(3.232.129.123) 您好!臺灣時間:2021/03/06 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝宗翰
研究生(外文):Tsung-Han Hsieh
論文名稱:探討圖案化氮化鎵對元件發光特性之影響
論文名稱(外文):Analyzed the Optoelectronic Property with a Patterned GaN Epitaxial Layer
指導教授:林佳鋒林佳鋒引用關係
口試委員:紀國鐘張茂男陳思翰
口試日期:2011-06-08
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:102
中文關鍵詞:氮化鎵圖案化發光二極體
外文關鍵詞:GaNPatternedLight emitting diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,利用雷射處理與化學濕式蝕刻技術,製作具有背面粗化增加光取出效率的發光二極體元件,經由雷射處理與濕式蝕刻後,在氮化鎵(GaN)與藍寶石基板(Sapphire)介面間產生空孔與{10-1-1}面倒立六角錐結構(Hexagonal inverted pyramid structure, HIP),將對此結構之發光二極體元件電性與光性加以探討。本實驗將探討條紋圖案化氮化鎵模板重新成長發光二極體結構之元件(Laser treatment re-growth light emitting diode, LTRG-LED)與區域性圖案化氮化鎵發光元件(Bridge light emitting diode, Bridge-LED)兩者相對於傳統發光二極體(Standard LED, ST-LED)特性研究,將分別研究兩種圖案化氮化鎵發光元件對發光特性之影響。
實驗一,LTRG-LED使用具條紋圖案化空孔與倒立六角錐結構氮化鎵模板重新成長發光二極體結構,製作出條紋圖案化發光元件,重新成長過程中因為條紋圖案化的空孔結構,造成磊晶成長的溫度產生不均勻現象,因為空氣(0.023 W/m•k)的熱傳導比氮化鎵(1.3 w/m•k)小,週期性空孔結構使發光層銦含量的析出與波長產生週期性變化,具背後粗化的發光元件光取出效率相較於ST-LED有107%的提升,在LTRG-LED元件中觀察到波長紅移、較低的壓電場與內部量子效率提升的效應產生。
實驗二,Bridge-LED結構的製作是利用正面雷射切割、背面雷射處理與化學濕式蝕刻,製作出區域性圖案化氮化鎵發光元件,在不影響InGaN發光層之下,製作具51%粗化面積的圖案化元件,光取出效率相較於ST-LED有103%提升,發散角變小是因為氮化鎵與藍寶石基板介面間具有倒立六角錐結構,使光趨於軸向,電激發波長不變,但在大電流下半高寬有變大的趨勢,100mA操作電流下外部量子效率之衰退效率無明顯差異,製作出高取光區域性圖案化氮化鎵發光元件。
利用雷射處理與化學濕式蝕刻技術,在氮化鎵與藍寶石基板介面間產生空孔與倒立六角錐結構,利用兩種不同製程,製作高取光效率發光二極體,應用於高效率的發光元件當中。


The InGaN-based light emitting diodes (LEDs) with a roughened patterned backside on the N-face GaN surface were fabricated through a chemical wet etching process to increase light extraction efficiency. After laser treatment and the chemical wet etching process, the air-void structure with a stable chemical crystallographic {10-1-1} plane was formed at the GaN/Al2O3 interface. In this study, we analyzed optical and electrical of these two kinds of LEDs, the laser treatment re-growth light emitting diode (LTRG-LED) and bridge light emitting diode (Bridge-LED), compared to the standard LED (ST-LED).
In the first experiment, the n-GaN template with a stripe patterned air void structure and a hexagonal inverted pyramid (HIP) structure was used to re-grown LED structure. At the re-grown process, the growth temperature was distributed non-uniform on the GaN template layer with the strip-shaped air void structure. Because the thermal conductivity of the air void (0.023 W/m•k) is smaller than the GaN material (1.3 W/m•k). The indium content and the emission wavelength in the quantum well was periodic distributed corresponded to the stripe patterned air void structure. The light output power of the LED chip with the backside roughened surface had a 107% enhancement compared with the ST-LED chip. The EL wavelength redshifted, the lower piezoelectric field and the high internal quantum efficiency were observed in the LTRG-LED structure.
