跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉建晏
研究生(外文):Chien-Yen Liu
論文名稱:應力誘發二氧化鈦奈米結構自發性成長之研究
論文名稱(外文):Stress-Induced Spontaneous Growth of TiO2 Nanostructres
指導教授:張守一
口試委員:盧陽明鍾秀瑩
口試日期:2011-06-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:93
中文關鍵詞:應力奈米結構
外文關鍵詞:stressnanostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一維金屬氧化物奈米結構常利用物理氣相沉積法及化學氣相沉積法等製程複雜、成本昂貴的氣相方法來成長;近期水溶液法因成本低廉且可大面積成長奈米結構而逐漸受到重視,但不論是氣相或液相法接無法直接得到圖案化之奈米結構陣列。因此本研究創新提出結合應力與水溶液法的概念,在室溫下不需任何反應前驅物,即可於二氧化鈦薄膜上自發性成長一維二氧化鈦奈米結構。所成長之二氧化鈦奈米結構依成長環境不同 (濕度由低至高) 具有不同形貌,分別為豆狀、竹葉狀及角錐狀。應力越大則所成長之奈米結構分布越廣,在一定應力作用下成長量最多;但若二氧化鈦薄膜形成裂縫而釋放應力,將造成奈米結構數量減少。擺置時間越長則奈米結構之尺寸越大,濕度及溫度亦會造成奈米結構形態上的差異。在高濕度下所成長之奈米結構為TiO2•2.5H2O,含水量高、較不穩定,而在一般濕度下所成長之奈米結構則為TiO2•0.4H2O,帶水量較少、相對較為穩定。

Because of low cost and the ability to grow large-area one-dimensional nanostructures of metal oxides, aqueous deposition has received more attention compared to the complex and expensive physical vapor deposition and chemical vapor deposition processed. However, neither the gaseous nor liquid-phase process can directly obtain patterned nanostructure arrays. Therefore in this study, a new method that combines stress-induced and aqueous growth has been proposed for spontaneous growth of one-dimensional nanostructures on TiO2 film at room temperature without the use of any precursor. The results showed that the growth of TiO2 nanostructures varied under different environments in the form of (humidity from low to high) bean-like, bamboo-shaped or pyramid feature. With increasing stress, the growth nanostructures distributed more widely: at a certain degree of stress, the largest number of TiO2 nanostructures was obtained. Crack formation on TiO2 film resulted in stress release and led to the reduction in number of nanostructures. With increasing storing time, the size of the nanostructrues emlarged; both humidity and temperature influenced the morphology of nanostructures. At a high humidity, the growth nanostructures were identified as TiO2•2.5H2O that contained more water and were less stable; at a low humidity, the nanostructures were TiO2•0.4H2Othat contained less water and were more stable.

壹、前言 1
貳、文獻回顧 2
2-1奈米材料 2
2-2二氧化鈦 7
2-2-1二氧化鈦之結構與基本性質 7
2-2-2二氧化鈦奈米結構之應用 11
2-3一維二氧化鈦奈米結構製備 12
2-3-1物理氣相沉積法 12
2-3-2化學氣相沉積法 14
2-3-3水溶液法 16
2-4應力誘發奈米結構成長 18
2-4-1應力誘發自發性成長 18
2-4-2機械應力分佈與作用 24
2-4-3二氧化鈦表面化學 29
2-5研究目的 34
叁、實驗步驟 35
3-1實驗規劃 35
3-2材料與製程 36
3-2-1基板準備 36
3-2-2氧化鈦薄膜濺鍍 36
3-2-3刮痕製作 36
3-2-4靜置 36
3-3分析儀器 38
3-3-1高解析X光繞射分析儀 (HRXRD) 38
3-3-2奈米壓痕儀 (Nanoindenter) 38
3-3-3場發射掃描式電子顯微鏡 (FE-SEM) 38
3-3-4聚焦離子束微影系統 (FIB) 38
3-3-5高解析穿透式電子顯微鏡 (HRTEM) 39
肆、結果與討論 42
4-1氧化鈦薄膜結構 42
4-2應力與奈米結構成長之關係 45
4-3環境因素對奈米晶體成長之影響 54
4-3-1時間因素 54
4-3-2濕度因素 59
4-3-3溫度因素 62
4-3奈米晶體結構分析 64
4-3-1相對濕度98%成長之奈米晶體 64
4-3-2相對濕度70% 成長之奈米晶體 71
4-4奈米晶體熱穩定性 76
4-5奈米結構成長機制 82
伍、結論 84
陸、參考文獻 85


[1].U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Rep., 48(5-8) (2003) 53-299.
[2].M. Koelsch, S. Cassaignon , J. F. Guillemoles, and J. P. Jolivet, “Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol–gel method” Thin Solid Films, 403 (2002) 312-319.
