跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許峰豪
研究生(外文):Feng-Hao Hsu
論文名稱:本質型導電高分子/石墨烯奈米複合材料之製備與特性研究
論文名稱(外文):Preparation and Characterization of Intrinsic Conducting Polymer/Graphene Nanocomposites
指導教授:吳宗明吳宗明引用關係
口試委員:廖建勛蔡毓禎
口試日期:2011-06-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:74
中文關鍵詞:本質型導電高分子石墨烯奈米複合材料聚苯乙烯磺酸鈉
外文關鍵詞:Intrinsic conducting polymergraphenenanocompositePSS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
化學法製備石墨烯為石墨烯發現以後最常用來得到大量石墨烯的方法,其製程簡單及產量大等優點,在所有石墨烯製程比較上佔了相當大的優勢,因此,本研究利用化學方法製備石墨烯,並利用FT-IR、Raman、XRD、TGA等分析鑑定氧化石墨及還原石墨烯與原始石墨性質上基本差異,最後藉由石墨烯良好的特性作為導電高分子的補強材。
石墨烯經由化學還原後,大量氧化官能基會因還原劑而移除,造成其親水性不佳,分散不易。因此,本研究引入陰離子型聚電解質聚苯乙烯磺酸鈉(PSS)作為界面活性劑,以克服並解決分散石墨烯的問題。而PSS所帶有的磺酸根具有陰離子摻雜導電高分子的功能,因此,在本研究中亦作為摻雜劑的角色,並以原位聚合法製備出聚吡咯/石墨烯奈米複合材料,並進行性質分析與探討。
在添加PSS之聚吡咯/石墨烯奈米複合材料系統中,隨著不同濃度PSS的添加,聚吡咯/石墨烯奈米複合材料之導電度隨著PSS濃度增加由未添加的6.47 S/cm上升至濃度為4 mg/ml的32.55 S/cm,可達5倍多,之後導電度則達到穩定。由EPR結果進一步得知,隨著PSS濃度增加,複合材料中所含的自由電子數目隨之增加,由未添加PSS之自由電子數目1.889E+7增加至4 mg/ml PSS添加的3.648E+7,可知其摻雜程度隨之增加,分子鏈上自由電子數目亦隨之增加,導電度因而上升。此外,由SEM形態觀察中,發現PSS添加使得聚吡咯球狀顆粒形態尺寸有減小的效果,此結果與作為界面活性劑之PSS溶於水中形成微胞(micelles)有關。
另外,在聚苯胺/氧化石墨烯奈米複合材料中,以不同molar ratio之APS/苯胺單體條件下,由SEM觀察結果中發現,隨著APS氧化劑濃度的提升,其聚苯胺形態由短桿狀轉變為不規則團聚狀。在複合材料中,亦可觀察到於氧化石墨烯表面的針刺狀聚苯胺及外部的短桿狀聚苯胺形態轉為不規則團聚。


Chemical method was the most commonly and simple method to generate lots of graphene. The fabricated graphite oxide and reduced graphene used as a reinforcing material for conducting polymer were characterized by FT-IR、Raman、XRD and TGA analysis. The reduced graphene removed a large number of oxidation function group by reducing agent will become less hydrophilic and be difficult to disperse in solution. In this study, poly(sodium 4-styrenesulfonate)(PSS), an anionic polyelectrolyte, could be used as a surfactant to overcome the dispersion of graphene in solution. Therefore, the conductive polypyrrole/graphene nanocomposites with various PSS concentrations were synthesized by in-situ chemical oxidation polymerization. The morphology and physical properties of fabricated nanocomposites were investigated using FE-SEM、TEM、XRD and TGA.
The conductivity of polypyrrole/graphene nanocomposite could be increased from 6.47 S/cm to 32.55 S/cm with increasing PSS concentration to 4 mg/ml. From the Electron Paramagnetic Resonance (EPR) result, the number of free electrons of polypyrrole/graphene nanocomposite was also increased from 1.889E+7 to 3.648E+7. These results indicated that the conductivity of nanocomposites increased as the number of free electrons increased. In addition, the SEM images show that the polypyrrole particle size decreased with increasing PSS concentration, which was associated with the formation of PSS micelles.
For comparison, the polaniline/graphene oxide nanocomposites with various ammonium persulfate(APS)/aniline molar ratio were also synthesized using in-situ chemical polymerization. The morphology of polyaniline investigated by SEM images reveals the change from short rod to irregular aggregate as the concentration of APS increased.


