跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 14:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡篤承
研究生(外文):Du-Cheng Tsai
論文名稱:TiVCr基多元薄膜製備、性質與應用研究
論文名稱(外文):Preparation, Characteristic and Application of TiVCr-based Multi-element Thin Films
指導教授:薛富盛薛富盛引用關係
口試委員:葉均蔚謝章興張守一曹春暉李英杰
口試日期:2011-04-11
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:175
中文關鍵詞:高熵合金硬質薄膜擴散阻障層
外文關鍵詞:High entropy alloyhard coatingdiffusion barrier layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要利用射頻磁控濺鍍法以單一等莫耳多元合金靶材在Ar或/與N2之氣氛下製備TiVCr和TiVCrZrY多元合金或氮化物薄膜於Si晶片上。藉由改變鍍膜參數來研究此薄膜的微結構與性質。研究結果與討論主要分為下列幾個部分。第一部分探討濺鍍壓力(0.33–1 Pa)對於TiVCr薄膜結構與性質之影響。在這個研究發現,TiVCr薄膜具有非晶與BCC結晶的複合相。其中非晶相為一較鬆散的纖維結構;而BCC結晶相則為較緻密的柱狀晶結構。隨著濺鍍壓力增加,結構也變得越來越鬆散,薄膜硬度也從11.6 GPa降低至4.5 GPa。第二部分探討基板偏壓(0-15 W)對於TiVCr和TiVCrZrY多元合金薄膜的結構與性質影響。在這個研究,TiVCr和TiVCrZrY多元合金薄膜分別呈現BCC與HCP結構;偏壓上升會造成薄膜變成很緻密,薄膜性質也隨著基板偏壓上升而獲得改善。TiVCr和TiVCrZrY多元合金薄膜因此硬度分別增加至11和14 GPa,而電阻率則分別下降至80和100 μΩ-cm。第三部分主要在不外加基板偏壓與溫度的條件下,製備(TiVCr)N薄膜,探討N2流量比例(0-100%)的變化對於薄膜結構與性質的影響。隨N2流量增加,微結構從多孔轉變成較緻密的柱狀晶結構,因此其硬度被增強至15 GPa;電阻率降低至10,000μΩ-cm。第四部分則報導在不外加基板偏壓與溫度的條件下,製備(TiVCrZrY)N薄膜,討N2流量比例(0-100%)的變化對於薄膜結構與性質的影響。相似於(TiVCr)N薄膜,結構隨著N2流量比例增加越來越緻密,從原先多孔的柱狀晶結構轉變成極為緻密的等軸晶結構,也因此薄膜硬度增強至17.5 GPa。第五部分探討在外加偏壓下,N2流量比例(0-50%)對(TiVCr)N薄膜的結構與性質影響。隨N2流量比例增加,薄膜結構從具有(1 1 1)優選取向、具有錐形表面和空缺晶界的柱狀晶結構轉變為幾乎(2 0 0)優選取向、具有圓頂表面且極為緻密的柱狀晶結構。薄膜硬度也因此提升至18.74 GPa. 第六部分則將第五部分製備之TiVCr薄膜應用至擴散阻障之研究;所製備之擴散阻障層厚度為15 nm。經擴散阻障性質分析發現,TiVCr薄膜在700 oC退火候仍能有效阻障銅矽之交互擴散;結合其較低電阻率及奈米晶結構的特性,在IC元件製程持續微縮的情況下,具有極佳的發展潛力。

The aim of this study is to prepare the TiVCr and TiVCrZrY multi-element coatings onto Si substrates in Ar and/or N2 atmosphere by magnetron sputtering using a single equimolar TiVCr and TiVCrZrY alloy target, respectively. The deposition parameters were varied to investigate the change of structural and properties of these coatings. The research is mainly divided into six sections. In the first section, the TiVCr coatings were deposited onto Si substrates to see the influence of working pressure (0.33-1 Pa) on structure and properties of these coatings. In this study, the TiVCr coatings have a composite structure with amorphous and body-centered cubic (bcc) crystal phases comprised of bundles of fine fibrous structures and V- shaped columnar structures, respectively. Compared with the amorphous zone, the crystalline zone has a denser and more compact structure. The coating microstructure became more porous as working pressure increased. Consequently, the crystal zones of the deposited coatings at 0.33 Pa obtained higher hardness (11.6 GPa) while the deposited coatings at 1 Pa achieved lower hardness (4.5 GPa). In the second section, influence of the substrate bias (0-15 W) on the structure and properties of these coatings were investigated. The deposited TiVCr and TiVCrZrY alloy films possessed a bcc and an hcp solid-solution structure, respectively. As the bias power increased, the microstructure of the films obviously changed from a porous to a dense columnar feature, and the density of the voids existing between the columns decreased. Accordingly, the physical properties of the films were improved. The hardness of the TiVCr and TiVCrZrY films was enhanced to about 11 and 14 GPa, and the electrical resistivity was lowered to 80 and 100 μΩ-cm, respectively. In the third section, (TiVCr)N coatings were deposited under various N2-to-total (N2 + Ar) flow ratio, RN, at room temperature without applying substrate bias. As the RN increases, the microstructure of the coatings obviously changed from a porous to a compact and dense columnar structure. Therefore, the hardness of the (TiVCr)N was enhanced to about 15 GPa, and the electrical resistivity was lowered to 10,000 μΩ-cm. In the fourth section, we reports the influence of growth conditions on the characteristics of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering at various RN. The voids in the coatings are eliminated and the growth of the columnar crystal structures is inhibited along with an increasing RN. As a consequence, highly packed equiaxed amorphous structures with smooth surfaces are formed. The coatings accordingly achieved a pronounce hardness of 17.5 GPa when RN = 100%. In the fifth section, the (TiVCr)N coatings were deposited on Si substrate via rf magnetron sputtering of a TiVCr alloy target under dc bias in a N2/Ar atmosphere. The preferred orientation of the (TiVCr)N coatings changed from (1 1 1) to (2 0 0) with increasing RN. In addition, the microstructure of the nitride coatings was also converted from a columnar structure with void boundaries and rough-faceted surface to a very dense structure with a smooth-domed surface. The grain size of the (TiVCr)N coatings decreased as the RN was increased. Accordingly, the hardness of the (TiVCr)N coatings was enhanced from 4.06 to18.74 GPa as the RN was increased. In the final section, 15 nm-thick sputter-deposited TiVCr alloy thin films were developed as diffusion barrier layers for Cu interconnects. In conjunction with X-ray diffraction, transmission electron microscopy, and energy-dispersive spectroscopy analyses, the Si/TiVCr/Cu film stack remained stable at a high temperature of 700 °C for 30 min. The mixed TiVCr refractory elements alloy barrier layer has the high potential for the future IC development because of its lower resistivity (117μΩ-cm) and nanocrystalline structure.

