(54.236.58.220) 您好!臺灣時間:2021/02/28 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝文揚
研究生(外文):Wen-Yang Hsieh
論文名稱:探討銦含量對氮化銦鎵光伏元件影響
論文名稱(外文):Characterization of InGaN-based photovoltaic by devices varying the Indium contents
指導教授:林佳鋒林佳鋒引用關係
指導教授(外文):Chia-Feng Lin
口試委員:張茂男陳思翰紀國鐘
口試日期:2011-06-08
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:67
中文關鍵詞:氮化銦鎵發光二極體太陽能電池能帶充填效應能帶平坦
外文關鍵詞:InGaNLight-EmittingSolar cellBand FillingFlat Band
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文實驗以相同構結和尺寸氮化銦鎵光伏元件,探討銦含量不同所造成的發光二極體特性以及光伏特性之分析。
在順向偏壓下照射雷射光激螢光光譜,顯示隨順向偏壓增加波長會有紅移現象,造成較大紅移量,主要是因為較大壓電場造成,隨順向偏壓導致能帶傾斜較嚴重。而在隨電流注入的EL量測中發現較大藍移量以及效率衰退原因,主要來自於較大壓電場使得能帶更加傾斜造成電子電洞波函數重疊機率下降,造成載子輻射複合效率下降。
在隨不同雷射功率激發的光螢光光譜,發現藍光樣品不論在室溫或低溫下都有較高的光激螢光強度。由於綠光樣品較大壓電場造成載子不易侷限在量子井,使得在量子井中有效的輻射再結合載子數下降造成螢光強度下降。
在太陽能量測特性中,由於綠光樣品量子井中銦含量較高造成光譜吸收的範圍變寬。在照射全波段光源觀察到綠光樣品相對藍光樣品有高約89.5%的短路電流,但有略低的開路電壓值,並發現綠光有較佳的太陽能效率。綠光樣品有較高效率的太陽能電池特性是由於較寬的吸收光譜造成較大的短路電流。
在變溫下不同雷射功率照射藍光及綠光試片量測太陽能電池,造成低溫(10k)下太陽能效率較室溫(300k)較率差異較大,主因為在低溫(10K)下藍光及綠光載子的遷移率變低及ITO阻值變大造成串聯阻值變大,使填充因子變低進而造成效率明顯降低。
當氮化銦鎵摻雜銦含量增加時,因晶格不匹配使壓電場增加,造成能帶傾斜程度增加。在發光二極體特性量測,發現其波長偏移量增加、效率衰退也更加嚴重,但在溫室下因其能帶傾較嚴重,使載子的電子電洞波函數較分離不易侷限在量子井內容易因熱激活影響發生載子溢流的情況,形成光電流。在太陽能量測中,銦含量增加也使得短路電流(光電流)增加及開路電壓下降。


In this thesis, the analysis and measurements of the different characteristics of light-emitting diodes and photovoltaic properties with the same structure and size of InGaN photovoltaic devices were performed for the variation of indium content.
For the forward bias photoluminescence spectra, the peak emission wavelength was red shifted by increasing of forward bias. The tendency of red-shift phenomenon resulted from the larger piezoelectric field in the InGaN active layer.
For EL spectra with the injection currents, the larger of blue-shift and decay of efficiency were caused by the band filling effect in the tilted InGaN well with a larger piezoelectric field and reduce overlapping probability the electron-hole wave functions and decrease the carrier radiative recombination efficiency.
According to the PL spectra with different laser power excitation, it is discovered that blue samples both had a higher intensity at room temperature or low temperature. On the other hand, the carriers were hard to confine in the MQW because of the large piezoelectric field in green LED samples. Therefore, it also made the decrease of PL intensity due to the decrease of effective numbers of carriers for recombination.
By increasing the Indium content in InGaN active layer, the lattice mismatch induced large piezoelectric field was increased. In the solar measurements, the wide range of absorption spectra resulted from the higher indium content InGaN quantum wells of the green devices. Under the full-band light illuminated, the short-circuit current of the green device had a 89.5% enhancement and the slightly lower open-circuit voltage compared with the blue device.