摘要.......I
Abstract.......II
總目次.......III
圖目次.......V
表目次.......IX
第一章 緒論.......1
1-1 前言.......1
1-2 研究動機.......3
1-3 研究方向與目的.......4
第二章 文獻回顧.......5
2-1 導電高分子.......5
2-2 聚苯胺.......8
2-3 聚吡咯.......10
2-4 聚電解質.......12
2-5 石墨烯.......13
2-5-1 石墨烯之製備........15
2-5-2 化學法製備石墨烯........17
2-6 導電高分子/石墨烯複合材料........19
第三章 實驗方法與步驟.......26
3-1 實驗材料.......26
3-2 實驗儀器.......28
3-3 實驗步驟.......29
3-3-1 氧化石墨之製備.......29
3-3-2 導電高分子/氧化石墨烯複合材料之製備.......30
3-3-3 還原氧化石墨烯之製備.......31
3-3-4 添加PSS之聚吡咯/石墨烯複合材料製備.......32
3-3-5 不添加PSS之聚吡咯/石墨烯複合材料製備.......33
3-3-6 參數及樣品代號表格整理.......34
3-4 實驗儀器分析原理.......35
第四章 結果與討論.......39
4-1 化學法製備石墨烯.......39
4-1-1 氧化石墨性質分析.......39
4-1-2 還原石墨烯性質分析.......45
4-2 添加不同濃度PSS之聚吡咯/石墨烯奈米複合材料性質.......51
4-3 添加不同含量石墨烯之聚吡咯/石墨烯奈米複合材料性質.......60
4-4 以不同APS/苯胺莫耳比例之聚苯胺/氧化石墨烯奈米複合材料形態分析.......67
第五章 結論.......69
參考文獻.......71





1.H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc., Chem. Commun., 1977, 578.
2.J. C. Huang, Adv. Polym. Tech., 2002, 21, 299.
3.I. K. Varma, G. Gupta, C. S. Sidhu, Macromol. Symp., 2001, 164, 401.
4.A. G. MacDiarmid, Angew. Chem. Int. Ed., 2001, 40, 2581.
5.Z. V. Vardeny, A. J. Heeger, A. Dodabalapur, Synth. Met., 2005, 148, 1.
6.廖建勛, 工業材料, 1997, 125, 108.
7.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 2004, 306, 666.
8.R. E. Peierls, Ann. Inst. Henri Poincare, 1935, 5, 177.
9.N. D. Mermin, H. Wagner, Phys. Rev. Lett., 1966, 17, 1133.
10.C. Lee, X. Wei, J. W. Kysar, J. Hone, Science, 2008, 321, 385.
11.R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science, 2008, 320, 1308.
12.洪偉修,世界上最薄的材料-石墨烯,98康熹化學報報,康熹文化事業股份有限公司,2009年11月。
13.T. M. Wu, H. L. Chang, Y. W. Lin, Com. Sci. Tech., 2009, 69, 639.
14.B. Wessling, Synth. Met., 1991, 1, 119.
15.S. D. D. V. Rughooputh, M. Nowak, S. Hotta, A. J. Heeger, F. Wudl, Synth. Met. 1987, 21, 41.
16.H. Letheby, J. Chen. Soc., 1862, 15, 161.
17.A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173.
18.S. Sinha, S. Bhadra, D. Khastgir, J. App. Polym. Sci., 2008, 112, 3135.
19.A. Angeli, L. Alessandri, Gazz. Chim. Ital., 1916, 46, 283.
20.Pratesi, Gazz. Chim. Ital., 1937, 67, 183.
21.M. Salmon, K. K. Kanazawa, A. F. Diaz, M. Krounbi, J. Polym. Sci. Polym. Lett. Ed., 1982, 20, 187.
22.J. C. Thieblemont, A. Brun, J. Marty, M. F. Pianche, P. Calo, Polymer., 1995, 36, 1605.
23.C. Cassignol, P. Olivier, A. Ricard, J. Appl. Polym. Sci., 1998, 70, 1557.
24.E. J. Oh, K. S. Jang, A. G. MacDiarmid, Synth. Met., 2002, 125, 267.
25.K. Nishino, M. Fujimoto, O. Ando, H. Ono, T. Murayama, J. Appl. Electrochem., 1996, 26, 425.
26.N. Toshima, S. Hara, Prog. Polym. Sci., 1995, 20, 155.
27.N. Ballav, M.J. Biswas, J. Appl. Polym. Sci., 2005, 96, 1483.
28.A. Dall’Olio, Y. Dascola, V. Varacca, V. Bocchi, Comptes Rendus, 1968, C267, 433.
29.B. R. Saunders, R. J. Fleming, K. Murry, Chem. Mat., 1995, 7, 1082.
30.D. E. Fenton, J. M. Parker, P. V. Wright, Polymer, 1973, 14, 589.
31.P. V. Wright, Polymer. J., 1975, 7, 319.
32.M. B. Armand, J. M. Chabagno, M. J. Duclot, Second International Meeting on Solid Electrolytes, St. Andeews, Scotland, September, 1978, 20-22.
33.宋明恩,多價鹽類於聚電解質溶液中的影響,國立中央大學化學工程與材料工程研究所碩士論文,2006年。
34.M. I. Katsnelson, K.S. Novoselov, Solid State Commun., 2007, 143, 3.