Table of Content

摘 要 i
Abstract iii
Table of Content v
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1-1 Hard Coatings 1
1-2 High Entropy Alloy coatings 12
1-3 Diffusion Barrier Layer 15
References 20
Chapter 2 Microstructure and Characterization of TiVCr and TiVCrZrY Films Deposited by Magnetron Sputtering 25
Abstract 25
2-1 Introduction 27
2-2 Experimental 29
2-3 Results and discussion 31
2-4 Summary 43
References 45
Chapter 3 Effect of nitrogen flow ratios on the microstructure and properties of (TiVCr)N coatings prepared by reactive magnetic sputtering 71
Abstract 71
3-1 Introduction 72
3-2 Experimental 74
3-3 Results and discussion 76
3-3-1 Crystal Structure 76
3-3-2 Microstructure 79
3-3-3 Properties 81
3-4 Summary 83
References 84
Chapter 4 Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering 97
Abstract 97
4-1 Introduction 98
4-2 Experimental 100
4-3 Results and discussion 102
4-3-1 Crystal Structure 102
4-3-2 Microstructure 105
4-3-3 Mechanical Properties 107
4-4 Summary 109
References 110
Chapter 5 Microstructure and mechanical properties of (TiVCr)N coatings prepared by energetic bombardment sputtering with different nitrogen flow ratios 121
Abstract 121
5-1 Introduction 122
5-2 Experimental 126
5-3 Results and discussion 128
5-3-1 Crystal structures and Crystallinity 128
5-3-2 Microstructure Development 132
5-3-3 Mechanical Properties 134
5-4 Summary 136
References 137
Chapter 6 Diffusion barrier performance of TiVCr alloy films in Cu metallization 150
Abstract 150
6-1 Introduction 151
6-2 Experimental 153
6-3 Results and discussion 155
6-4 Summary 158
References 159
Chapter 7 Conclusion 168
Vita and Publications List 171

List of Figures

Fig. 1-1-1. Different types of multilayer coatings: (a) small number of single layers, (b) high number of nonisostructural single layers, (c,d) high number of isostructural single layers-superlattice 5
Fig. 1-1-2. Hardness of TiN-CrN/AlN superlattice structure as a function of the superlattice period 6
Fig. 1-1-3. Hardness of TiN/VN(100) superlattice structure as a function of the superlattice period 7
Fig. 1-1-4. With grain size decreased no dislocations can propagate, deformation mainly by grain boundary sliding, substantial increase in hardness 8
Fig. 1-1-5. Tensile strength and elastic limit of strong materials in comparison with the superhard nanocomposites 9
Fig. 1-1-6. Thermal stability (isochronal annealing in pure N2 or forming gas for 30 min at each temperature) of nc-TiN/a-Si3N4 deposited by magnetron sputtering close to the optimum deposition conditions 10
Fig. 1-3-1. Plot of barrier thicknesses and stable temperatures in Si/barrier/Cu structures 18
Fig. 2-1. Plan view and cross-sectional SEM images of the TiVCr alloy coatings deposited at various working pressures: (a) 0.33 Pa, (b) 0.67 Pa, and (c) 1 Pa. 50
Fig. 2-2. Cross-sectional TEM micrographs of the TiVCr alloy coatings deposited at various working pressures: (a) 0.33 Pa, (b) 0.67 Pa, and (c) 1 Pa. 51
Fig. 2-3. Cross-sectional TEM micrographs of the TiVCr alloy coatings deposited at working pressures is 0.33 Pa. (a) Bright-filed image. (b) Dark-filed image using the (1 1 0) diffraction rings indicated by circles in the SAD pattern in (c). (c) SAD pattern. (d) Higher magnification image of the region outlined by the black box in (a). (e) High resolution TEM lattice image of the region outlined by the black box in (a). (f) SAD patterns of zone A. (g–i) NBD patterns of zone B with the electron beam parallel to the directions of [1 1 1], [1 1 0], and [0 0 2] 52
Fig. 2-4. ESCA element contents in TiVCr and TiVCrZrY films deposited at various substrate biases 54
Fig. 2-5. XRD patterns of (a) TiVCr and (b) TiVCrZrY films deposited at various substrate biases 55
Fig. 2-6. Plan-view and cross-sectional SEM micrographs of TiVCr films deposited at various substrate biases: (a) 0, (b) 5, and (c) 15 W. 56
Fig. 2-7. Plan-view and cross-sectional SEM micrographs of TiVCrZrY films deposited at various substrate biases: (a) 0, (b) 5, and (c) 15 W. 57
Fig. 2-8. Plan-view and cross-sectional TEM micrographs with SAD patterns of TiVCr films deposited at various substrate biases: (a) 0, (b) 5, and (c) 15 W. 58
Fig. 2-9. Plan-view and cross-sectional TEM micrographs with SAD patterns of TiVCrZrY films deposited at various substrate biases: (a) 0, (b) 5, and (c) 15 W. 59
Fig. 2-10. AFM images of TiVCr films deposited at various substrate biases: (a) 0, (b) 5, and (c) 15 W. 60
Fig. 2-11. AFM images of TiVCrZrY films deposited at various substrate biases: (a) 0, (b) 5, and (c) 15 W. 61
Fig. 2-12. Hardness and elastic modulus of TiVCr and TiVCrZrY films deposited at various substrate biases. 62
Fig. 2-13. Electrical resistivity of TiVCr and TiVCrZrY films deposited at various substrate biases. 63
Fig. 2-14. Relative intensity of light reflection of TiVCr and TiVCrZrY films deposited at various substrate biases. 64
Fig. 3-1. Atomic percentage of each element in the deposited (TiVCr)N coatings as a function of RN.. 87
Fig. 3-2. X-ray diffraction pattern of the (TiVCr)N coatings deposited at various RN. 88
Fig. 3-3. AFM images of the (TiVCr)N coatings deposited at various RN. 89
Fig. 3-4. Plan-view and cross-sectional SEM morphologies of the (TiVCr)N coatings deposited with different RN: (a) 0, (b) 33 %, (c) 66 %, and (d) 100 %. 90
Fig. 3-5. Plan-view and cross-sectional TEM microstructures with SAD patterns of the (TiVCr)N coatings deposited with different RN: (a) 0, (b) 33 %, (c) 66 %, and (d) 100 %. 91
Fig. 3-6. Hardness of the (TiVCr)N coatings as a function of RN. 92
Fig. 3-7. Electrical resistivity of the (TiVCr)N coatings as a function of RN. 93
Fig. 3-8. Relative intensity of light reflection of the (TiVCr)N coatings as a function of RN.. 94
Fig. 4-1. ESCA depth profiles of (TiVCrZrY)N coatings deposited at RN=66%. 112
Fig. 4-2. X-ray diffraction pattern of the (TiVCrZrY)N coatings deposited at various RN. 113
Fig. 4-3. Plan-view and cross-sectional SEM micrographs of the (TiVCrZrY)N coatings deposited at various RN: (a) 0, (b) 33%, (c) 66%, and (d) 100%. 114
Fig. 4-4. Plan-view and cross-sectional TEM micrographs with SAD patterns of the (TiVCrZrY)N coatings deposited at various RN: (a) 0, (b) 33%, (c) 66%, and (d) 100%. 115
Fig. 4-5. AFM images of the (TiVCrZrY)N coatings deposited at various RN: (a) 0, (b) 33%, (c) 66%, and (d) 100%. 116
Fig. 4-6. Hardness and elastic modulus of the (TiVCrZrY)N coatings deposited at various RN. 117
Fig. 5-1. EPMA element contents in (TiVCr)N coating deposited at various RN. 141
Fig. 5-2. X-ray diffraction pattern of the (TiVCr)N coatings deposited at various RN. 142
Fig. 5-3. Plan-view and cross-sectional SEM micrographs of the (TiVCr)N coatings deposited at various RN: (a) 0,(b) 10,(c) 20,(d) 30,(e) 40,and (f) 50%. 143
Fig. 5-4. Plan-view and cross-sectional TEM micrographs with SAD patterns of the (TiVCr)N coatings deposited at various RN: (a) 0,(b) 10, and (c) 50%. 144
Fig. 5-5. AFM images of the (TiVCr)N coatings deposited at various RN: (a) 0, (b) 10, (c) 20, (d) 30, (e) 40, and (f) 50%. 145
Fig. 5-6. Hardness and elastic modulus of the (TiVCr)N coatings deposited at various RN. 146
Fig. 6-1. XRD patterns of the as-deposited, 700 °C-annealed, 800 °C-annealed, and 900 °C-annealed Si/TiVCr/Cu film stacks. 161
Fig. 6-2. SEM micrographs of the (a) as-deposited, (b) 700 °C-annealed, and (c) 900 °C-annealed Si/TiVCr/Cu film stacks. 162
Fig. 6-3. Cross-section TEM micrographs of the (a) as-deposited, (b) 700 °C-annealed, and (c) 900 °C-annealed Si/TiVCr/Cu film stacks. 163
Fig. 6-4. EDS depth profiles of the (a) as-deposited and (b) 700 °C-annealed Si/TiVCr/Cu film stacks. 164
Fig. 6-5. HR-TEM images of the (a) as-deposited and (b) 700 °C- annealed Si/TiVCr/Cu film stacks. 165
Fig. 6-6. Sheet resistance of the as-deposited, 700 °C-annealed, 800 °C-annealed, and 900 °C-annealed Si/TiVCr/Cu film stacks. 166

