|
[1]T. Markvart, Solar electricity vol. 6: John Wiley & Sons Inc., 2000. [2]T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, "Limiting efficiency of silicon solar cells," IEEE Transactions on Electron Devices, vol. 31, pp. 711-716, 1984. [3]J. Zhao, A. Wang, P. Altermatt, and M. Green, "Twenty four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss," Applied Physics Letters, vol. 66, pp. 3636-3638, 1995. [4]D. Carlson and C. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, vol. 28, pp. 671-673, 1976. [5]K. W. Mitchell, C. Eberspacher, J. H. Ermer, K. L. Pauls, and D. N. Pier, "CuInSe2 cells and modules," IEEE Transactions on Electron Devices, vol. 37, pp. 410-417, 1990. [6]H. Sterling and R. Swann, "Chemical vapour deposition promoted by rf discharge," Solid-State Electronics, vol. 8, pp. 653-654, 1965. [7]R. Chittick, J. Alexander, and H. Sterling, "The preparation and properties of amorphous silicon," Journal of the Electrochemical Society, vol. 116, pp. 77-81, 1969. [8]A. Lewis, G. Connell, W. Paul, J. Pawlik, and R. Temkin, "Hydrogen incorporation in amorphous Germanium," in International Conference on Tetrahedrally Bonded Amorphous Semiconductors Yorktown Heights, N.Y., U.S.A, 1974, p. 27. [9]A. Triska, D. Dennison, and H. Fritzsche, "Hydrogen content in amorphous-Ge and Si prepared by RF decomposition of GeH4 and SiH4," Bulletin of American Physics Society, vol. 20, pp. 392-397, 1975. [10]A. Matsuda, "Formation kinetics and control of microcrystallite in uc-Si:H from glow discharge plasma," Journal of Non-Crystalline Solids, vol. 59, pp. 767-774, 1983. [11]M. Faraji, S. Gokhale, S. Choudhari, M. Takwale, and S. Ghaisas, "High mobility hydrogenated and oxygenated microcrystalline silicon as a photosensitive material in photovoltaic applications," Applied Physics Letters, vol. 60, pp. 3289-3291, 1992. [12]J. K. Rath, H. Meiling, and R. E. I. Schropp, "Purely intrinsic poly-silicon films for nip solar cells," Japanese Journal of Applied Physics, vol. 36, pp. 5436-5443, 1997. [13]P. Muller, I. Beckers, E. Conrad, L. Elstner, and W. Fuhs, "Application of low-temperature electron cyclotron resonance CVD to silicon thin-film solar cell preparation," in 25th IEEE Photovoltaic Specialists Conference, Washington, DC , USA, 1996, pp. 673-676. [14]S. Koynov, S. Grebner, P. Radojkovic, E. Hartmann, R. Schwarz, L. Vasilev, R. Krankenhagen, I. Sieber, W. Henrion, and M. Schmidt, "Initial stages of microcrystalline silicon film growth," Journal of Non-Crystalline Solids, vol. 198, pp. 1012-1016, 1996. [15]S. Hamma and P. Roca i Cabarrocas, "Low temperature growth of highly crystallized silicon thin films using hydrogen and argon dilution," Journal of non-crystalline solids, vol. 227, pp. 852-856, 1998. [16]H. Matsumura, A. Heya, R. Iizuka, A. Izumi, A. Q. He, and N. Otsuka, "Low-temperature formation of device-quality polysilicon films by Cat-CVD method," 1997, pp. 983-988. [17]D. Peiro, J. Bertomeu, C. Voz, M. Fonrodona, D. Soler, and J. Andreu, "Structure of microcrystalline silicon films deposited at very low temperatures by hot-wire CVD," Materials Science and Engineering B, vol. 69, pp. 536-541, 2000. [18]V. Dalal, T. Maxson, and K. Han, "Microcrystalline Si and (Si, Ge) solar cells," in 28th IEEE Photovoltaic Specialists Conference, Anchorage, AK , USA, 2001, pp. 792-795. [19]R. E. I. Schropp and M. Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology: Kluwer Academic Publishers, 1998. [20]R. Schropp, K. Feenstra, E. Molenbroek, H. Meiling, and J. Rath, "Device-quality polycrystalline and amorphous silicon films by hot-wire chemical vapour deposition," Philosophical Magazine Part B, vol. 76, pp. 309-321, 1997. [21]H. Wiesmann, A. Ghosh, T. McMahon, and M. Strongin, "a Si: H produced by high temperature thermal decomposition of silane," Journal of Applied Physics, vol. 50, pp. 3752-3754, 1979. [22]H. Matsumura and H. Tachibana, "Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2," Applied Physics Letters, vol. 47, pp. 833-835, 1985. [23]H. Matsumura, "Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon," Japanese Journal of Applied Physics, vol. 25, pp. L949-L951, 1986. [24]H. Matsumura, "Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon," Journal of Applied Physics, vol. 65, pp. 4396-4402, 1989. [25]M. Heintze, R. Zedlitz, H. Wanka, and M. Schubert, "Amorphous and microcrystalline silicon by hot wire chemical vapor deposition," Journal of Applied Physics, vol. 79, pp. 2699-2706, 1996. [26]A. Mahan, J. Carapella, B. Nelson, R. Crandall, and I. Balberg, "Deposition of device quality, low H content amorphous silicon," Journal of Applied Physics, vol. 69, pp. 6728-6730, 1991. [27]J. Doyle, R. Robertson, G. Lin, M. He, and A. Gallagher, "Production of high quality amorphous silicon films by evaporative silane surface decomposition," Journal of Applied Physics, vol. 64, pp. 3215-3223, 1988. [28]E. C. Molenbroek, A. Mahan, E. Johnson, and A. Gallagher, "Film quality in relation to deposition conditions of a SI: H films deposited by the "hot wire" method using highly diluted silane," Journal of Applied Physics, vol. 79, pp. 7278-7292, 1996. [29]S. Bauer, B. Schroder, and H. Oechsner, "The effect of hydrogen dilution on the microstructure and stability of a-Si: H films prepared by different techniques," Journal of Non-Crystalline Solids, vol. 227, pp. 34-38, 1998. [30]M. Van Veen and R. Schropp, "Beneficial effect of a low deposition temperature of hot-wire deposited intrinsic amorphous silicon for solar cells," Journal of Applied Physics, vol. 93, pp. 121-125, 2003. [31]P. A. T. T. van Veenendaal, O. L. J. Gijzeman, J. K. Rath, and R. Schropp, "The influence of different catalyzers in hot-wire CVD for the deposition of polycrystalline silicon thin films," Thin Solid Films, vol. 395, pp. 194-197, 2001. [32]K. Ishibashi, "Development of the Cat-CVD apparatus and its feasibility for mass production," Thin Solid Films, vol. 395, pp. 55-60, 2001. [33]A. Mahan, "Hot wire chemical vapor deposition of Si containing materials for solar cells," Solar Energy Materials and Solar Cells, vol. 78, pp. 299-327, 2003. [34]H. Matsumura, "Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method," Japanese Journal of Applied Physics, vol. 37, pp. 3175-3187, 1998. [35]F. Diehl, M. Scheib, B. Schroder, and H. Oechsner, "Enhanced optical absorption in hydrogenated microcrystalline silicon: an absorption model," Journal of Non-Crystalline Solids, vol. 227, pp. 973-976, 1998. [36]S. Morrison and A. Madan, "Deposition of amorphous and microcrystalline silicon using a graphite filament in the hot wire chemical vapor deposition technique," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, pp. 2817-2819, 2001. [37]W. Ruihua, L. Zhiqiang, L. Li, and L. Jahe, "Study of hot wire chemical vapor deposition technique for silicon thin film," Solar Energy Materials and Solar Cells, vol. 62, pp. 193-199, 2000. [38]P. Van Veenendaal, C. Van Der Werf, J. Rath, and R. Schropp, "Influence of grain environment on open circuit voltage of hot-wire chemical vapour deposited Si: H solar cells," Journal of Non-Crystalline Solids, vol. 299, pp. 1184-1188, 2002. [39]J. Guillet, C. Niikura, J. Bouree, J. Kleider, C. Longeaud, and R. Bruggemann, "Microcrystalline silicon deposited by the hot-wire CVD technique," Materials Science and Engineering B, vol. 69, pp. 284-288, 2000. [40]R. E. I. Schropp, "Advances in solar cells made with hot wire chemical vapor deposition (HWCVD): superior films and devices at low equipment cost," Thin Solid Films, vol. 403, pp. 17-25, 2002. [41]Y. Akasaka, presented at the 4th International Conference on Hot-Wire CVD Process, Takayama, Gifu, Japan, 2006. [42]H. Matsumura and K. Ohdaira, "Recent situation of industrial implementation of Cat-CVD