In the second experiment, the Bridge-LED structure was fabricated through a laser scribing, a laser treatment and a chemical wet etching process that the InGaN active layer was not damaged in the process. The light output power of the LED with a 51% backside roughened area had a 103% enhancement compared with the ST-LED. The divergent angle became small that was caused by forming the inverted pyramid shaped structures on the roughened patterned backside at the GaN/Al2O3 interface. The EL emission wavelength of both LED structures was almost the same, but the EL line-width of the treated LED structure became broadened at high injection current. A similar efficiency droop effect (about 70%) was observed for both LED structures at 100mA operating current.
The air void and the HIP structure at the GaN/Al2O3 interface were fabricated through these two kinds of processes on the GaN LED structures to enhance light extraction efficiency for the high efficiency nitride-based LED applications.


中文摘要 I
Abstract II
章節目錄 III
圖目錄 V
第一章 序論 1
1-1 照明演進 1
1-2 半導體發光二極體簡介 3
1-3 Ⅲ-Ⅴ族半導體材料 3
1-4 研究動機 4
第二章 原理與文獻回顧 5
2-1 發光二極體之發光原理 5
2-2 發光二極體之光取出效率 7
2-2.1 內部量子效率 8
2-2.2 外部量子效率 9
2-2.3 提升外部量子效率的方法 10
2-3 壓電場(Piezoelectric field)形成 18
2-3.1應變(Strain)產生 18
2-3.2壓電效應(Piezoelectric effect) 21
2-4 雷射處理 25
2-5 氮化鎵(GaN)濕式蝕刻 26
第三章 實驗方法與步驟 28
3-1 實驗設計流程圖 28
3-2 試片製備流程 28
3-3 雷射處理裝置系統 35
3-4 化學濕式蝕刻裝置 36
3-5 分析儀器 37
3-5.1 光學顯微鏡(Optical microscope) 37
3-5.2 場發射掃描式電子顯微鏡(FE-SEM) 37
3-5.3 電激發螢光光譜(Electroluminescence, EL) 38
3-5.4 發散角量測(Radiation pattern measurement) 40
3-5.5 光激發螢光系統(Photoluminescence, PL) 41
第四章 實驗結果與討論 43
4-1條紋圖案化氮化鎵模板重新成長LED結構之發光元件分析 43
4-1.1條紋圖案化氮化鎵發光元件之表面形貌 43
4-1.2 條紋圖案化氮化鎵發光元件之FE-SEM形貌 46
4-1.3 倒立六角錐與空孔結構之形成機制 49
4-1.4 條紋圖案化氮化鎵發光元件光強度分佈均勻性分析(Beam profile) 53
4-1.5 條紋圖案化氮化鎵發光元件遠場光輻射圖形 56
4-1.6 條紋圖案化氮化鎵發光元件電激發螢光光譜量測 58
4-1.7 條紋圖案化氮化鎵發光元件操作直流電流對光強度與波長之影響 60
4-1.8 條紋圖案化氮化鎵發光元件操作直流電流對電性與外部量子效率之影響 63
4-1.9 條紋圖案化氮化鎵發光元件光激發螢光光譜量測(Photoluminescence) 65
4-1.10 條紋圖案化氮化鎵發光元件改變外加偏壓探討壓電場對能帶關係 67
4-1.11 量測條紋圖案化氮化鎵發光元件之變溫光激發螢光特性 73
4-2 具區域性圖案化氮化鎵之發光二極體元件 76
4-2.1 區域性圖案化氮化鎵發光元件(Bridge-LED)之表面形貌 76
4-2.2 區域性圖案化氮化鎵之FE-SEM影像 78
4-2.3區域性圖案化氮化鎵發光元件之光強度分佈均勻性分析(Beam profile) 81
4-2.4 區域性圖案化氮化鎵發光元件之遠場光輻射圖形 83
4-2.5 區域性圖案化氮化鎵發光元件之電激發螢光與電性量測 85
4-2.6 區域性圖案化氮化鎵發光元件之電激發螢光波長與外部量子效率之影響 88
4-2.7 區域性圖案化氮化鎵發光元件之光激發螢光光譜量測 91
第五章 結論與未來展望 94
5-1 實驗結論 94
5-2 未來展望 95
參考資料 96



1. E. F. Schubert, "Light-Emitting Diodes" Cambridge, U.K.:Cambridge Univ. Press, (2003).
2. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light emitting diodes with quantum well structures”, Jpn. J. Appl. Phys., Vol. 34, No. 7A, pp. L797-L799, (1995).