List of Tables

Table 1-1-1 Comparison of hard bulk materials, hard single layer films and selected hard and superhard nanocomposite coatings. 11
Table 1-2-1 Comparison of the mechanical properties of high entropy alloy coatings research published recently. 14
Table 1-3-1 Comparison of the maximum working temperature of barrier research published recently. 19
Table 2-1 TEM-EDS analysis of A and B sites in Fig. 2-3d. 65
Table 2-2 Nanohardness of TiVCr alloy films deposited at various working pressure. 66
Table 2-3 Relative intensities of diffraction peaks and degrees of preferred orientation of TiVCr films. 67
Table 2-4 Relative intensities of diffraction peaks and degrees of preferred orientation of TiVCrZrY films. 68
Table 2-5 Crystalline sizes and thicknesses of TiVCr films. 69
Table 2-6 Crystalline sizes and thicknesses of TiVCrZrY films. 70
Table 3-1 Deposition conditions of the TiVCr alloy and nitride coatings. 95
Table 3-2 Relative intensities of diffraction peaks, average grain sizes, and deposition rate of TiVCr alloy and nitride coatings. 96
Table 4-1 Deposition conditions of the (TiVCrZrY)N coatings. 118
Table 4-2 Chemical compositions of the (TiVCrZrY)N coatings. 119
Table 4-3 Relative intensities of diffraction peaks, grain sizes and deposition rate of (TiVCrZrY)N coatings. 120
Table 5-1 Deposition conditions of the (TiVCr)N coatings. 147
Table 5-2 Relative intensities of diffraction peaks, average grain sizes and deposition rate of (TiVCr)N coatings. 148
Table 5-3 Interplanar spacing (d) and diffraction angle (2θ) of BCC (1 1 0) planes of individual elements and TiVCr alloy coatings as well as that of FCC (2 0 0) planes of individual nitrides and (TiVCr)N coatings deposited at RN=50%. 149
Table 6-1 The maximum working temperature of other barrier research reported recently. 167

