bombardment were revealed by their respective hysteresis loops. This magnetism is different from NiFe/NiO bilayers where the Ar+ bombardment was employed on the AF NiO surfaces. However, at 5 K under a 20 kOe FC process, a largest positive Hex (~ +85 Oe) was observed in NiO/NiFe (VEH= 0V) bilyers. Further, an oscillating Hex (between positive and negative) was found with increasing VEH. The dependence of the exchange bias field, Hex, with increasing VEH suggests strongly that the Ar ion-beam bombardment process may increase the spin canting in FM/AF interfaces (drop in Hex) or create uncompensated NiO spins (positive Hex), depending on the energy used. The change from +Hex to −Hex was likely due to the change in coupling (e.g FM to AF) at the interface.

致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 基礎理論 2
1-2-1 磁性物質簡介 2
1-2-2 磁異向性 7
1-3 交換偏壓 8
1-3-1 交換異向性 8
1-3-2 交換耦合機制 9
1-3-3 理論模型 11
1-4 應用 17
1-5 文獻回顧 19
1-6 第一章參考文獻 26
第二章 實驗 28
2-1 實驗設計 28
2-2 材料選用 30
2-3 薄膜製程 32
2-3-1 基板前處理 32
2-3-2 鍍膜參數 32
2-4 雙離子束濺鍍系統(Ion Beam Assisted Deposition, IBAD) 36
2-4-1 Kaufman離子源 37
2-4-2 End Hall離子源 38
2-5 第二章參考文獻 40
第三章 分析儀器原理與介紹 41
3-1 X光繞射儀( X-Ray Diffraction, XRD ) 41
3-2 穿透式電子顯微鏡( Transmission Electron Microscopy, TEM ) 44
3-3 震動樣品磁力計( Vibrating Sample Magnetometer, VSM ) 48
3-4 超導量子干涉磁量儀( Superconducting Quantum Interference Device Magnetometer, SQUID Magnetometer ) 49
3-5 鐵磁共振( Ferromagnetic resonance, FMR ) 51
3-6 第三章參考文獻 52
第四章 結果與討論 53
4-1 基板效應 53
4-2 離子束轟擊電壓效應 66
4-2-1 鎳鐵單層薄膜(VEH=0~150 V) 66
4-2-2 氧化鎳(5nm)/鎳鐵雙層薄膜(VEH=0~150 V) 72
4-2-3 氧化鎳(35 nm)/鎳鐵雙層薄膜(VEH=0~150 V) 77
4-3 第四章參考文獻 86
第五章 結論 88
附錄I 鐵磁共振(FMR)量測 89
附錄II End Hall離子源參數 93
附錄III 鐵磁層厚度效應 96

第一章參考文獻

[1] W. H. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956).
[2] W. H. Meiklejohn, J. Appl. Phys., 33, 1328 (1962).
[3] D. Mauri, H. C. Siegmann, P. S. Bagus, E. Kay, J. Appl. Phys., 62, 3047 (1987).
[4] A. P. Malozemoff, Phys. Rev. B, 35, 3679 (1987).
[5] N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997).
[6] T. C. Schulthess, W. H. Butler, Rev. Lett., 81, 4516 (1998).
[7] A.E. Berkowitz, Kentaro Takano, J Magn. Magn. Mater., 200, 552 (1999).
[8] J. Nogués, Ivan K. Schuller, J Magn. Magn. Mater., 192, 203 (1999).
[9] Nicola A. Spaldin,“Magnetic materials”.
[10] 金重勳主編, “磁性技術手冊”, 中華民國磁性技術協會。
[11] David Jiles, “Introduction to magnetism and magnetic materials”, Chapman &
Hall.
[12] J. Noguesa, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz,
M. D. Baro, Physics Reports, 422, 65 (2005).
[13] A. P. Malozemoff, J. Appl. Phys., 63, 3874 (1988).
[14] A. P. Malozemoff, Phys. Rev. B., 37, 7673 (1988).
[15] U. Nowak, K. D. Usadel, Phys. Rev. B., 66, 014430 (2002).
[16] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, D. Mauri,
Phys. Rev. B., 43, 1297 (1991).
[17] J.C. S. Kools, IEEE Trans. Magn., 32, 3165 (1996).
[18] 胡裕民、黃榮俊,“鐵磁/反鐵磁金屬薄膜之間的交換磁異向性”,物理雙月
刊廿二卷六期。
[19] Sang-Suk Lee, Do-Guwn Hwang, C. M. Park, K. A. Lee, J. R. Rhee, J. Appl.
Phys., 81, 5298 (1997).
[20] J.C.A. Huang, H.C. Chiu, J Magn. Magn. Mater., 209, 106 (2000).
[21] T. Ambrose, R. L. Sommer, C. L. Chien, Phys. Rev. B., 56, 83 (1997).
[22] S. Dubourg, J.F. Bobo, B. Warot, E. Snoeck, J.C. Ousset, Eur. Phys. J. B, 45,
175 (2005).
[23] Moon-Hee Lee, Sangyun Lee, Kyusik Sin, Thin Solid Films, 320, 298 (1998).
[24] D. Engela, A. Kronenberger, M. Jung, H. Schmoranzer, A. Ehresmann,
A. Paetzold, K. R. oll, J Magn. Magn. Mater., 263, 275 (2003).
[25] J. Nogues, D. Lederman, T. J. Moran, Ivan K. Schuller, Phys. Rev. Lett., 76, 4624
(1996).