總目錄
中文摘要 IV
Abstract V
總目錄 VI
圖表目錄 VIII
第一章 序論 - 1 -
1-1 前言 - 1 -
1-2 氮化銦鎵光伏(Photovoltaic)特性簡介 - 2 -
1-3 研究動機 - 3 -
第二章 原理與文獻回顧 - 4 -
2-1 發光二極體發光原理 - 4 -
2-2 晶體內應變(Strain) - 7 -
2-3內部極化電場 - 10 -
2-4 太陽能電池基本原理 - 11 -
2-5 太陽電池電特性 - 13 -
2.6氮化銦鎵太陽光電池期刊文獻之探討 - 16 -
第三章 實驗儀器架構與流程 - 18 -
3-2 試片製備 - 19 -
3-3 分析儀器 - 21 -
3-3-1 X光繞射光譜儀(X-Ray Diffraction, XRD) - 21 -
3-3-2 電激螢光光譜(Electroluminescence, EL)分析裝置 - 21 -
3-3-3 光學顯微鏡(OM) - 21 -
3-3-4 變溫下不同功率光激發螢光光譜特性量測裝置 - 22 -
3-3-5 太陽能電池特性量測裝置 - 22 -
3-3-6 變溫下不同功率太陽能電池特性量測裝置 - 23 -
第四章 實驗結果與討論 - 26 -
4-1 X光繞射光譜分析氮化銦鎵之銦含量分析 - 26 -
4-2 氮化銦鎵光伏元電激螢光光譜分析: - 30 -
4-3氮化銦鎵光伏元件塊材在不同溫度下以不同雷射功率光激螢光光譜分析 - 36 -
4-5 氮化銦鎵光伏元件量測太陽能特性分析結果 - 52 -
4-5-1 氮化銦鎵光伏元件量測全波段太陽能特性分析 - 52 -
4-5-2氮化銦鎵光伏元件量測不同波段太陽能特性分析 - 54 -
4-5-3 不同溫度下以不同雷射功率照射之太陽能電池特性實驗結果 - 57 -
第五章 結論 - 63 -
參考文獻 - 64 -


[1] Chia-Feng Lin,z Jing-Jie Dai, Zhong-Jie Yang,Jing-Hui Zheng, and Shou-Yi Chang” Self-Assembled GaN:Mg Inverted Hexagonal Pyramids FormedThrough a Photoelectrochemical Wet-Etching Process” Electrochem. Solid-State Lett., vol. 8,
no. 12,pp. C185 (2005).
[2] Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum” Appl. Phys. Let.,vol. 79, no. 8,pp.1130 (2001).
[3] T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B. A. Haskell, S. Keller, U. K. Mishra, J. S. Speck, S. Nakamura, S. P. DenBaars, T. Sota, S. F. Chichibu, “ Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1−xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates”, Appl. Phys. Lett. , vol. 89,no. 9, pp.1906 (2006).
[4] I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells”, Appl. Phys. Lett.,vol. 86,no. 13,pp. 1108 (2005).
[5] D. Neamen, “An introduction to semiconductor devices”, The McGraw-Hill companies, Ch5. p178 (2006).
[6] Yu-Hsuan Sun, Yun-Wei Cheng, Szu-Chieh Wang, Ying-Yuan Huang, Chun-Hsiang Chang, Sheng-Chieh Yang, Liang-Yi Chen, Min-Yung Ke, Chi-Kang Li, Yuh-Renn Wu and JianJang Huang, “Optical Properties of the Partially Strain Relaxed InGaN/GaN Light-Emitting Diodes Induced by p-Type GaN Surface Texturing”, IEEE Electron Devices Letters, vol. 32, no. 2, (2011).
[7] I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells”, Appl. Phys. Lett., Vol. 86,no. 13,pp. 1108 (2005).
[8] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect”, Appl. Phys. Lett.,vol. 73,no.12, pp. 1691 (1998).
[9] C. Y. Lai, T. M. Hsu, W. H. C hang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy”, Jour.of Appl. Phys., vol.91,no. 1,pp. 531 (2002).