technology in Japan," Thin Solid Films, vol. 516, pp. 537-540, 2008. [43]H. Matsumura and K. Ohdaira, "New application of Cat-CVD technology and recent status of industrial implementation," Thin Solid Films, vol. 517, pp. 3420-3423, 2009. [44]J. Meier, R. Fluckiger, H. Keppner, and A. Shah, "Complete microcrystalline p-i-n solar cell-Crystalline or amorphous cell behavior?," Applied Physics Letters, vol. 65, pp. 860-862, 1994. [45]J. Meier, S. Dubail, S. Golay, U. Kroll, S. Fa , E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, "Microcrystalline silicon and the impact on micromorph tandem solar cells," Solar Energy Materials and Solar Cells, vol. 74, pp. 457-467, 2002. [46]B. Schroeder, "Status report: solar cell related research and development using amorphous and microcrystalline silicon deposited by HW (Cat) CVD," Thin Solid Films, vol. 430, pp. 1-6, 2003. [47]M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, and O. Oota, "HITTM cells-high efficiency crystalline Si cells with novel structure," Progress in Photovoltaics: Research and Applications, vol. 8, pp. 503-513, 2000. [48]M. Van Cleef, J. Rath, F. Rubinelli, C. Van Der Werf, R. Schropp, and W. Van der Weg, "Performance of heterojunction p+ microcrystalline silicon n crystalline silicon solar cells," Journal of Applied Physics, vol. 82, pp. 6089-6095, 1997. [49]J. Pla, E. Centurioni, C. Summonte, R. Rizzoli, A. Migliori, A. Desalvo, and F. Zignani, "Homojunction and heterojunction silicon solar cells deposited by low temperature-high frequency plasma enhanced chemical vapour deposition," Thin Solid Films, vol. 405, pp. 248-255, 2002. [50]B. Jagannathan and W. Anderson, "Defect study in amorphous silicon/crystalline silicon solar cells by thermally stimulated capacitance," Journal of Applied Physics, vol. 82, pp. 1930-1935, 1997. [51]C. Voz, I. Martin, A. Orpella, J. Puigdollers, M. Vetter, R. Alcubilla, D. Soler, M. Fonrodona, J. Bertomeu, and J. Andreu, "Surface passivation of crystalline silicon by Cat-CVD amorphous and nanocrystalline thin silicon films," Thin Solid Films, vol. 430, pp. 270-273, 2003. [52]M. Kunst, S. Von Aichberger, G. Citarella, and F. Wunsch, "Amorphous silicon/crystalline silicon heterojunctions for solar cells," Journal of Non-Crystalline Solids, vol. 299, pp. 1198-1202, 2002. [53]P. J. Goodhew, F. J. Humphreys, and R. Beanland, Electron microscopy and analysis: Taylor & Francis Group, 2001. [54]L. Reimer and H. Kohl, Transmission electron microscopy: physics of image formation: Springer Verlag, 2008. [55]M. Brodsky, M. Cardona, and J. Cuomo, "Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering," Physical Review B, vol. 16, pp. 3556-3571, 1977. [56]Z. Iqbal and S. Veprek, "Raman scattering from hydrogenated microcrystalline and amorphous silicon," Journal of Physics C: Solid State Physics, vol. 15, pp. 377-392, 1982. [57]B. E. Warren, X-ray Diffraction: Dover Pubns, 1990. [58]H. P. Klug and L. E. Alexander, "X-ray diffraction procedures: for polycrystalline and amorphous materials," X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974., vol. 1, 1974. [59]N. Maley, "Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys," Physical Review B, vol. 46, pp. 2078-2085, 1992. [60]A. Langford, M. Fleet, B. Nelson, W. Lanford, and N. Maley, "Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon," Physical Review B, vol. 45, pp. 13367-13377, 1992. [61]Y. Veschetti, J. C. Muller, J. Damon-Lacoste, P. Roca i Cabarrocas, A. Gudovskikh, J. P. Kleider, P. J. Ribeyron, and E. Rolland, "Optimisation of amorphous and polymorphous thin silicon layers for the formation of the front-side of heterojunction solar cells on p-type crystalline silicon substrates," Thin Solid Films, vol. 511, pp. 543-547, 2006. [62]Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, "Twenty-two percent efficiency HIT solar cell," Solar Energy Materials and Solar