Chapter 1

[1]. W. Grzesik, Advanced Protective Coatings for Manufacturing and Engineering, Cincinnati, p. 40-55 (2003).
[2]. U. Helmersson, S. Todorova, S. A. Barnett, J. E. Sundgren, L. C. Markert, J. E. Greene, J. Appl. Phys. 62 (1987) 481-484.
[3]. P. B. Mirakami, L. Hultman, S. A. Barnett. Appl. Phys. Lett. 57 (1990) 2654-2656.
[4]. M. Shinn, L. Hultman, S. A. Barnett, J. Mater. Res. 7 (1992) 901-911.
[5]. X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde, S. A. Barnett, J. Vac. Sci. Technol. A 10 (1992) 1604-1609.
[6]. X. Chu, S. A. Barnett, M. S. Wong, W. D. Sproul, Surf. Coat. Technol. 57 (1993) 13-18.
[7]. D. Li, X. W. Lin, S. C. Chen, V. P. Dravid, Y. W. Chung, M. S. Wong, W. D. Sproul. Appl. Phys. Lett. 68 (1996) 1211-1213.
[8]. M. L. Wu, W. D. Qian, Y. W. Chung, Y. Y. Wang, M. S. Wong, W. D. Sproul, Thin Solid Films 308-309 (1997) 113-117.
[9]. H. Jensen, J. Sobota, G. Sorensen, Surf. Coat. Technol. 94-95 (1997) 174-178.
[10]. H. Jensen, J. Sobota, G. Sorensen, J. Vac. Sci. Technol. A 16 (1998) 1180-1884.
[11]. K. K. Shih, D. B. Dove, Appl. Phys. Lett. 61 (1992) 654-656.
[12]. X. Chu, M. S. Wong, W. D. Sproul, S. A. Barnett, Surf. Coat. Technol. 61 (1993) 251-256.
[13]. A. Madan, X. Chu, S. A. Barnett, Appl. Phys. Lett. 68 (1996) 2198-2200.
[14]. A. Madan, Y. Y. Wang, S. A. Barnett, C. Engström, H. Ljungcrantz, L. Hultman, M. Grimsditch, J. Appl. Phys. 84 (1998) 776-785.
[15]. S. Veprek, S. Mukherjee, P. Karvankova, H. D. Männling, J. L. He, K. Moto, J. Prochazka, A. S. Argon, J. Vac. Sci. Technol. A 21 (2003) 532-544.
[16]. J. E. Field, The Properties of Diamond, Academic, London, (1979).
[17]. S. M. Gorbatkin, R. L. Rhoades, T. Y. Tsui, W. C. Oliver, Appl. Phys. Lett. 65 (1994) 2672-2674.
[18]. W. C. Oliver, G. M. Pharr, J. Mater. Res. 7 (1991) 1564-1583.
[19]. A. A. Voevodin, J. S. Zabinski, Diamond Relat. Mater. 7 (1998) 463-467.
[20]. T. Y. Tsui, G. M. Pharr, W. C. Oliver, C. S. Bhatia, R. L. White, S. Anders, A. Anders, I. G. Brown, Mater. Res. Soc. Symp. Proc. 383 (1995) 447-452.
[21]. S. Vepřek, Thin Solid Films 317 (1998) 449-454.
[22]. S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jílek, M. Šíma, Surf. Coat. Technol., 108-109 (1998) 138-147.
[23]. S. Vepřek, Thin Solid Films 297 (1997) 145-153.
[24]. C. Mitterer, P. H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hrubý, J. Musil, J. Vlček, Surf. Coat. Technol. 120-121 (1999) 405-411.
[25]. J. Musil, P. Zeman, H. Hrubý, P. H. Mayrhofer, Surf. Coat. Technol. 120-121 (1999) 179-183.
[26]. A. Cavaleiro, B. Trindade, M. T. Vieira, Surf. Coat. Technol. 116-119 (1999) 944-948.
[27]. C. Louro, A. Cavaleiro, Surf. Coat. Technol. 116-119 (1999) 74-80.
[28]. M. Benda, J. Musil, Vacuum 55 (1999) 171-175.
[29]. J. Musil, H. Hrubý, Thin Solid Films 365 (2000) 104-109.
[30]. Y. Min, Y. Makino, M. Nose, K. Nogi. Thin Solid Films 339 (1999) 203-208.
[31]. J. Musil, H. Poláková, Surf. Coat. Technol. 127 (2000) 99-106.
[32]. F. Regent, J. Musil, Surf. Coat. Technol. 142-144 (2001) 146-151.
[33]. J. Musil, H. Poláková, V. Cibulka, Czech. J. Phys. 49 (1999) 359-372.
[34]. A. A. Voevodin, J. S. Zabinski, J. Mater. Sci. 33 (1998) 319-327.
[35]. J. Procházka, P. Karvánková, M. G. J. Vepˇrek-Heijman, S. Vepˇrek, Mater. Sci. Eng. A 384 (2004) 102-116.
[36]. G. Long, J. Am. Ceram. Soc. 42 (1959) 53-59.
[37]. O. Knotek, T. Leyendecker, F. Jungblut, Thin Solid Films 153 (1987) 83-90.
[38]. D. B. Lews, I. Wadsworth, W. D. Münz, R. Kuzel Jr., V. Valvoda, Surf. Coat. Technol., 116–119 (1999) 284-291.
[39]. F. Huang, G. Wei, J. A. Barnard, M. L. Weaver, Surf. Coat. Technol. 146–147 (2001) 391-397.
[40]. O. Knotek, M. Bo¨hmer, T. Leyendecker, F. Jungblut, Mater. Sci. Eng. A 105-106 (1988) 481-488.
[41]. W. D. Münz, Werkstoffe und Korrosion 41 (1990) 753-754.
[42]. Y. Makino, Surf. Coat. Technol. 193 (2005) 185-191.
[43]. A. Sugiyama, H. Kajioka, Y. Makino, Surf. Coat. Technol. 97 (1997) 590-594.
[44]. Y. Makino, K. Nogi, Surf. Coat. Technol. 98 (1998) 1008-1012.
[45]. H. Hasegawa, T. Yamamoto, T. Suzuki, K. Yamamoto, Surf. Coat. Technol. 200 (2006) 2864-2869.
[46]. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
[47]. P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Adv. Eng. Mater. 6 (2004) 74-78.
[48]. T. K. Chen, T. T. Shun, J. W. Yeh, M. S. Wong, Surf. Coat. Technol. 188 (2004) 193-200.
[49]. T. K. Chen, M. S. Wong, T. T. Shun, J. W. Yeh, Surf. Coat. Technol. 200 (2005) 1361-1365.
[50]. C. H. Lai, S. J. Lin, J. W. Yeh, S. Y. Chang, Surf. Coat. Technol. 201 (2006) 3275-3280.
[51]. C. H. Lin, J. G. Duh, J. W. Yeh, Surf. Coat. Technol. 201 (2007) 6304-6308.
[52]. H. W. Chang, P. K. Huang, A. Davison, J. W. Yeh, C. H. Tsau, C. C. Yang, Thin Solid Films 516 (2008) 6402-6408.
[53]. M. H. Tsai, C. H. Lai, J. W. Yeh, J. Y. Gan, J. Phys. D:Appl. Phys. 41 (2008) 235402-1235402-7.
[54]. Y. S. Huanga, L. Chenb, H. W. Lui, M. H. Cai, J. W. Yeh, Mater. Sci. Eng. A 457 (2007) 77-83.
[55]. P. K. Huang, J. W. Yeh, Surf. Coat. Technol. 203 (2009) 1891-1896.
[56]. M. Wittmer, J. Vac. Sci. Technol. A 2 (1984) 273-280.
[57]. T. Kouno, H. Niwa, M. Yamada, J. Electrochem. Soc. 145 (1998) 2164-2167.
[58]. C. A. Chang, J. Vac. Sci. Technol. A 8 (1990) 3796-3802.
[59]. E. Kolawa, J. S. Chen, J .S. Reid, P. J. Pokela, M. A. Nicolet, J. Appl. Phys. 70 (1991) 1369-1373.
[60]. K. Holloway, P. M. Fryer, C. Cabral Jr., J. M. E. Harper, P. J. Bailey, K. H. Kelleher, J. Appl. Phys. 71 (1992) 5433-5444.
[61]. L. A. Clevenger, N. A. Bojarczuk, K. Holloway, J. M. E. Harper, C. Cabral, Jr., R. G. Schad, F. Cardone, L. Stolt, J. Appl. Phys. 73 (1993) 300-308.
[62]. P. Catania, J. P. Doyle, J. J. Cuomo, J. Vac. Sci. Technol. A 10 (1992) 3318-3320.
[63]. H. Itow, Y. Nakasaki, G. Minamihaba, K. Suguro, H. Okano, Appl. Phys. Lett. 63 (1993) 934-936.
[64]. A. Ohta, A. Noya, M. Takeyama, M. Taguchi, T. Sase, K. Sasaki, Thin Solid Films 278 (1996) 6-11.
[65]. T. Oku, E. Kawakami, M. Uekubo, K, Takahiro, S. Yamaguchi, M. Murakami, Appl. Surf. Sci. 99 (1996) 265-272.
[66]. K. H. Min, K. C. Chun, K. B. Kim, J. Vac. Sci. Technol. B 14 (1996) 3263-3269.
[67]. S. H. Kwon, O. K. Kwon, J. S. Min, S. W. Kang, J. Electrochem. Soc. 153 (2006) G578-G581.
[68]. C. W. Chen, J. S. Chen, J. S. Jeng, J. Electrochem. Soc. 155 (2008) H438-H442.
[69]. H. Y. Cheng, Y. C. Chen, C. N. Lee, R. J. Chung, T. S. Chin, J. Electrochem. Soc. 153 (2006) G685-G691.
[70]. S. Rawal, D. P. Norton, T. J. Anderson, L. M. White, Appl. Phys. A 94 (2009) 691-695.
[71]. P. Majumder, C. Takoudis, J. Electrochem. Soc. 155 (2008) H703-H706.
[72]. Y. He, J. Y. Feng, J. Cryst. Growth 263 (2004) 203-207.
[73]. B. H. Lee, K. Yong, J. Vac. Sci. Technol. B 22 (2004) 2375-2379.
[74]. P. Majumder, C. G. Takoudis, Appl. Phys. Lett. 91 (2007) 162108-1-162108-3.
[75]. Y. Wang, F. Cao, Y. T. Liu, M. H. Ding, Appl. Phys. Lett. 92 (2008) 032108-032108-3.
[76]. X. P. Qu, J. J. Tan, M. Zhou, T. Chen, Q. Xie, G. P. Ru, B. Z. Li, Appl. Phys. Lett. 88 (2006) 151912-1151912-3.
[77]. L. C. Leu, D. P. Norton, L. M. White, T. J. Anderson, Appl. Phys. Lett. 92 (2008) 111917-1-111917-3.
[78]. M. H. Tsai, J. W. Yeh, J. Y. Gan, Thin Solid Films 516 (2008) 5527-5530.
[79]. M. H. Tsai, C. W. Wang, C. H. Lai, J. W. Yeh, J. Y. Gan, Appl. Phys. Lett. 92 (2008) 052109-1-052109-3.
[80]. S. Y. Chang, D. S. Chen, Appl. Phys. Lett. 94 (2009) 231909-1231909-3.