[10] Jae-Ho Song, Ho-Jong Kim, Byung-Jun Ahn,Yanqun Dong, Sayong Hong,
Jung-Hoon Song, Youngboo Moon, Hwan-Kuk Yuh, Sung-Chul Choi, and
Sangkee Shee 「Role of photovoltaic effects on characterizing emission
propertiesof InGaN/GaN light emitting diodes」APPLIED PHYSICS
LETTERS ,vol. 95,no. 26,pp. 3503 (2009).
[11] Martin F. Schubert, Qi Dai, Jiuru Xu, Jong Kyu Kim, and E. Fred Schubert,“Electroluminescence induced by photoluminescence excitation in GaInN/GaN light-emitting diodes”, Appl. Phys. Lett., vol. 95,no.19, pp. 1105, (2007).
[12] J.Wu,W.Walukiewicz,k.m.Yu,J.W.Ager,E.E.Haller,H.Lu.W.J.Schaff,Y.Saito,and Y.Nanishi, “Unusual properties of the fundamental band gap of InN”Appl.Phys Lett.,vol. 80,no. 21,pp.3967 (2002).
[13] Omkar jani, Christiana Honsberg,Yong Huang, June-O Song, Lan Ferguson, Gon Namkoong, Elaissa Trybus, Alan Doolittle, Sarah Kurtz “Design, Growth,Fabrication and Characterization of High-Band Gap InGaN/GaN Solar Cells”
Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on,vol. 01,pp20.(2006).
[14] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang,“InGaN/GaN multiple quantum well solar cells with long operating wavelengths” Appl. Phys. Lett. Vol.94,no. 6, pp.063505(2009)
[15] Misra , C. Boney , N. Medelci , D. Starikov , A. Freundlich , and A. Bensaoula “Fabrication and characterization of 2.3eV InGaN photovoltaic devices”
Photovoltaic Specialists Conference, 2008. PVSC ''08. 33rd IEEE,no. 11,pp. 1(2009)
[16] Sheng-wei Zeng, Xiao-mei Cai, and Bao-ping Zhang” Demonstration and Study of Photovoltaic Performances of InGaN p-i-n Homojunction Solar Cells” IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 46, no. 5,pp.783 (2010)
[17] Han Cheng Lee, Yan Kuin Su, Wen How Lan, Jia Ching Lin, Kuo Chin Huang,Wen Jen Lin,Yi Cheng Cheng, and Yu Han Yeh “Study of Electrical Characteristics of GaN-Based Photovoltaics With Graded InGaN Absorption Layer” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 23, no. 6,pp.347 (2011)
[18] Matioli, Elison,Neufeld, Carl; Iza, Michael; Cruz, Samantha C.,Al-Heji, Ali A.,Chen, Xu, Farrell, Robert M.,Keller, Stacia,DenBaars, Steven, Mishra, Umesh,Nakamura, Shuji,Speck, James; Weisbuch, Claude“ High internal and
external quantum efficiency InGaN/GaN solar cells” APPLIED PHYSICS LETTERS,vol. 98,no. 2,pp.021102 (2011).
[19] Jain, S. C.,Willander, M., Narayan, J., Overstraeten, R. Van“III–nitrides: Growth, characterization, and properties”.Appl. Phys. Lett. Vol. 87,no. 3,pp.956 (2000).
[20] L. Macht, P. R. Hagenan, S. Haffouz nd P. K. Larsen, “Microphotoluminescence mapping of laterally overgrown GaN layers on patterned Si (111) substrates”,Appl. Phys. Lett., vol. 87,no. 13, pp. 131904 (2005).
[21] T. Takeuchi, S. Sota, M. Katsuragaw M. Komori, H. Takeuchi, H. Amano and I.Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GalnN Strained Quantum Wells”, Jpn. J. Appl. Phys, vol. 36,no.4A, pp. 382 (1997).