Cells, vol. 93, pp. 670-673, 2009. [63]M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 36)," Progress in Photovoltaics: Research and Applications, vol. 18, pp. 346-352, 2010. [64]H. Yamamoto, Y. Takaba, Y. Komatsu, M. J. Yang, T. Hayakawa, M. Shimizu, and H. Takiguchi, "High-efficiency uc-Si/c-Si heterojunction solar cells," Solar Energy Materials and Solar Cells, vol. 74, pp. 525-531, 2002. [65]H. Matsumura, H. Umemoto, and A. Masuda, "Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon," Journal of Non-Crystalline Solids, vol. 338, pp. 19-26, 2004. [66]Y. Song and W. Anderson, "Amorphous silicon/p-type crystalline silicon heterojunction solar cells with a microcrystalline silicon buffer layer," Solar Energy Materials and Solar Cells, vol. 64, pp. 241-249, 2000. [67]V. A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and J. Yi, "Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell," Solar Energy, vol. 84, pp. 777-783, 2010. [68]E. Centurioni, D. Iencinella, R. Rizzoli, and F. Zignani, "Silicon heterojunction solar cell: a new buffer layer concept with low-temperature epitaxial silicon," IEEE Transactions on Electron Devices, vol. 51, pp. 1818-1824, 2004. [69]B. Jagannathan and W. Anderson, "Interface effects on the carrier transport and photovoltaic properties of hydrogenated amorphous silicon/crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 44, pp. 165-176, 1996. [70]Y. Song, M. Park, E. Guliants, and W. Anderson, "Influence of defects and band offsets on carrier transport mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells," Solar Energy Materials and Solar Cells, vol. 64, pp. 225-240, 2000. [71]H. M. Branz, C. W. Teplin, D. L. Young, M. R. Page, E. Iwaniczko, L. Roybal, R. Bauer, A. Mahan, Y. Xu, and P. Stradins, "Recent advances in hot-wire CVD R&D at NREL: From 18% silicon heterojunction cells to silicon epitaxy at glass-compatible temperatures," Thin Solid Films, vol. 516, pp. 743-746, 2008. [72]H. S. Povolny and X. Deng, "High-rate deposition of amorphous silicon films using hot-wire CVD with a coil-shaped filament," Thin Solid Films, vol. 430, pp. 125-129, 2003. [73]E. Iwaniczko, Y. Xu, R. Schropp, and A. Mahan, "Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD," Thin Solid Films, vol. 430, pp. 212-215, 2003. [74]Y. Mai, S. Klein, R. Carius, J. Wolff, A. Lambertz, F. Finger, and X. Geng, "Microcrystalline silicon solar cells deposited at high rates," Journal of applied physics, vol. 97, pp. 114913-1-114913-12, 2005. [75]T. Wang, E. Iwaniczko, M. Page, D. Levi, Y. Yan, H. Branz, and Q. Wang, "Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells," Thin Solid Films, vol. 501, pp. 284-287, 2006. [76]J. Rath, H. Meiling, and R. Schropp, "Low-temperature deposition of polycrystalline silicon thin films by hot-wire CVD," Solar Energy Materials and Solar Cells, vol. 48, pp. 269-277, 1997. [77]S. S. Lee, M. S. Ko, C. S. Kim, and N. M. Hwang, "Gas phase nucleation of crystalline silicon and their role in low-temperature deposition of microcrystalline films during hot-wire chemical vapor deposition," Journal of Crystal Growth, vol. 310, pp. 3659-3662, 2008. [78]J. Damon-Lacoste, P. Roca i Cabarrocas, P. Chatterjee, Y. Veschetti, A. Gudovskikh, J. Kleider, and P. Ribeyron, "About the efficiency limits of heterojunction solar cells," Journal of Non-Crystalline Solids, vol. 352, pp. 1928-1932, 2006. [79]Y. Xu, Z. Hu, H. Diao, Y. Cai, S. Zhang, X. Zeng, H. Hao, X. Liao, E. Fortunato, and R. Martins, "Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers," Journal of Non-Crystalline Solids, vol. 352, pp. 1972-1975, 2006. [80]A. Masuda and H. Matsumura, "Guiding principles for device-grade hydrogenated amorphous silicon films and design of catalytic chemical vapor deposition apparatus," Thin Solid Films, vol. 395, pp. 112-115, 2001. [81]M. Tucci and G. De Cesare, "17% efficiency heterostructure