Chapter 2

[1]. L. E. Toth, Transition Metal Carbides and Nitrides, Academic, New York, (1971).
[2]. W. S. Williams, in Progress in Solid State Chemistry, M. Reiss and J. D. Mac Calden, Editors, Pergamon, New York, (1971).
[3]. W. Schintlmeister, O. Pacher, K. Pfaffinger, T. Raine, J. Electrochem. Soc. 123 (1976) 924-929.
[4]. J. W. Seok, N. M. Jadeed, R. Y. Lin, Surf. Coat. Technol. 138 (2001) 14-22.
[5]. Y. Wang, R. Y. Lin, Mater. Sci. Eng. B 112 (2004) 42-49.
[6]. R. R. Boyer, Mater. Sci. Eng. A 213 (1996) 103-114.
[7]. D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine, Springer, Berlin, (2001).
[8]. D. W. Shoesmith, J. J. Noel, D. Hardie, B. M. Ikeda, Corr. Rev. 18 (2000) 331-359.
[9]. D. W. Shoesmith, B. M. Ikeda, D. M. LeNeveu, Corrosion (Houston) 53 (1997) 820-829.
[10]. D. Sinigaglia, G. Taccani, B. Vicentini, G. Dallaspezia, J. Electrochem. Soc. 125 (1978) 1199-1204.
[11]. R. Banerjee, K. Singh, M. K. Totlani, A. K. Suri, J. Vac. Sci. Technol. A 21 (2003) 310-317.
[12]. R. Banerjee, R. Chandra, P. Ayyub, Thin Solid Films 405 (2002) 64-72.
[13]. Y. Miyamoto, Y. Kubo, N. Ono, M. Hashimoto, T. Takahashi, I. Ito, F. Arezzo, P. Gimondo, Thin Solid Films 270 (1995) 253-259.
[14]. T. Gredić, M. Zlatanović, N. Popović, Ž. Bogdanov, Thin Solid Films 228 (1993) 261-266.
[15]. A. S. Korhonen, E. H. Sirvio, M.S. Sulonen, Thin Solid Films 107 (1983) 387-394.
[16]. R. Grün, Surf. Coat. Technol. 74-75 (1995) 598-603.
[17]. C. C. Wang, M. C. Chiu, M. H. Shiao, F. S. Shieu, J. Electrochem. Soc. 151 (2004) F252-F256.
[18]. M. H. Shiao, Z .C. Chang, F. S. Shieu, J. Electrochem. Soc. 150 (2003) C320-C324.
[19]. L. Berger, J. W. Mrosk, C. Ettl, H. J. Fecht, S. Flege, H. Hahn, U. Wolff, in proceeding of the 25th Industrial Electronics Society, p. 46, IEEE, (1999).
[20]. H. Monji, M. Aoki, H. Torii, H. Okinaka, U.S. Pat. 4,629,487 (1986).
[21]. Y. Kashiwgi, M. Umetani, H. Kataoka, K. Inoue, S. Nakamura, S. Morimoto, U.S. Pat. 6,009,728 (2000).
[22]. K. Hibino, M. Umetani, H. Kataoka, U.S. Pat. 6,119,485 (2000).
[23]. J. Dutkiewicz, S. Schlueter, W. Maziarz, J. Metastable Nanocryst. Mater. 20-21 (2004) 127-132.
[24]. S. Hyun, O. Kraft, R. P. Vinci, Mat. Res. Soc. Symp. Proc. 673 (2001) 3.2.1-3.2.6.
[25]. P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Adv. Eng. Mater. 4 (2004) 74-78.
[26]. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
[27]. C. P. Lee, Y. Y. Chen, C. Y. Hsu, J. W. Yeh, H. C. Shih, J. Electrochem. Soc. 154 (2007) C424-C430.
[28]. B. Chapman, Glow Discharge Processes, Sputtering and Plasma Etching, John Wiley & Sons, New York, (1980).
[29]. A. Lousa, E. Martínez, J. Esteve, E. Pascual, Thin Solid Films 355-356 (1999) 210-213.
[30]. M. Tan, J. Zhu, A. Liu, Z. Jia, J. Han, Mater. Lett. 61 (2007) 4647-4650.
[31]. J. H. Huang, C. Y. Hsu, S. S. Chen, G. P. Yu, Mater. Chem. Phys. 77 (2003) 14-21.
[32]. H. C. Yao, M. C. Chiu, W. T. Wu, F. S. Shieu, J. Electrochem. Soc. 153 (2006) F237-F243.
[33]. K. J. Martin, A. Madan, D. Hoffman, J. Ji, S. A. Barnett, J. Vac. Sci. Technol. A 23 (2005) 90-98.
[34]. D. C. Tsai, F. S. Shieu, S. Y. Chang, H. C. Yao, and M. J. Deng, J. Electrochem. Soc. 157 (2010) K52-K58
[35]. D. C. Tsai, Y. L. Huang, S. R. Lin, S. C. Liang, F. S. Shieu, Appl. Surf. Sci. 257 (2010) 1361-1367.
[36]. J. A. Thornton, J. Vac. Sci. Technol. A 4 (1986) 3059-3065.
[37]. J. Nazon, J. Sarradin, V. Flaud, J. C. Tedenac, N. Fr´ety, J. Alloys Compd. 464 (2008) 526–531.
[38]. G. Dong, M. Zhang, X. Zhao, Y. Li, H. Yan, J. Cryst. Growth 311 (2009) 1256–1259.
[39]. A. Javed, J. Sun, Appl. Surf. Sci. 257 (2010) 1211-1215.
[40]. R. W. Hoffman, Phys. Thin Films 3 (1966) 211-273.
[41]. A. J. Maeland, G. G. Libowitz, J. F. Lynch, J. Less Common Met. 104 (1984) 361-364.
[42]. S. W. Cho, C. N. Park, J. H. Yoo, J. Choi, J. S. Park, C. Y. Suh, G. Shim, J. Alloys Compd. 403 (2005) 262-266.
[43]. B. J. Lee, C. S. Lee, and J. C. Lee, Acta Mater. 51 (2003) 6233-6240.
[44]. D. Shahrjerdi, B. Hekmatshoar, L. Rezaee, S. S. Mohajerzadeh, Thin Solid Films 427 (2003) 330-334.
[45]. M. Jin, A. M. Minor, E. A. Stach, J.W. Morris Jr., Acta Mater. 52 (2004) 5381-5387.
[46]. K. Zhang, J. R. Weertman1, J. A. Eastman, Appl. Phys. Lett. 85 (2004) 5197-5199.
[47]. Z. Shan, E. A. Stach, J. M. K. Wiezorek, J. A. Knapp, D. M. Follstaedt, S. X. Mao, Sci. 305 (2004) 654-657.
[48]. M. Jin, A. M. Minor, J. W. Morris Jr., Thin Solid Films 515 (2007) 3202-3207.
[49]. M. Tan, J. Zhu, A. Liu, Z. Jia, J. Han, Mater. Lett. 61 (2007) 4647-4650.
[50]. H. Poláková, J. Musil, J. Vlcek, J. Allaart, C. Mitterer, Thin Solid Films 444 (2003) 189-198.
[51]. V. Chawla, R. Jayaganthan, R. Chandra, J. Mater. Sci. Technol. 26 (2010) 673-678.
[52]. S. Khamseh, M. Nose, T. Kawabata, K. Matsuda, S. Ikeno, J. Alloys Compd. 6 (2010) 389-391.
[53]. H. Wulff, C. Eggs, J. Vac. Sci. Technol. A 15 (1997) 2938-2944.
[54]. H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley&Sons, New York, (1974).
[55]. T. Tsai, S. A. Barnett, J. Electrochem. Soc. 142 (1995) 3084-3087.
[56]. S. H. Kim, Y. L. Choi, Y. S. Song, D. Y. Lee, S. J. Lee, Mater. Lett. 57 (2002) 343-348.
[57]. J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Prentice-Hall, Englewood Cliffs, NJ, (2000).
[58]. J. E. Sundgren, B. O. Johansson, A. Rockett, S. A. Barnett, J. E. Greene, in Physics and Chemistry of Protective Coatings, J. E. Greene, W. D. Sproul, J. A. Thornton, Editor, p. 95, American Institute of Physics, New York, (1986).
[59]. Y. H. Kim, J. K. Park, D. K. Lim, H. B. Kang, U.S. Pat. 5,376,606 (1994).
[60]. A. J. Maeland, G. G. Libowitz, J. F. Lynch, J. Less Common Met. 104 (1984) 361-364.
[61]. S. W. Cho, C. N. Park, J. H. Yoo, J. Choi, J. S. Park, C. Y. Suh, G. Shim, J. Alloys Compd. 403 (2005) 262-266.
[62]. W. K. Shen, A. Das, M. Racine, R. Cheng, J. Judy, J. P. Wang, IEEE Trans. Magn. 42 (2006) 2381-2383.
[63]. B. W. Dodson, Mater. Res. Soc. Symp. Proc. 128 (1989) 137.
[64]. M. Lu, J. H. Judy, J. M. Sivertsen, IEEE Trans. Magn. 26 (1990) 1581-1583.
[65]. J. A. Thornton, J. Vac. Sci. Technol. A 4 (1986) 3059-3065.
[66]. J. K. Park, W. S. Lee, Y. J. Baik, Surf. Coat. Technol. 171 (2002) 1-5.
[67]. N. Jiang, K. Sugimoto, K. Eguchi, T. Inaoka, Y. Shintani, H. Makita, A. Hattab, A. Hiraki, J. Cryst. Growth 222 (2001) 591-594.