[3].E. A. D. Vasconcelos, F. R. P. D. Santos, E. F. D. S. Jr., and H. Boudinov, “Nanowire growth on Si wafers by oxygen implantation and annealing”, Appl. Surf. Sci, 252 (2006) 5572-5574.
[4].Y. J. Chen, and C. M. Chen, “Mitigative tin whisker growth under mechanically applied tensile stress”, J. Electron. Mater., 38(3) (2009) 415-419.
[5].S. M. Prokes, and S. Arnold, “Stress-driven formation of Si nanowires”, Appl. Phys. Lett., 86(19) (2005) 193105.
[6].W. Shim, J. Ham, K. Lee, W. Y. Jeung, M. Johnson, and W. Lee, “On-film formation of Bi nanowires with extraordinary electron mobility”, Nano. Lett., 9(1) (2009) 18-22.
[7].J. Ham, W. Shim, D. H. Kim, S. Lee, J. Roh, S. W. Sohn, K. H. Oh, P. W. Voorhees, and W. Lee, “ Direct growth of compound semiconductor nanowires by on-film formation of nanowires: bismuth telluride”, Nano Lett., 9(8) (2009) 2867-2872.
[8].W. W. Gerberich, W. M. Mook, M. J. Cordill, C. B. Carter, C. R. Perrey, J. V. Heberlerin, and S. L. Girshick, “Reverse plasticity in single crystal silicon nanospheres”, Int. J. Plasticity, 21(12) (2005) 2391-2405.
[9].Y. Zhou, and M. N. Rahaman, “Effect of redox reaction on the sintering behavior of cerium oxide”, Acta Mater., 45(9) (1997) 3635-3639.
[10].Z. L. Wang, “Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices”, Adv. Mater., 15(5) (2003) 432-436.
[11].E. Li, Z. Cheng, J. Xu, Q. Pan, W. Yu, and Y. Chu, “Indium oxide with novel morphology: synthesis and application in C2H5OH gas sensing”, Cryst. Growth Des., 9(5) (2009) 2146-2151.
[12].Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology”, Maert. Sci. Eng. R, 64(3-4) (2009) 33-71.
[13].X. Chen, and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications”, Chem. Rev., 107(7) (2007) 2891-2959.
[14].M. Breedon, P. Spizzirri, M. Taylor, J. D. Plessis, D.McCulloch, J. Zhu, L. Yu, Z. Hu, C. Rix, W. Wlodarski, and K. K. Zadeh, “Synthesis of nanostructured tungsten oxide thin films: a simple, controllable, inexpensive, aqueous sol-gel method”, Cryst. Growth Des., 10(1) (2010) 430-439.
[15].S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56-58.
[16].N. S. Ramgir, Y. Y., and M. Zacharias, “Nanowire-based sensors”, Small, 6(16) (2010) 1705-1722.
[17].S. Barth, F. H. Ramirez, J. D. Holmes, and A. R. Rodriguez, “Synthesis and applications of one-dimensional semiconductors”, Prog. Mater. Sci., 55(6) (2010) 563-627.
[18].K. J. Choi, and H. W. Jang, “One-dimensional oxide nanostructures as gas-sensing materials: review and issues”, Sensors, 10(4) (2010) 4083-4099.
[19].Z. L. Wang, “Piezoelectric nanostructures: from growth phenomena to electric nanogenerators”, Mrs Bull., 32(2) (2007) 109-116.
[20].W. L. Hughes, and Z. L. Wang, “Nanobelts as nanocantilevers”, Appl. Phys. Lett., 82(17) (2003) 2886-2888.
[21].Z. Li, G. Zhu, R. Yang, A. C. Wang, and Z. L. Wang, “Muscle-driven in vivo nanogenerator”, Adv. Mater., 22(23) (2010) 2534-2537.
[22].C. H. Lee, D. R. Kim, and X. Zheng, “Fabricating nanowire devices on diverse substrates by simple transfer-printing methods”, P. Natl. Acad. Sci. USA, 107(22) (2010) 9950-9955.
[23].李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,2009年7月第六版。
[24].I. I. Nedrygailov, and E. G. Karpov, “Pd/n-SiC nanofilm sensor for molecular hydrogen detection in oxygen atmosphere”, Sensor Actuat. B-Chem., 148(2) (2010) 388-391.
[25].H. Jiang, R. Browning, J. D. Whitcomb, M. Ito, M. Shimouse, T. A. Chang, and H. J. Sue, “Mechanical modeling of scratch behavior of polymeric coatings on hard and soft substrates”, Tribol. Lett., 37(2) (2010) 159-167.
[26].Phase diagrams for ceramists, The American Ceramic Society, inc., 76 (1975) 4150-4999.
[27].Z. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G. Graff, and J. Liu, “Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review”, J. Power Sources, 192(2) (2009) 588-598.