solar cell based on p-type crystalline silicon," Journal of Non-Crystalline Solids, vol. 338, pp. 663-667, 2004. [82]M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, and S. Nakano, "Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer)," Japanese Journal of Applied Physics, vol. 31, pp. 3518-3522, 1992. [83]N. Jensen, U. Rau, R. Hausner, S. Uppal, L. Oberbeck, R. Bergmann, and J. Werner, "Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells," Journal of Applied Physics, vol. 87, pp. 2639-2645, 2000. [84]J. Pallares and R. Schropp, "Role of the buffer layer in the active junction in amorphous-crystalline silicon heterojunction solar cells," Journal of Applied Physics, vol. 88, pp. 293-299, 2000. [85]S. K. Kim, J. C. Lee, S. J. Park, Y. J. Kim, and K. H. Yoon, "Effect of hydrogen dilution on intrinsic a-Si:H layer between emitter and Si wafer in silicon heterojunction solar cell," Solar Energy Materials and Solar Cells, vol. 92, pp. 298-301, 2008. [86]M. Tucci, "Optimization of n-doping in n-type a-SI:H/p-type textured c-Si heterojunction for photovoltaic applications," Solar Energy Materials and Solar Cells, vol. 57, pp. 249-257, 1999. [87]K. Mackenzie, J. Eggert, D. Leopold, Y. Li, S. Lin, and W. Paul, "Structural, electrical, and optical properties of a-Si1-x Gex: H and an inferred electronic band structure," Physical Review B, vol. 31, pp. 2198-2213, 1985. [88]M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 37)," Progress in Photovoltaics: Research and Applications, vol. 19, pp. 84-92, 2011. [89]H. Fujiwara and M. Kondo, "Impact of epitaxial growth at the heterointerface of a-Si: H/c-Si solar cells," Applied Physics Letters, vol. 90, pp. 013503-013503-3, 2007. [90]R. Stangl, A. Froitzheim, M. Schmidt, and W. Fuhs, "Design criteria for amorphous/crystalline silicon heterojunction solar cells-a simulation study," in 3rd World Conference on Pliofovoltaic Energy Conversion, Osaka, Japan, 2003, pp. 1005-1008 Vol. 2. [91]N. Jensen, R. Hausner, R. Bergmann, J. Werner, and U. Rau, "Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells," Progress in Photovoltaics: Research and Applications, vol. 10, pp. 1-13, 2002. [92]M. Tucci, M. Della Noce, E. Bobeico, F. Roca, G. De Cesare, and F. Palma, "Comparison of amorphous/crystalline heterojunction solar cells based on n-and p-type crystalline silicon," Thin Solid Films, vol. 451, pp. 355-360, 2004. [93]J. Zhao, A. Wang, P. P. Altermatt, M. A. Green, J. P. Rakotoniaina, and O. Breitenstein, "High efficiency PERT cells on n-type silicon substrates," in 29th IEEE Photovoltaic Specialists Conference, 2002, pp. 218-221. [94]Y. W. Ok, T. Y. Seong, D. Kim, S. K. Kim, J. C. Lee, K. H. Yoon, and J. Song, "Electrical and optical properties of point-contacted a-Si: H/c-Si heterojunction solar cells with patterned SiO2 at the interface," Solar Energy Materials and Solar Cells, vol. 91, pp. 1366-1370, 2007. [95]M. Schmidt, L. Korte, A. Laades, R. Stangl, C. Schubert, H. Angermann, E. Conrad, and K. Maydell, "Physical aspects of a-Si: H/c-Si hetero-junction solar cells," Thin solid films, vol. 515, pp. 7475-7480, 2007. [96]S. Tardon, M. Rosch, R. Bruggemann, T. Unold, and G. Bauer, "Photoluminescence studies of a-Si: H/c-Si-heterojunction solar cells," Journal of non-crystalline solids, vol. 338, pp. 444-447, 2004. [97]S. Y. Lien, B. R. Wu, J. C. Liu, and D. S. Wuu, "Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD," Thin Solid Films, vol. 516, pp. 747-750, 2008. [98]W. Sievert, K. Zimmermann, B. Hartmann, C. Klimm, K. Jacob, and H. Angermann, "Surface texturization and interface passivation of mono-crystalline silicon substrates by wet chemical treatments," Solid State Phenomena, vol. 145, pp. 223-226, 2009. [99]J. Tauc, "Optical properties and electronic structure of amorphous Ge and Si," Materials Research Bulletin, vol. 3, pp. 37-46, 