Chapter 3

[1]. L. E. Toth, Transition Metal Carbides and Nitrides, Academic, New York, (1971).
[2]. M. Popović, M. Stojanović, D. Peruško, M. Novaković, I. Radović, V. Milinović, B. Timotijević, M. Mitrić, M. Milosavljević, Nucl. Instrum. Methods Phys. Res. Sect. B 266 (2008) 2507-2510.
[3]. M. Novaković, M. Popović, N. Bibić, Methods Phys. Res. Sect. B 268 (2010) 2883-2887.
[4]. U. Helmersson, S. Todorova, S. A. Barnett, J. E. Sundgren, L. C. Markert, J. E. Greene, J. Appl. Phys. 62 (1987) 481-484.
[5]. M. Shinn, L. Hultman, S. A. Barnett, J. Mater. Res. 7 (1992) 901-911.
[6]. S. Vepřek, Thin Solid Films 317 (1998) 449-454.
[7]. S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jílek, M. Šíma, Surf. Coat. Technol. 108-109 (1998) 138-147.
[8]. T. Zhou, P. Nie, X. Cai, P.K. Chu, Vacuum 83 (2009) 1057-1059.
[9]. M. Uchida, N. Nihira, A. Mitsuob, K. Toyoda, K. Kubota, T. Aizawa, Surf. Coat. Technol. 177-178 (2004) 627-630.
[10]. O. Knotek, T. Leyendecker, F. Jungblut, Thin Solid Films 153 (1987) 83-90.
[11]. A. Alberdi, M. Marı´n, B. Dı´az, O. Sa´ nchez, R. E. Galindo, Vacuum 81 (2007) 1453–1456.
[12]. Z. C. Chang, S. C. Liang, S. Han, Y. K. Chen, F. S. Shieu, Nucl. Instrum. Methods Phys. Res. Sect. B 268 (2010) 2504-2509.
[13]. D. C. Tsai, Y. L. Huang, S. R. Lin, S. C. Liang, F. S. Shieu, Appl. Surf. Sci. 257 (2010) 1361-1367.
[14]. M. H. Tsai, C. H. Lai, J. W. Yeh, J. Y. Gan, J. Phys. D: Appl. Phys. 41 (2008) 235402-1-235402-7.
[15]. H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley&Sons, New York, (1974).
[16]. N. Laegreid, G.K. Wehner, J. Appl. phys. 32 (1961) 365-369.
[17]. R. M. Mason, M. Pichiling, J. Phys. D: Appl. Phys. 27 (1994) 2363–2371.
[18]. A. J. Maeland, G. G. Libowitz, J. F. Lynch, J. Less Common Met. 104 (1984) 361-364.
[19]. S. W. Cho, C. N. Park, J. H. Yoo, J. Choi, J. S. Park, C. Y. Suh, G. Shim, J. Alloys Compd. 403 (2005) 262-266.
[20]. D. C. Tsai, F. S. Shieu, S. Y. Chang, H. C. Tao, M. J. Deng, J. Electrochem. Soc. 157 (2010) K52-K58.
[21]. D. C. Tsai, Y. L. Huang, S. R. Lin, D. R. Jung, F. S. Shieu, Appl. Surf. Sci. 257 (2011) 3969-3973.
[22]. D. C. Tsai, Y. L. Huang, S. R. Lin, D. R. Jung, S. Y. Chang, F. S. Shieu, J. Alloys Compd. 509 (2011) 3141-3147.
[23]. K. Yamamoto, T. Sato, K. Takahara, K. Hanaguri, Surf. Coat. Technol. 174 (2003) 620.
[24]. P. Hones, R. Sanjine, F. LeAvy, Thin Solid Films 332 (1998) 240-246.
[25]. W. K. Shen, A. Das, M. Racine, R. Cheng, J. Judy, and J. P. Wang, IEEE Trans. Magn., 42 (2006) 2381-2383.
[26]. L. Hultman, J.-E. Sundgren, J. E. Greene, D. B. Bergstrom, I. Petrov, J. Appl. Phys. 78 (1995) 5395-5403.
[27]. J. E. Greene, J.-E. Sundgren, L. Hultman,I. Petrov, D. B. Bergstrom, Appl. Phys. Lett. 67 (1995) 2928-2930.
[28]. S. Mahieu, P. Ghekiere, G. De Winter, R. De Gryse, D. Depla, G. Van Tendeloo, O. I. Lebedev, Surf. Coat. Technol. 200 (2006) 2764-2768.
[29]. H. Q. Lou, N. Axén, R. E. Somekh, I. M. Hutchings, Surf. Coat. Technol. 203 (1997) 123-127.
[30]. L. J. Meng, M. P. dos Santos, Surf. Coat. Technol. 90 (1997) 64-70.
[31]. C. H. Lai, S. J. Lin, J. W. Yeh, S. Y. Chang, Surf. Coat. Technol. 201 (2006) 3275-3280.
[32]. P. K. Huang, J. W. Yeh, Surf. Coat. Technol. 203 (2009) 1891-1896.
[33]. J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197 (1991) 117-128.
[34]. C. C. Lee, J. M. Wu, Appl. Surf. Sci. 253 (2007) 7069-7073.
[35]. J. A. Thornton, J. Vac. Sci. Technol. A. 4 (1986) 3059-3065.
[36]. J. H. Song, S. C. Wang, J. C. Sung, J. L. Huang, D. F. Lii, Thin Solid Films 517 (2009) 4753-4757.
[37]. L. Xu, X. Li, Y. Chen, F. Xu, Appl. Surf. Sci. 257 (2011) 4031-4037.
[38]. H. L. Wang, C. H. Lin, M. H. Hon, Thin Solid Films 310 (1997) 260-264.
[39]. C. K. Chung, T. S. Chen, J. Electrochem. Soc. 156 (2009) H119-H122.
[40]. J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Prentice-Hall, Englewood Cliffs, NJ, (2000).
[41]. W. D. Sproul, J. E. Greene, J. A. Thornton, Physics and Chemistry of Protective Coatings, American Institute of Physics, New York, (1986).
[42]. Y. H. Kim, J. K. Park, D. K. Lim, H. B. Kang, U.S. Pat. 5,376,606 (1994).