3. S. Nakamura, and G. Fasol, "The Blue Laser Diode", Springer, New York, (1997).
4. Y. Kawakami, Y. Narukawa, K. Omea, SG. Fujita, and S. Nakamura, “Dimensionality of excitons in InGaN-based light emitting devices”, Phys. Stat. Sol., Vol. 178, No. 1, pp. 331-336, (2000).
5. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high power AlGaN-based ultraviolet ligh emitting diode grown on bulk GaN”, Appl. Phys. Lett., Vol. 79, No. 6, pp. 711-712, (2001).
6. E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. A. Heji, X. Chen, R. M. Farrell, S. Keller, S. D. Baars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells”, App. Phys. Lett., Vol. 98, No. 2, pp. 021102, (2011).
7. A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures”, Appl. Phys. Lett., Vol. 70, No. 21, pp. 2790-2792, (1997).
8. C. W. Kuo, Y. C. Lee, Y. K. Fu, C. H. Tsai, M. L. Wu, G. C. Chi, C. H. Kuo, and C. J. Tun, “Optical simulation and fabrication of nitride-based LEDs with the inverted pyramid sidewalls”, IEEE J. Selected topics in quantum electronics, Vol. 15, No. 4, pp. 1264-1268, (2009).
9. M. H. Lo, P. M. Tu, C. H. Wang, C. W. Hung, S. C. Hsu, Y. J. Cheng, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, and S. C. Huang, ”High efficiency light emitting diode with anisotropically etched GaN-sapphire interface”, Appl. Phys. Lett., Vol. 95, No. 4, pp. 041109, (2009).
10. J. L. Weyher, S. Lazar, L. Macht, Z. L. Weber, R. J. Molnar, S. Muller, V. G. M. Sivel, G. Nowak, and I. Grzegory, “Orthodox etching of HVPE-grown GaN“, J. Crystal Growth, Vol. 305, No. 2, pp. 384-392, (2007).
11. J. L. Weyher, “Characterization of wide band gap semiconductors (GaN, SiC) by defect selective etching and complementary methods”, Superlattices and Microstructures, Vol. 40, No. 4-6, pp. 279-288, (2006).
12. H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light emitting diodes grown on pyramidal patterned sapphire substrates in the micro and nanoscale”, J. Appl. Phys., Vol. 103, No. 1, pp. 014314, (2008).
13. T. S. Oh, S. H. Kim, T. K. Kim, Y. S. Lee, H. Jeong, G. M. Yang, and E. K. Suh, “GaN-based light emitting diodes on micro-lens patterned sapphire substrate”, J. J. Appl. Phys., Vol. 47, No. 7, pp. 5333-5336, (2008).
14. J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee, “Comparison of InGaN-based LEDs grown on convertional sapphire and cone shape patterned sapphire substrate”, IEEE Transactions on Electron Devices, Vol. 57, No. 1, pp. 157-163, (2010).
15. E. H. Park, J. Jang, S. Gupta, I. Ferguson, C. H. Kim, S. K. Jeon, and J. S. Park, “Air-viods embedded high efficiency InGaN light emitting diode”, Appl. Phys. Lett., Vol. 93, No. 19, pp. 191103, (2008).
16. Y. C. Huang, C. F. Lin, S. H. Chen, J. J. Dai, G. M. Wang, K. P. Juang, K. T. Chen, and Y. H. Hsu, “InGaN-based light emitting diodes with an embedded conical air-voids structure”, Optics Express, Vol. 19, No. S1, pp. A57-A63, (2010).
17. H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, “Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes”, Appl. Phys. Lett., Vol. 95, No. 22, pp. 221110, (2009).