[28].W. Schumann, “Mineralsof the world”, Sterling , 2nd (2008).
[29].A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238 (1972) 37-38.
[30].O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide”, Prog. Solid State Ch., 32(1-2) (2004) 33-177.
[31].W. Hu, L. Li, G. Li, C. Tang, and L. Sun, “High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance”, Cryst. Growth Des., 9(8) (2009) 3676-3682.
[32].J. M. Wu, H. C. Shih, W. T. Wu, Y. K. Tsengc, and I. C. Chen, “Thermal evaporation growth and the luminescence property of TiO2 nanowires”, J. Cryst. Growth, 281(2-4) (2005) 384-390.
[33].B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang, and D. P. Yu, “Field-emission properties of TiO2 nanowire arrays”, J. Phys. D Appl. Phys., 38(8) (2005) 1152-1155.
[34].J. M. Wu, H. C. Shih, and W. T.i Wu, “Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation", Chem. Phys. Lett., 413(4-6) (2005) 490-494.
[35].J. M. Wu, H. C Shih, and W. T. Wu, “Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation”, Nanotechnology, 17(1) (2006) 105-109
[36].S. K. Pradhan, P. J. Reucroft, F. Yang, and A. Dozier, “Growth of TiO2 nanorods by metalorganic chemical vapor deposition”, J. Cryst. Growth, 256(1-2) (2003) 83-88.
[37].J. J. Wu, and C. C. Yu, “Aligned TiO2 nanorods and nanowalls”, J. Phys. Chem. B, 108 (2004) 3377-3379.
[38].C. A. Chen, Y. M. Chen, A. Korotcov1, Y. S. Huang, D. S. Tsai, and K. K. Tiong, “Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal–organic chemical vapor deposition”, Nanotechnology, 19(7) (2008) 075611.
[39].C. A. Chen, Y. M. Chen, Y. S. Huang, D. S. Tsai, K. K. Tiongc, and P. C. Liao, “Synthesis and characterization of well-aligned anatase TiO2 nanocrystals on fused silica via metal–organic vapor deposition”, CrystEngComm, 11(11) (2009) 2313-2318.
[40].Q. Zhang, and L. Gao , “Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: insights from rutile TiO2”, Langmuir, 19(13) (2003) 967-971.
[41].Y. Yu, and D. Xu, “Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts”, Appl. Catal. B-Environ., 73(1-2) (2007) 166-171.
[42].S. E. Koonce, and S. M. Arnold, “Growth of metal whiskers”, (1952).
[43].C. H. Pitt, and R. G. Henning, “Pressure-induced growth of metal whiskers”, (1963).
[44].Y. T. Cheng, A. M. Weiner, C. A. Wong, M. P. Balogh, and M. J. Lukitsch, “Stress-induced growth of bismuth nanowires”, Appl. Phys. Lett., 81(17) (2002) 3248.
[45].X. Zhang, C. Li, and Z. Zhang, “One-dimensional growth induced by thermal stress”, Mater. Lett., 58 (2004) 1917-1919.
[46].T. Shibutani, Q. Yu, T. Yamashita, and M. Shiratori, “Stress-induced tin whisker initiation under contact loading”, IEEE T. Electron. Pack., 29(4) (2006) 259-264.
[47].T. Shibutani, Q. Yu, M. Shiratori, and M. G. Pecht, “Pressure-induced tin whisker formation”, Microelectron Reliab., 48(7) (2008) 1033-1039.
[48].R.Wang, K. Hashimoto, and A. Fujishima, “Light-induced amphiphilic surfaces”, Nature, 388 (1997) 431-432.
[49].A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis”, J. Photoch. Photobio. C, 1(1) (2000) 1-21.
[50].Z. Zhang, O. Bondarchuk, B. D. Kay, J. M. White, and Z. Dohnalek, “Imaging water dissociation on TiO2 (110): evidence for inequivalent geminate OH groups”, J. Phys. Chem. B, 110(43) (2006) 21840-21845.
[51].P. Walsh, A. Omeltchenko, R. K. Kalia, A. Nakano, and P. Vashishtaa, “Nanoindentation of silicon nitride: A multimillion-atom molecular dynamics study”, Appl. Phys. Lett., 82(1) (2003) 118-120.
[52].M. D. Vaudin, Y. B. Gerbig, S. J. Stranick, and R. F. Cook, “Comparison of nanoscale measurements of strain and stress using electron back scattered diffraction and confocal Raman microscopy”, Appl. Phys. Lett , 93(19) (2008) 193116.
[53].T. Chudoba, P. Schwaller, R. Rabe, J. M. Breguet, and J. Michler, “Comparison of nanoindentation results obtained with berkovich and cube-corner indenters”, Philos. Mag., 86(33-35) (2006) 5265-5283.