[22] Jinn-Kong Sheu, Chih-Ciao Yang, Shang-Ju Tu, Kuo-Hua Chang, Ming-Lun Lee, Wei-Chih Lai, and Li-Chi Peng” Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers” IEEE Electron Device Letter.,vol.30,no. 3,pp.225 (2009).
[23] Martin F. Schubert1, E. Fred Schubert” Effect of heterointerface polarization charges and well width upon capture and dwell time for electrons and holes above GaInN/GaN quantum wells” APPLIED PHYSICS LETTERS ,vol. 96,no.13,pp. 1102, (2010).
[24] Satoshi Watanabe, Norihide Yamada, Masakazu Nagashima, Yusuke Ueki,Chiharu Sasaki, Yoichi Yamada, sunemasa Taguchi, Kazuyuki Tadatomo,Hiroaki Okagawa, and Hiromitsu Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes”, Appl.Phys. Lett., vol. 83, no. 24, (2003).
[25] Sang-Heon Han1, Dong-Yul Lee, Hyun-Wook Shim, Gwon-Chul Kim,Young,Sun Kim, Sung-Tae Kim, Sang-Jun Lee, Chu-Young Cho and Seong-Ju Park ”Improvement of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal wells” J. Phys. D, Appl.hys.,vol., 43,no.35, pp. 4004 (2011).
[26] Ya-Ju Lee, Ching-Hua Chiu, Chih Chun Ke, Po Chun Lin, Tien-Chang Lu,Hao-Chung Kuo, Senior Member, IEEE,and Shing-Chung Wang” Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate “IEEE JOURNAL OF SELECTED
TOPICS IN QUANTUM ELECTRONICS, vol. 15, no. 4, pp. 1137( 2009).
[27] K. Y. Lai,G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He1,” Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells” APPLIED PHYSICS LETTERS, vol . 96 ,no. 08 (2010).
[28] Yousuke Kuwahara, Takahiro Fujii, Toru Sugiyama, Daisuke Iida, Yasuhiro Isobe, Yasuharu Fujiyama,Yoshiki Morita, Motoaki Iwaya, Tetsuya Takeuchi, Satoshi Kamiyama, Isamu Akasaki, and Hiroshi Amano “GaInN-Based Solar Cells Using Strained-Layer GaInN/GaInN Superlattice Active Layer on a Freestanding GaN Substrate” Applied Physics Express, vol. 4,no. 2 ,pp.021001 (2011)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林東泰 (1992)。休閒覺知自由與工作滿足之研究。社會教育學刊,21,
2. 林佳蓉(2002)。台灣地區老人休閒參與和休閒阻礙之研究。國立體育學院論叢,12(2),59-76。
3. 林項爵(2010)。淺談如何利用校外教學來實施國小學童休閒教育。北縣教育,70,93-98。
4. 林東泰(1994)。都會地區成人及青少年休閒認知和態度研究。民意研究季刊,188,41-67。
5. 林佳旺 (2004)。國小兒童網路使用之現況與問題探究。師說,180,
6. 張粹文、林宇旋、蔡秀鳳、張新儀、吳浚明 (2006)。台灣地區幼兒及兒童靜態活動與日常生活行為問題初探-2005年國民健康訪問暨藥物濫用調查結果。國民健康訪問調查研究簡訊,5,1-12。
7. 劉子利(2001)。休閒教育的意義、內涵、功能及其實施。戶外遊憩研究,14(1),33-53。
8. 歐陽誾(2007)。網路世界不設防 淺談兒童及青少年網路安全的重要 性。國教之友, 58(3),25-33。
9. 鄭琦玉(1995)。日月潭風景特定區遊客特性及遊憩需求型態分析。觀光研究學報,1(4),39-53。
10. 9. 林淑真、梁金樹、余坤東,〈國家資源投入對航空站發展國內層面運籌體系之影響分析〉,《民航季刊》第7卷第1期
11. 14. 張心怡,〈評析當前東亞區域經濟整合與台灣因應之道〉,《歐洲國際評論》,1996年第2期
12. 25. 蔡篤謙,〈兩岸直航對中正機場貨運影響分析報告〉,《民航季刊》第7卷第1期
 
系統版面圖檔 系統版面圖檔