Chapter 4

[1]. Y. Xi, H. Fan, W. Liu, J. Alloy Compd. 496 (2010) 695–698.
[2]. K. W. Weng, Y. C. Chen, S. Han, C. S. Hsu, Y. L. Chen, D. Y. Wang, Thin Solid Films 516 (2008) 5330–5333.
[3]. Z. Y. Chen, Z. Q. Li, X. H. Meng, Appl. Surf. Sci. 255 (2009) 7408–7413.
[4]. J. T. Chen, J. Wang, F. Zhang, G. A. Zhang, X. Y. Fan, Z. G. Wu, P. X. Yan, J. Alloy Compd. 472 (2009) 91–96.
[5]. X. Z. Ding, X. T. Zeng, Y. C. Liu, F. Z. Fang, G. C. Lim, Thin Solid Films 516 (2008) 1710–1715.
[6]. V. M. Vishnyakov, V. I. Bachurin, K. F. Minnebaev, R. Valizadeh, D. G. Teer, J. S. Colligon, V. V. Vishnyakov, V. E. Yurasova, Thin Solid Films 497 (2006) 189–195.
[7]. S. M. Aouadi, K. C. Wong, K. A. R. Mitchell, F. Namavar, E. Tobin, D.M. Mihut, S.L. Rohde, Appl. Surf. Sci. 229 (2004) 387–394.
[8]. M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa, Surf. Coat. Technol. 177–178 (2004) 627–630.
[9]. H. Hasegawa, A. Kimura, T. Suzuki, J. Vac. Sci. Technol. A 18 (2000) 1038–1040.
[10]. J. Musil, H. Polakova, Surf. Coat. Technol. 127 (2000) 99–106.
[11]. C. K. Chung, T. S. Chen, J. Electrochem. Soc. 156 (2009) H119–H122.
[12]. R. M. Mason, M. Pichiling, J. Phys. D: Appl. Phys. 27 (1994) 2363–2371.
[13]. D. C. Tsai, F. S. Shieu, S. Y. Chang, H. C. Yao, M. J. Deng, J. Electrochem. Soc. 157 (2010) K52–K58.
[14]. M. Y. Liao, Y. Gotoh, H. Tsuji, J. Ishikawa, J. Vac. Sci. Technol.A22 (2004) 146–150.
[15]. M. M. Larijani, N. Tabrizi, Sh. Norouzian, A. Jafari, S. Lahouti, H. Haj Hosseini, N. Afshari, Vacuum 81 (2006) 550–555.
[16]. J. S. Jeng, J.S. Chen, Appl. Surf. Sci. 255 (2009) 8263–8269.
[17]. J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197 (1991) 117-128.
[18]. T. Q. Li, S. Noda, H. Komiyama, T. Yamamoto, Y. Ikuhara, J. Vac. Sci. Technol. A 21 (2003) 1717–1723.
[19]. J. H. Je, D. Y. Noh, H. K. Kim, K. S. Liang, J. Appl. Phys. 81 (1997) 6126–6133.
[20]. J. E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, D. B. Bergstrom, Appl. Phys. Lett. 67 (1995) 2928–2930.
[21]. L. Hultman, J.-E. Sundgren, J.E. Greene, D. B. Bergstrom, I. Petrov, J. Appl. Phys. 78 (1995) 5395–5403.
[22]. P. K. Huang, J. W. Yeh, Surf. Coat. Technol. 203 (2009) 1891–1896.
[23]. F. Shinoki, A. Itoh, J. Appl. Phys. 46 (1975) 3381–3384.
[24]. P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Adv. Eng. Mater. 6 (2004) 74–78.
[25]. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T .T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 6 (2004) 299–303.
[26]. H. L. Wang, C. H. Lin, M. H. Hon, Thin Solid Films 310 (1997) 260–264.

Chapter 5

[1]. H. O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes, New Jersey, (1996).
[2]. Y. Xi, H. Fan, W. Liu, J. Alloys Compd. 496 (2010) 695–698.
[3]. A. Kumar, D. Singh, R. Kumar, D. Kaur, J. Alloys Compd. 479 (2009) 166–172.
[4]. J. L. Ruan, D. F. Lii, H. H. Lu, J. S. Chen, J. L. Huang, J. Alloys Compd. 478 (2009) 671–675.
[5]. L. Chen, Y. Du, S. Q. Wang, A. J. Wang, H. H. Xu, Mater. Sci. Eng. A 502 (2009) 139-143.
[6]. Y.C. Chim, X.Z. Ding, X.T. Zeng, S. Zhang, Thin Solid Films 517 (2009) 4845-4849.
[7]. M. Keunecke, C. Stein, K. Bewilogua, W. Koelker, D. Kassel, H. van den Berg, Surf. Coat. Technol. 205 (2010) 1273-1278
[8]. X. Z. Ding, X. T. Zeng, Y. C. Liu, F. Z. Fang, G. C. Lim, Thin Solid Films 516 (2008) 1710-1715.
[9]. J. T. Chen, J. Wang, F. Zhang, G. A. Zhang, X. Y. Fan, Z. G. Wu, P. X. Yan, J. Alloys Compd. 472 (2009) 91–96.
[10]. Y. Chunyan, T. Linhai, W. Yinghui, W. Shebin, L. Tianbao, X. Bingshe, Appl. Surf. Sci. 255 (2009) 4033-4038.
[11]. X. Wang, L. S. Wang, Z. B. Qi, G. H. Yue, Y. Z. Chen, Z. C. Wang, D. L. Peng, J. Alloys Compd. 502 (2010) 243-249.
[12]. P. Budzynski, J. Sielanko, Z. Surowiec, P. Tarkowski, Vacuum 83 (2009) S186-S189.
[13]. D. B. Lee, M. H. Kim, Y. C. Lee, S. C. Kwon, Surf. Coat. Technol. 141 (2001) 232-239
[14]. V. M. Vishnyakov, V. I. Bachurin, K. F. Minnebaev, R. Valizadeh, D. G. Teer, J. S. Colligon, V. V. Vishnyakov, V. E. Yurasova, Thin Solid Films 497 (2006) 189-195.
[15]. Y. W. Lin, J. H. Huang, G. P. Yu, Thin Solid Films 518 (2010) 7308–7311.
[16]. K. P. Purushotham, L. P. Ward, N. Brack, P. J. Pigram, P. Evans, H. Noorman, R. R. Manory, Wear 254 (2003) 589-596.
[17]. G. Abadias, L. E. Koutsokeras, S. N. Dub, G. N. Tolmachova, A. Debelle, T. Sauvage, J. Vac. Sci. Technol. A 28 (2010) 541-551.
[18]. S. M. Kim, B. S. Kim, G. S. Kim, S. Y. Lee, B. Y. Lee, Surf. Coat. Technol. 202 (2008) 5521-5525.
[19]. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
[20]. P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Adv. Eng. Mater. 6 (2004) 74-78.
[21]. C. J. Tong, M. R. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, S. J. Lin, S. Y. Chang, Metall. Mater. Trans. A 36A (2005) 1263-1271.
[22]. C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, S. Y. Chang, Metall. Mater. Trans. A 36A (2005) 881-893.
[23]. C. Li, J. C. Li, M. Zhao, Q. Jiang, J. Alloys Compd. 504S (2010) S515–S518
[24]. B. S. Li, Y. P. Wang, M. X. Ren, C. Yang, H. Z. Fu, Mater. Sci. Eng. A 498 (2008) 482-486.
[25]. F. J. Wang, Y. Zhang, G. L. Chen, J. Alloys Compd. 478 (2009) 321-324.
[26]. T. T. Shun, C. H. Hung, C. F. Lee, J. Alloys Compd. 493 (2010) 105-109.
[27]. D. C. Tsai, Y. L. Huang, S. R. Lin, S. C. Liang, F. S. Shieu, Appl. Surf. Sci. 257 (2010) 1361-1367.
[28]. S. Y. Chang, S. Y. Lin, Y. C. Huang, C. L. Wu, Surf. Coat. Technol. 204 (2010) 3307-3314.
[29]. P. K. Huang, J. W. Yeh, Surf. Coat. Technol. 203 (2009) 1891-1896.
[30]. M. Braic, V. Braic, M. Balaceanu, C. N. Zoita, A. Vladescu, E. Grigore, Surf. Coat. Technol. 204 (2010) 2010-2014.
[31]. D. C. Tsai, F. S. Shieu, S. Y. Chang, H. C. Yao, M. J. Deng, J. Electrochem. Soc. 157 (2010) K52-K58.
[32]. H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley&Sons, New York, (1974).
[33]. N. Laegreid, G. K. Wehner, J. Appl. Phys. 32 (1961) 365-369.
[34]. K. N. Melton, Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, (1990).
[35]. L. F. Donaghey, L. G. Geraghty, Thin Solid Films 38 (1976) 271-280.
[36]. M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, J. Vac. Sci. Technol. A 6 (1988) 2326-2332.
[37]. R. M. Mason, M. Pichiling, J. Phys. D: Appl. Phys. 27 (1994) 2363-2371.
[38]. A. J. Maeland, G .G. Libowitz, J. F. Lynch, J. Less Common Met. 104 (1984) 361-364.
[39]. S. W. Cho, C. N. Park, J. H. Yoo, J. Choi, J. S. Park, C. Y. Suh, G. Shim, J. Alloys Compd. 403 (2005) 262-266.
[40]. M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa, Surf. Coat. Technol. 177-178 (2004) 627-630.
[41]. H. Hasegawa, A. Kimura, T. Suzuki, J. Vac. Sci. Technol. A 18 (2000) 1038-1040.
[42]. J. Musil, H. Polàkovà, Surf. Coat. Technol. 127 (2000) 99-106.
[43]. M. Lu, J. H. Judy, J. M. Sivertsen, IEEE Trans. Magn. 26 (1990) 1581-1583.
[44]. J. E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, D. B. Bergstrom, Appl. Phys. Lett. 67 (1995) 2928-2930.
[45]. L. Hultman, J.-E. Sundgren, J. E. Greene, D. B. Bergstrom, I. Petrov, J. Appl. Phys. 78 (1995) 5395-5403.
[46]. D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, J. E. Greene, J. Appl. Phys. 93 (2003) 9086-9094.
[47]. J. Pelleg, L. Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197 (1991) 117-128.
[48]. S. Mahieu, P. Ghekiere, G. D. Winter, R. D. Gryse, D. Depla, G. V. Tendeloo, O. I. Lebedev, Surf. Coat. Technol. 200 (2006) 2764-2768.
[49]. H. C. Yao, M. C. Chiu, W. T. Wu, F. S. Shieu, J. Electrochem. Soc. 153 (2006) F237-F243.
[50]. K. J. Martin, A. Madan, D. Hoffman, J. Ji, S. A. Barnett, J. Vac. Sci. Technol. A 23 (2005) 90-98.
[51]. J. C. Lin, G. Chen, C. Lee, J. Electrochem. Soc. 146 (1999) 1835-1839.
[52]. S. H. Kim, Y. L. Choi, Y. S. Song, D. Y. Lee, S. J. Lee, Mater. Lett. 57 (2002) 343-348.
[53]. A. van der Drift, Philips Res. Rep. 22 (1967) 267-288.
[54]. E. Blando, R. Hubler, Surf. Coat. Technol. 158-159 (2002) 685-689.
[55]. H. S. Chou, J. C. Huang, L. W. Chang, T. G. Nieh, Appl. Phys. Lett. 93 (2008) 191901-1-191901-3.
[56]. J. Hampshire, P. J. Kelly, D. G. Teer, Thin Solid Films 447-448 (2004) 392-398.
[57]. C. K. Chung, T. S. Chen, J. Mater. Res. 23 (2008) 494-499.