18. H. G. Kim, H. K. Kim, H. Y. Kim, H. Jeong, S. Chandramohan, P. Uthirakumar, M. S. Jeong, J. S. Lee, E. K. Suh, and C. H. Hong, “Enhanced air-cavity effect of periodically oriented embedded air protrusions for high-efficiency InGaN/GaN light emitting diodes”, Optics Letters, Vol. 35, No. 18, pp. 3012-3014, (2010).
19. J. J. Dai, C. F. Lin, G. M. Wang, and M. S. Lin, “Enhanced the light extraction efficiency of an InGaN light emitting diodes with an embedded rhombus like air void structure”, Appl. Phys. Exp., Vol. 3, No. 7, pp. 071002, (2010).
20. R. C. Tu, C. C. Chuo, S. M. Pan, Y. M. Fan, C. E. Tsai, T. C. Wang, C. J. Tun, G. C. Chi, B. C. Lee, and C. P. Lee, “Improvement of near ultraviolet InGaN/GaN light emitting diodes by inserting an n situ rough SiNx interlayer in n-GaN layers”, Appl. Phys. Lett., Vol. 83, No. 17, pp. 3608-3610, (2003).
21. M. H. Lo, P. M. Tu, C. H. Wang, Y. J. Cheng, C. W. Hung, S. C. Hsu, H. C. Kuo, H. W. Zan, S. C. Wnag, C. Y. Chang, and C. M. Liu, “Defect selective passivation in GaN epitaxial growth and its application to light emitting diodes”, Appl. Phys. Lett., Vol. 95, No. 21, pp. 211103, (2009).
22. C. F. Lin, K. T. Chen, and K. P. Huang, “Blue light emitting diodes with an embedded native gallium oxide pattern structure”, IEEE Electron Device Letters, Vol. 31, No. 12, pp. 1431-1433, (2010).
23. W. C. Lai, L. C. Peng, M. N. Chang, S. C. Shei, Y. P. Hsu, and J. K. Sheu, “GaN-based LED with embedded microlens-like structure”, J. Electrichem. Soc., Vol. 156, No. 12, pp. H976-H978, (2009).
24. C. Y. Cho, J. B. Lee, S. J. Lee, S. H. Han, T. Y. Park, J. W. Kim, Y. C. Kim, and S. J. Park, “Improvement of light output power of InGaN/GaN light emitting diode by lateral epitaxial overgrowth using pyramidal shaped SiO2”, Optics Express, Vol. 18, No. 2, pp. 1462-1468, (2010).
25. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. D. Baars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light emitting diodes via surface roughening”, Appl. Phys. Lett., Vol. 84, No. 6, pp. 855-857, (2004).
26. S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Kim, D. J. Kim, K. I. Min, and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light emitting diodes”, IEEE Photonics Technology Letters, Vol. 18, No. 14, pp.1512-1514, (2006).
27. D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light emitting diodes with holographically generated two-dimensional photonic crystal patterns”, Appl. Phys. Lett., Vol. 87, No. 20, pp. 203508, (2005).
28. H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light emitting diodes”, Optics Express, Vol. 14, No. 19, pp.8654-8660, (2006).
29. D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon, and S. C. Hung,“Nitride-based LEDs with phosphoric acid etched undercut sidewalls”, IEEE Photonics Technology Letters, Vol. 21, No. 8, pp. 510-512, (2009).
30. C. H. Chiu, H. H. Yen,1 C. L. Chao, Z. Y. Li, Peichen Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template”, Appl. Phys. Lett., Vol. 93, No. 8, pp. 081108, (2008).
31. W. C. Lai, Y. Y. Yang, L. C. Peng, S. W. Yang, Y. R. Lin, and J. K. Sheu, “GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures”, Appl. Phys. Lett., Vol. 97, No. 8, pp. 081103, (2010).
32. C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-based LEDs with textured side walls”, IEEE Photonics Technology Letters, Vol. 16, No. 3, pp. 750-752, (2004).
33. T. H. Hsueh, J. K. Sheu, H. W. Huang, J. Y. Chu, C. C. Kao, H. C. Kuo, and S. C. Wang, “Enhancement in light output of InGaN-based microhole array light-emitting diodes”, IEEE Photonics Technology Letters, Vol. 17, No. 6, pp. 1163-1165, (2005).