第二章參考文獻

[1] R. C. Weast, “Handbook of Chemistry and Physics”, CRC Press, Inc 1986.
[2] E. M. Levin et al, “Phase Diagram for Ceramists”, Amer. Cer. Soc., 1964.
[3] M. T. Hutchings, Phys. Rev. B., 6, 3447 (1972).
[4] 郭仲儀、張書綺、林信儒、林克偉,“雙離子束濺鍍系統之原理及應用”,真
空科技十九卷四期。
[5] T. C. Huang, G. Lim, F. Parmigiani, E. Kay, J. Vac. Sci. Technol. A, 3, 216 (1985).
[6] R. A. Roy, D. Yee, J. J. Cuomo, J. Vac. Sci. Technol. A, 6, 1621 (1988).
[7] J. J Cuomo, A. M. Rossnagel, H. R. Kaufman eds., “Handbook of Ion Beam
Processing Technology”, Noyes Publishers, ch.3 (1989).
[8] H. R. Kaufman, J. Vac. Sci. Technol., 15, 272 (1978).
[9] H. R. Kaufman, R S. Robinson, R. I. Seddon, J. Vac. Sci. Technol A., 5, 2081
(1987).

第三章參考文獻

[1] B. D. Cullitu, S. R. Stock, “Element of X-Ray Diffraction”.
[2] 鄭信民、林麗娟,“X光繞射應用簡介”,工業材料雜誌181期。
[3] 汪健民主編,“材料分析”,中國材料科學學會。
[4] David B. Williams, C. Barry Carter, “Transmission Electron Microscopy”, Plenum
Press (1996).
[5] David Jiles, “Magnetism and Magnetic Materials”, Chapman & Hall (1991).
[6] 楊鴻昌,“最敏感的感測元件SQUID及其前瞻性應用”,物理雙月刊廿四卷
五期。
[7] L. H. Lewis, Konrad M. Bussmann, Rev. Sci. Instrum., 67, 3537 (1996).
[8] 嵇煥珮,國立成功大學物理研究所碩士論文。
[9] 郭仲儀,國立中興大學材料科學與工程學系博士學位論文。

第四章參考文獻

[1] R. C. O’ Handley, “Modern Magnetic Materials”, John Wiley and Sons Inc.(2002).
[2] J. Noguesa, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz,
M. D. Baro, Physics Reports, 422, 65 (2005).
[3] K. W. Lin and J. Y. Guo, J. Appl. Phys., 104, 123913 (2008).
[4] T. Ambrose, R. L. Sommer, C. L. Chien, Phys. Rev. B., 56, 83 (1997).
[5] Y. J. Tang, B. F. P. Roos, Phys. Rev. B., 62, 8654 (2000).
[6] W. H. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956).
[7] Hongtao Shi, David Lederman, Phys. Rev. B., 66, 094426 (2000).
[8] S. Riedling, M. Bauer, C. Mathieu, B. Hillebrands, R. Jungblut, J. Kohlhepp,
A. Reinders, J. Appl. Phys., 85, 6648 (1999).
[9] Haiwen Xi, Robert M. White, J. Appl. Phys., 86, 5169 (1999).
[10] Haiwen Xi, Robert M. White, Phys. Rev. B., 61, 1318 (2000).
[11] J. Geshev, L. G. Pereira, J. E. Schmidt, Phys. Rev. B., 64, 184411 (2001).
[12] T. Mewes, H. Nembach, M. Rickart, S. O. Demokritov, J. Fassbender,
B. Hillebrands, Phys. Rev. B., 65, 224423 (2002).
[13] J. Geshev, L. G. Pereira, J. E. Schmidt, Phys. Rev. B., 66, 134432 (2002).
[14] L. Sun, P. C. Searson, C. L. Chien, Phys. Rev. B., 71, 012417 (2005).
[15] Z. Y. Liu, S. Adenwalla, Appl. Phys. Lett., 82, 2106 (2003).
[16] Chyun. H. Su, Shen Chuan Lo, K. W. Lin, J. van Lierop, Hao Ouyang, J. Appl.
Phys. 105, 033904 (2009).
[17] J. Nogues, D. Lederman, T. J. Moran, Ivan K. Schuller, Phys. Rev. Lett., 76, 4624
(1996).
[18] T. J. Moran, J. Nogués, D. Lederman, Ivan K. Schuller, Appl. Phys. Lett., 72,
617 (1998).
[19] Shivaraman Ramaswamy, C. Gopalakrishnan, K. R. Ganesh, J. Vac. Sci. Technol.
B, 28, 795 (2010).
[20] D. Engela, A. Kronenberger, M. Jung, H. Schmoranzer, A. Ehresmann,
A. Paetzold, K. R. oll, J Magn. Magn. Mater., 263, 275 (2003).
[21] A. Mougin, T. Mewes, M. Jung, D. Engel, A. Ehresmann, H. Schmoranzer,
J. Fassbender, B. Hilebrands, Phys. Rev. B, 63, 060409R (2001).
[22] K. W. Lin, M. R. Wei, J. Y. Guo, J. Nanosci. Nanotechnol., 9, 2023 (2009).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