[54].S. J. Bull, and E. G. Berasetegui, “An overview of the potential of quantitative coating adhesion measurement by scratch testing”, Tribo. Int., 39(2) (2006) 99-114.
[55].Y. H. Jin, S. H. Lee, H. W. Shim, K. H. Ko, and D. W. Kim, “Tailoring high-surface-area nanocrystal line TiO2 polymorphs for high-power Li ion battery electrodes”, Electrochim. Acta, 55(24) (2010) 7315-1321.
[56].S. Ivankovic, M. Gotic, and S. Music, “Photokilling squamous carcinoma cells SCCVII with ultrafine particles”, J. Sol-gel Sci. Techn., 27(2) (2003) 225-233.
[57].A. P. Popov, A. V. Priezzhev, J. Ladenamnn, and R. Myllyla, “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens”, J. Phys. D: Appl. Phys., 38(15) (2005) 2564-2470.
[58].T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Titania nanotubes prepared by chemical processing”, Adv. Mater., 11(15) (1999) 1307-1311.
[59].C. M. Chen, and Y. J. Chen, “Growth orientation of the tin whiskers on an electrodeposited Sn thin film under three-point bending”, Mater. Lett., 63(17) (2009) 1517-1520.
[60].C. Sun, L. M. Liu, A. Selloni, G. Q. Lu, and S. C. Smith, “Titania-water interactions: a review of theoretical studies”, J. Mater. Chem., 20(46) (2010) 10319-10334.
[61].Y. He, W. K. Li, X. Q. Gong, O. Dulub, A. Selloni, and U. Diebold, “Nucleation and Growth of 1D water clusters on rutile TiO2 (011)-2×1”, J. Phys. Chem. C Lett. 113(24) (2009) 10329-10332.
[62].X. Cui, Z. Wang, S. Tan, B. Wang, J. Yang, and J. G. Hou, “Identifying hydroxyls on the TiO2 (110)-1×1 Surface with scanning tunneling microscopy”, J. Phys. Chem. C, 113(30) (2009) 13204-12208.
[63].A. S. Barnard, and L. A. Curtiss, “Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry”, Nano Lett., 5(7) (2005) 1261-1266.
[64].L. N. Dinh , W. McLean, M. A. Schildbach, J. D. LeMay, W. J. Siekhaus, and M. Balooch, “The nature and effects of the thermal stability of lithium hydroxide”, J. Nucle. Mater., 317(2-3) (2003) 175-188.
[65].S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, and V. Murugesan, “Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst”, Water Res., 38(13) (2004) 3001-3008.
[66].L. K. Tan, M. K. Kumar, W. W. An, and H. Gao, “Transparent, well-Aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications”, ACS Appl. Mater. Inter., 2(2) (2010) 498-503.
[67].C. W. Zou, X. D. Yan, J. Han, R. Q. Chen, J. M. Bian, E. Haemmerle, and W. Gao, “Preparation and enhanced photoluminescence property of ordered ZnO/TiO2 bottlebrush nanostructures”, Chem. Phys. Lett., 476(1-3) (2009) 84-78.
[68].C. Wang, C. Shao, X. Zhang, and Y. Liu, “SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties”, Inorg. Chem., 48(15) (2009) 7261-7268.
[69].J. Zabaleta, N. Mestres, P. Abellan, M. Gibert, F. Sandiumenge, T. Puig, and X. Obradors, “Orientational ordering of solution derived epitaxial Gd-doped ceria nanowires induced by nanoscratching”, Nanotechnology, 21(12) (2010) 025302.
[70].C. Taylor, E. Marega, E. A. Stach, G. Salamo, L. Hussey, M. Munoz, and A. Malshe, “Directed self-assembly of quantum structures by nanomechanical stamping using probe tips”, Nanotechnology, 19(1) (2008) 015301.
[71].S. Y. Chang, N. H. Yang, Y. C. Huang, S. J. Lin, T. Z. Kattamis, and C. Y. Liu, “Spontaneous growth of one-dimensional nanostructures from films in ambient atmosphere at room temperature : ZnO and TiO2”, J. Mater. Chem., 21(12) (2011) 4264-4271.
[72].S. Bela, A. S. W. Wong, and G. W. Ho, “Hydrolysis and ion exchange of titania nanoparticles towards large-scale titania and titanate nanobelt for gas sensing applications”, J. Phys. D : Appl. Phys., 43(3) (2010) 035401.
[73].F. Y. Wu, C. C. Yang, C. M. Wu, C. W. Wang, and W. H. Li, “Superconductivity in zero-dimensional indium nanoparticles”, J. Appl. Phys., 101(9) (2007) 09G11.
[74].R. Zallen, and M. P. Moret, “The optical absorption edge of brookite TiO2”, Solid State Commun., 137(3) (2006) 154-157.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top