34. J. Y. Kim, M. K. Kwon, J. P. Kim, and S. J. Park, “Enhanced light extraction from triangular GaN-based light-emitting diodes”, IEEE Photonics Technology Letters, Vol. 19, No. 23, pp. 1865-1867, (2007).
35. H. G. Kim, T. V. Cuong, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, and C. H. Hong, “Improved GaN-based LED light extraction efficiencies via selective MOCVD using peripheral microhole arrays”, IEEE Photonics Technology Letters, Vol. 20, No. 15, pp. 1284-1286, (2008).
36. D. B. Thompson, A. Murai, M. Iza, S. Brinkley, S. P. Denbaars, U. K. Mishra, and S. Nakamura, “Hexagonal truncated pyramidal light emitting diodes through wafer bonding of ZnO to GaN, laser lift-off, and photo chemical etching”, J. J. Appl. Phys., Vol. 47, No. 5, pp. 3447–3449, (2008).
37. C. F. Lin, J. J. Dai, M. S. Lin, K. T. Chen, W. C. Huang, C. M. Lin, R. H. Jiang, and Y. C. Huang, “An AlN sacrificial buffer layer inserted into the GaN patterned sapphire substrate for a chemical lift-off process”, Appl. Phys. Exp., Vol. 3, No. 3, pp. 031001, (2010).
38. C. F. Lin, J. J. Dai, G. M. Wang, and M. S. Lin, “Chemical lift-off process for blue light-emitting diodes”, Appl. Phys. Exp., Vol. 3, No. 9, pp. 092101, (2010).
39. W. C. Ke, C. P. Fu, C. C. Huang, C. S. Ku, L. Lee, C. Y. Chen, W. C. Tsai, W. K. Chen, M. C. Lee, W. C. Chou, W. J. Lin, and Y. C. Cheng, “Optical properties and carrier dynamics of self-assembled GaN Al0.11Ga0.89N quantum dots”, Nanotechnology, Vol. 17, No. 10, pp. 2609-2613, (2006).
40. T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B. A. Haskell, S. Keller, U. K. Mishra, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1−xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates”, Appl. Phys. Lett., Vol. 89, No. 9, pp. 091906, (2006).
41. T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, and S. F. Chichibu, “Quantum-confined stark effects in the m-plane In0.15Ga0.85N/GaN multiple quantum well blue light-emitting diode fabricated on low defect density freestanding GaN substrate”, Appl. Phys. Lett., Vol. 91, No. 18, pp. 181903, (2007).
42. M. Ferhat, and F. Bechstedt, “First principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys: Relation to structural and thermodynamic properties”, Phys. Rev. B, Vol. 65, No. 7, pp. 075213, (2002).
43. Kittle, “Introduction to Solid State Physical”.
44. L. Macht, P. R. Hageman, S. Haffouz, and P. K. Larsen, “Microphotoluminescence mapping of laterally overgrown GaN layers on patterned Si (111) substrates”, Appl. Phys. Lett., Vol. 87, No. 13, pp. 131904, (2005).
45. S. H. Wei, “NCPV and Dolar Program Review Meeting”, pp. 713, (2003).
46. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined stark effect”, Appl. Phys. Lett., Vol. 73, No. 12, pp. 1691-1693, (1998).
47. P. Perlin, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, “InGaN GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy”, Appl. Phys. Lett., Vol. 73, No. 19, pp. 2778-2780, (1998).
48. H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, and T. Saitoh, “Piezoelectric effects on photoluminescence properties in 10-nm-thick InGaN quantum wells”, Appl. Phys. Lett., Vol. 83, No. 23, pp. 4791-4793, (2003).
49. L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks”, J. Appl. Phys., Vol. 89, No. 9, pp. 4951-4954, (2001).
50. F. Bernardini, and V. Fiorentini, “Macroscopic polarization and band offsets at nitride heterojunctions”, Phys. Rev. B, Vol. 57, No. 16, pp. R9427- R9430, (1998).
51. Hadis Morkoc, “Nitride Semiconductors and Devices”.
52. H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee, “Laser liftoff GaN thin-film photonic crystal”, IEEE Photonics Technology Letters, Vol. 20, No. 24, pp. 2096-2098, (2008).