1968. [100]T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, K. Wakisaka, S. Tsuda, and S. Nakano, "High-efficiency a-Si/c-Si heterojunction solar cell," in 1st World Conference on Photovoltaic Energy Conversion, Hawaii, 1994, pp. 1219-1226. [101]Q. Wang, M. Page, Y. Xu, E. Iwaniczko, E. Williams, and T. Wang, "Development of a hot-wire chemical vapor deposition n-type emitter on p-type crystalline Si-based solar cells," Thin Solid Films, vol. 430, pp. 208-211, 2003. [102]Q. Zhang, M. Zhu, F. Liu, and J. Liu, "Properties of n-type uc-Si: H films by Cat-CVD for c-Si heterojunction solar cells," Thin Solid Films, vol. 501, pp. 141-143, 2006. [103]J. Sritharathikhun, F. Jiang, S. Miyajima, A. Yamada, and M. Konagai, "Optimization of p-Type Hydrogenated Microcrystalline Silicon Oxide Window Layer for High-Efficiency Crystalline Silicon Heterojunction Solar Cells," Japanese Journal of Applied Physics, vol. 48, p. 101603, 2009. [104]Q. Wang, "High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells," Philosophical Magazine, vol. 89, pp. 2587-2598, 2009. [105]M. Rahmouni, A. Datta, P. Chatterjee, J. Damon-Lacoste, C. Ballif, and R. i Cabarrocas, "Carrier transport and sensitivity issues in heterojunction with intrinsic thin layer solar cells on N-type crystalline silicon: A computer simulation study," Journal of Applied Physics, vol. 107, pp. 054521-054521-14, 2010. [106]Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, and Y. Hamakawa, "Properties and structure of a SiC:H for high efficiency a Si solar cell," Journal of Applied Physics, vol. 53, pp. 5273-5281, 1982. [107]M. Park, C. Teng, V. Sakhrani, M. McLaurin, R. Kolbas, R. Sanwald, R. Nemanich, J. Hren, and J. Cuomo, "Optical characterization of wide band gap amorphous semiconductors (a-Si:C:H): Effect of hydrogen dilution," Journal of Applied Physics, vol. 89, pp. 1130-1137, 2001. [108]C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, "Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor deposition," Journal of Applied Physics, vol. 96, pp. 3987-3997, 2004. [109]M. Yu, S. Yoon, Z. Chen, J. Ahn, Q. Zhang, K. Chew, and J. Cui, "Deposition of nanocrystalline cubic silicon carbide films using the hot-filament chemical-vapor-deposition method," Journal of Applied Physics, vol. 87, pp. 8155-8158, 2000. [110]S. Klein, L. Houben, R. Carius, F. Finger, and W. Fischer, "Structural properties of microcrystalline SiC deposited at low substrate temperatures by HWCVD," Journal of Non-Crystalline Solids, vol. 352, pp. 1376-1379, 2006. [111]Y. Huang, A. Dasgupta, A. Gordijn, F. Finger, and R. Carius, "Highly transparent microcrystalline silicon carbide grown with hot wire chemical vapor deposition as window layers in nip microcrystalline silicon solar cells," Applied Physics Letters, vol. 90, p. 203502, 2007. [112]T. Chen, Y. Huang, H. Wang, D. Yang, A. Dasgupta, R. Carius, and F. Finger, "Microcrystalline silicon carbide thin films grown by HWCVD at different filament temperatures and their application in nip microcrystalline silicon solar cells," Thin Solid Films, vol. 517, pp. 3513-3515, 2009. [113]F. Finger, O. Astakhov, T. Bronger, R. Carius, T. Chen, A. Dasgupta, A. Gordijn, L. Houben, Y. Huang, and S. Klein, "Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells," Thin Solid Films, vol. 517, pp. 3507-3512, 2009. [114]A. Heya, A. Masuda, and H. Matsumura, "Low-temperature crystallization of amorphous silicon using atomic hydrogen generated by catalytic reaction on heated tungsten," Applied Physics Letters, vol. 74, pp. 2143-2145, 1999. [115]A. Brockhoff, W. van der Weg, and F. Habraken, "The effects of hot-wire atomic hydrogen on amorphous silicon," Journal of Applied Physics, vol. 89, p. 2993, 2001. [116]A. Brockhoff, W. van der Weg, and F. Habraken, "Hot-wire produced atomic hydrogen: effects during and after amorphous-silicon deposition," Thin Solid Films, vol. 395, pp. 87-91, 2001.
|