35.V. Kohlschütter, P. Haenni, Z. Anorg. Allg. Chem., 1918, 105, 121.
36.G. Ruess, F. Vogt. Monatshefte für Chemie. 1948, 78, 222.
37.B. Z. Jang, A. Zhamu, J. Mater. Sci., 2008, 43, 5092.
38.M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett., 2008, 8, 3498.
39.S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature, 2006, 442, 282.
40.T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud''Homme, L. C. Brinson, Nature Nanotech., 2008, 3, 327.
41.P. Ge, M. Fouletier, Solid State Ionics, 1988, 28, 1172.
42.M. S. Dresselhaus, G. Dresselhaus, Advances in Physics, 2002, 51, 1.
43.M. Eizenberg, J. M. Blakely, Surf. Sci., 1970, 82, 228.
44.T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, C. Oshima, Phys. Rev. Lett., 1990, 64, 768.
45.Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei, Appl. Phys. Lett., 2008, 93, 113103.
46.K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature, 2009, 457, 706.
47.C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, J. Phys. Chem. B, 2004, 108, 19912.
48.C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Science, 2006, 312, 1191.
49.L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature, 2009, 458, 877.
50.D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature, 2009, 458, 872.
51.B. C. Brodie, Philos. Trans. R. Soc. London, 1859, 149, 249.
52.L. Staudenmaier, Ber. Dtsch. Chem. Ges., 1898, 31, 1481.
53.W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
54.D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev., 2010, 39, 228.
55.J. I. Paredes, S. Villar-Rodil, A. Martı´nez-Alonso, J. M. D. Tasco´n, Langmuir, 2008, 24, 10560.
56.L. J. Cote, F. Kim, J. Huang, J. Am. Chem. Soc., 2009, 131, 1043.
57.A. Buchsteiner, A. Lerf, J. Pieper, J. Phys. Chem. B, 2006, 110, 22328.
58.G. Chen, D. Wu, W. Weng, C. Wu, Carbon, 2003, 41, 619.
59.S. Park, R. S. Ruoff, Nature Nanotech., 2009, 4, 217.
60.X. Gao, J. Jang, S. Nagasae, J. Phys. Chem. C, 2010, 114, 832.
61.O. C. Compton, S. T. Nguyen, Small, 2010, 6, 711.
62.C. G. Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett., 2010, 10, 1144.
63.E. Tkalya, M. Ghislandi, A. Alekseev, C. Koning, J. Loos, J. Mat. Chem., 2010, 20, 3035.
64.Z. Xu, C. Gao, Macromolecule, 2010, 43, 6716.
65.J. C. Meyer, C. O. Girit, M. F. Crommie, A. Zetti, Nature, 2008, 454, 319.
66.D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Nature, 2007, 448, 457.
67.H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Electrochem. Commun., 2009, 11, 1158.
68.H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, App. Mat. Int., 2010, 2, 821.
69.N. Yang, J. Zhai, M. Wan, D. Wang, L. Jiang, Synth. Met., 2010, 160, 1617.
70.J. Xu, K. Wang, S. Z. Zu, B. H. Han, Z. Wei, ACS Nano, 2010, 4, 5019.
71.Z. Mo, H. Shi, H. Chen, G. Niu, Z. Zhao, Y. Wu, J. App. Polym. Sci., 2009, 112, 573.
72.S. Bose, T. Kuila, E. Uddin, N. H. Kimm, A. K. T. Lau, J. H. Lee, Polymer, 2010, 51, 5921.
73.D. W. Wang, F. Li, J. Zhao, W. Ren, Z. G. Chen, J. Tan, Z. S. Wu, I. Gentle, G. Q. Lu, H. M. Cheng, ACS Nano, 2010, 3, 1745.
74.H. Hiura, T. W. Ebbesen, K. Tanigaki, H. Takahashi, Chem. Phys. Lett., 1993, 202, 509.
75.Y. Hernandez, V. Niclosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nature Nanotech., 2008, 3, 563.
76.J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, M. Ye, Chem. Mater., 2009, 21, 3514.
77.S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas. E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature, 2006, 442, 282.
78.H. Yang, Q. Zhang, C. Shan, F. Li, D. Han, L. Niu, Langmuir, 2010, 26, 6708.
79.D. Y. Lee, Z. Khatun, J. H. Lee, Y. K. Lee, I. In, Biomacromolecules, 2011, 12, 336.
80.Y. Furukawa, S. Tazawa, Y. Fujii, I. Harada, Synth. Met., 1988, 24, 329.
81.周雪芬,水可溶導電高分子作為電泳介質及自由基捕捉劑之應用探討,私立長庚大學化工與材料工程研究所碩士論文,2004年。
82.C. Su, G. C. Wang, F. R. Huang, X. W. Li, J. Mater. Sci., 2008, 43, 197.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