53. J. H. Cheng, Y. C. S. Wu, W. C. Peng, and H. Ouyang, “Effects of laser sources on damage mechanisms and reverse-bias leakages of laser lift-off GaN-based LEDs”, J. Electrochem. Soc., Vol. 156, No. 8, pp. H640-H643, (2009).
54. J. H. Lee, N. S. Kim, S. S. Hong, and J. H. Lee, “Enhanced extraction efficiency of InGaN-based light-emitting diodes using 100-kHz femtosecond-laser-scribing technology”, IEEE Photonics Technology Letters, Vol. 31, No. 3, pp. 213-215, (2010).
55. J. H. Lee, S. M. Hwang, N. S. Kim, and J. H. Lee, “InGaN-based high-power flip-chip LEDs with deep-hole-patterned sapphire substrate by laser direct beam drilling”, IEEE Photonics Technology Letters, Vol. 31, No. 7, pp. 698-700, (2010).
56. D. Li, M. Sumiya, K. Yoshimura, Y Suzuki, Y. Fukuda, and S. Fuke, “Characteristics of the GaN polar surface during an etching process in KOH solution”, Phys. Stat. Sol., Vol. 180, No. 1, pp. 357-362, (2000).
57. Y. Jung, K. H. Baik, F. Ren, S. J. Pearton, and J. Kim, “Effects of photoelectrochemical etching of N-polar and Ga-polar gallium nitride on sapphire substrates”, J. Electrochem. Soc., Vol. 157, No. 6, pp. H676-H678, (2010).
58. D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, and Y. Fukuda, “Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy”, J. Appl. Phys., Vol. 90, No. 8, pp. 4219-4223, (2001).
59. C. F. Lin, C. M. Lin, C. C. Yang, W. K. Wang, Y. C. Huang, J. A. Chen, and R. H. Horng, “InGaN-based light-emitting diodes with a cone-shaped sidewall structure fabricated through a crystallographic wet etching process”, Electrochem. Solid State Lett., Vol. 12, No. 7, pp. H233-H237, (2009).
60. H. M. Ng, N. G. Weimann, and A. Chowdhury, “GaN nanotip pyramids formed by anisotropic etching”, J. Appl. Phys., Vol. 94, No. 1, pp. 650-653, (2003).
61. J. M. Lee, J. H. Jang, and T. K. Yoo, “Scribing and cutting a blue LED wafer using a Q-switched Nd:YAG laser”, Appl. Phys. A, Vol. 70, No. 5, pp. 561-564, (2000).
62. G. Y. Mak, E. Y. Lam, and H. W. Choi, “Interconnected alternating-current light-emitting diode arrays isolated by laser micromachining”, J. Vac. Sci. Technol. B, Vol. 29, No. 1, pp. 011025, (2011).
63. G. Y. Mak, E. Y. Lam, and H. W. Choi, “Precision laser micromachining of trenches in GaN on sapphire”, J. Vac. Sci. Technol. B, Vol. 28, No. 2, pp. 380-385, (2010).
64. C. F. Lin, C. C. Yang, J. F. Chien, C. M. Lin, K. T. Chen, and S. K. Yen, “Fabrication of the InGaN-based light-emitting diodes through a photoelectrochemical process”, IEEE Photonics Technology Letters, Vol. 21, No. 16, pp. 1142-1144, (2009).
65. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells”, Jpn. J. Appl. Phys., Vol. 36, No. 4A, pp. L382-L385, (1997).
66. N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, and S. Guangdi, “Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction”, Solid State Electronics, Vol. 51, No. 6, pp.860-864, (2007).
67. J. I. Shim, and H. Jung, “An IQE measurement method report”, pp. 2.
68. Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells”, Appl. Phys. Lett., Vol. 79, No. 8, pp. 1130-1132, (2001).
69. L. C. Chang, C. H. Kuo, and C. W. Kuo, “Output power enhancements of nitride-based light-emitting diodes with inverted pyramid sidewalls structure”, Solid State Electronics, Vol. 56, No. 1, pp. 8-12, (2011).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