Chapter 6

[1]. S. P. Maraka, R. J. Gutmann, A .E. Kaloyeros, W. A. Lanford, Thin Solid Films 236 (1993) 257-266.
[2]. D. Gupta, Mater. Chem. Phys. 41 (1995) 199-205.
[3]. C. S. Liu, L. J. Chen, J. Appl. Phys. 74 (1993) 5501-5506.
[4]. J. C. Chuang, M. C. Chen, Thin Solid Films 335 (1998) 146-152.
[5]. D. H. Kim, S. L. Cho, K. B. Kim, J. J. Kim, J. W. Park, J. J. Kim, Appl. Phys. Lett. 69 (1996) 4182-4184.
[6]. J. C. Chuang, M. C. Chen, J. Electrochem. Soc. 145 (1998) 4029-4035.
[7]. T. Kouno, H. Niwa, M. Yamada, J. Electrochem. Soc. 145 (1998) 2164-2167.
[8]. K. H. Min, K. C. Chun, K. B. Kim, J. Vac. Sci. Technol. B 14 (1996) 3263-3269.
[9]. T. Oku, E. Kawakami, M. Uecubo, K. Takahiro, S. Yamaguchi, M. Murakami, Appl. Surf. Sci. 99 (1996) 265-272.
[10]. S. H. Kwon, O. K. Kwon, J. S. Min, S. W. Kang, J. Electrochem. Soc. 153 (2006) G578-G581.
[11]. C. W. Chen, J. S. Chen, J. S. Jeng, J. Electrochem. Soc. 155 (2008) H438-H442.
[12]. H. Y. Cheng, Y. C. Chen, C. M. Lee, R. J. Chung, T. S. Chin, J. Electrochem. Soc. 153 (2006) G685-G691.
[13]. L. C. Leu, D. P. Norton, L. M. White, T. J. Anderson, Appl. Phys. A 94 (2009) 691-695.
[14]. P. Majumder, C. Takoudis, J. Electrochem. Soc. 155 (2008) H703-H706.
[15]. S. Y. Chang, D. S. Chen, Appl. Phys. Lett. 94 (2009) 231909-1-231909-3.
[16]. M. H. Tsai, C. W. Wang, C. H. Lai, J. W. Yeh, J. Y. Gan, Appl. Phys. Lett. 92 (2008) 052109-1-052109-3.
[17]. A. J. Maeland, G. G. Libowitz, J. F. Lynch, J. Less Common Met. 104 (1984) 361-364.
[18]. D. C. Tsai, F. S. Shieu, S. Y. Chang, H. C. Yao, M. J. Deng, J. Electrochem. Soc. 157 (2010) K52-K58.
[19]. D. C. Tsai, Y. L. Huang, S. R. Lin, D. R. Jung, F. S. Shieu, Appl. Surf. Sci. 257 (2011) 3969-3973.
[20]. D. C. Tsai, Y. L. Huang, S. R. Lin, D. R. Jung, S. Y. Chang, F. S. Shieu, J. Alloy Compd. 509 (2011) 3141-3147.
[21]. H. P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, (1974).
[22]. B. Zhao, K. Sun, Z. Song, J. Yang, Appl. Surf. Sci. 256 (2010) 6003–6006.
[23]. Y. Wang, F. Cao, M. H. Ding, L. Shao, Appl. Surf. Sci. 255 (2009) 4738–4741.
[24]. Y. Wang, F. Cao, L. Shao, M. H. Ding, Thin Solid Films 517 (2009) 5593–5596.
[25]. Y. Wang, F. Cao, X. D. Yang, M. H. Ding, Mater. Chem. Phys. 117 (2009) 425–429.
[26]. M. H. Tsai, J. W. Yeh, J. Y. Gan, Thin Solid Films 516 (2008) 5527–5530.
[27]. L. C. Leu, D. P. Norton, L. M. White, T. J. Anderson, Appl. Phys. Lett. 92 (2008) 111917-111917-3.
[28]. International Technology Roadmap for Semiconductors (Itrs), Updates, Semiconductor Industry Association International, San Jose, CA, (2006).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