|
[1-1]H.W.Deckman, J. H. Dunsmuir,“Natural lithography”, Appl.Phys. Lett. 41 (1982) 377. [1-2] J. C. Hulteen, R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces ”, J.Vac. Sci. Technol. A 13 (1995) 1553. [1-3]Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors”, Nano Lett. 3 (2003) 149. [1-4]T. Stelzner, M. Pietsch, G. Andr, F. Falk, E. Ose S. Christiansen,“Silicon nanowire-based solar cells”, Nanotechnology 19 (2008) 295203. [1-5] J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Appl. Phys. Lett. 88 (2006) 013112. [1-6]N. Wang, Y. Cai, R.Q. Zhang, “Growth of nanowires”, Mat. Sci.and Eng. R 60 (2008) 1. [1-7]A. M. Morales, C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science 279 (1998) 208. [1-8]Z. Zhang, X. H. Fan, L.Xu, C. X. Lee, S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chem. Phys. Lett. 337 (2001)18. [1-9]X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/ H2O2 produces porous silicon”, Appl. Phys. Lett. 77 (2000) 2572. [1-10]G. D. J. Smit, S. Rogge, T. M. Klapwijk, “Enhanced tunneling across nanometer-scale metal–semiconductor interfaces”, Appl. Phys. Lett. 80 (2002) 2568. [1-11]J. L. Tedesco, J. E. Rowe, R. J. Nemanich, “Conducting atomic force microscopy studies of nanoscale cobalt silicide Schottky barriers on Si (111) and Si (100)”, J. Appl. Phys. 105 (2009) 083721. [1-12]H. K. Lin, Y. F. Tzeng, C. H. Wang, N. H. Tai, I. N. Lin, C. Y. Lee, H. T. Chiu “Ti5Si3 nanowire and its field emission property”,Chem. Mater. 20 (2008) 2429. [1-13]C. M. Chang, Y. C. Chang, C. Y. Lee, P. H. Yeh, W. F. Lee, L. J. Chen, “Ti5Si4 nanobats with excellent field emission properties”, J. Phys. Chem. C 113 (2009) 9153. [1-14]C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, L. J. Chen, “Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties”, J. Phys. Chem. C113 (2009) 2286. [1-15]C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, L. J. Chen,“An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology 22 (2011) 055603. [2-1]M. J. Huang, C. R. Yang, Y. C. Chiou, R. T. Lee, “Fabrication of nanoporous antireflection surfaces on silicon”, Solar Energy Mat. & Solar Cells 92 (2008) 1352. [2-2]C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, L. J. Chen,“An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology 22 (2011) 055603. [2-3]A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, “Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks”, Small 4 (2005) 439. [2-4] D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, “Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers”, Nano lett. 6 (2006) 2375. [2-5]K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, S. T. Lee,“Ordered silicon nanowire arrays via nanosphere lithography and Metal-induced etching”, Appl. Phys. Lett. 90 (2007) 163123. [2-6]N. D. Denkov, D. Velev, P. A. Kralchevsky, I. B. Ivanov, J. H. Yoshimura, K. Nagayamat, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir 8 (1992) 3183. [2-7]R. Micheletto, H. Fukuda, M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional,Ordered Array of Small Latex Particles”, Langmuir 11 (1995) 3333. [2-8]J. Rybczynski, U. Ebels, M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochem. Eng. Aspects 219 (2003) 1. [2-9]P. I. Stavroulakis, N. Christou, D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Mat. Sci. and Eng. B 165 (2009) 186. [2-10]A.S.Dimitrov, K. Nagayama,“Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces”, Langmuir 12 (1996) 1303. [2-11]H. W. Deckman, J. H. Dunsmuir, “Natural lithography”, Appl.Phys. Lett. 41 (1982) 377. [2-12]M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, Q. Li, “Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface”, Macromol. Chem. Phys. 210 (2009) 230. [2-13]A.Plettl, F. Enderle, M.Saitner, A. Manzke, C. Pfahler, S. Wiedemann, P. Ziemann, “Non-Close-Packed Crystals from Self-Assembled Polystyrene Spheres by Isotropic Plasma Etching: Adding Flexibility to Colloid Lithography”, Adv. Funct. Mater. 19 (2009) 3279. [2-14]W. Li, W. Zhao, P. Sun, “Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography”, Physica E 41 (2009) 1600. [2-15]C. Cong, W. C. Junus, Z. Shen, T. Yu, “New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching”, Nanoscale Res. Lett. 10 (2009) 11671. [2-16]Y. Cui, Z. Zhong, D.Wang, W. U. Wang, C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors”, Nano Lett. 3 (2003) 149. [2-17]T. Stelzner, M. Pietsch, G. Andr, F. Falk, E. Ose, S. Christiansen,“Silicon nanowire-based solar cells”, Nanotechnology 19 (2008) 295203. [2-18]J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Appl. Phys. Lett. 88 (2006) 013112. [2-19]R. S. Wagner, W. C. Ellis, “Vapor-Liquid-Solid Mechansim Of Single Crystal Growth”, Appl. Phys. Lett. 4 (1964) 89. [2-20]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, S. T. Lee,“Nucleation and Growth of Si Nanowires from Silicon Oxide”, Phys. Rev. B 58 (1998) R16024. [2-21]H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z.H. Xi, S. W. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism”, Chem. Phys. Lett. 323 (2000) 224. [2-22]N. Wang, Y. Cai, R.Q. Zhang, “Growth of nanowires”, Mat. Sci.and Eng. R 60 (2008) 1. [2-23]A. M. Morales, C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science 279 (1998) 208. [2-24]Z. Zhang, X. H. Fan, L.Xu, C. X. Lee, S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chem. Phys. Lett. 337 (2001)18. [2-25]X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/ H2O2 produces porous silicon”, Appl. Phys. Lett. 77 (2000) 2572. [2-26]K. Peng, Y. J. Yan, S. P. Gao, J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition”, Adv. Funct. Mater. 13 (2003) 127. [2-27]K.Peng, A. Lu, R. Zhang, S.T. Lee,“Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching”, Adv. Funct. Mater. 18 (2008) 3026. [2-28]O. Fellahi, T. Hadjersia, M. Maamache, S. Bouanika, A. Manseri,“Effect of temperature and silicon resistivity on the elaboration of Silicon nanowires by electroless etching”, Appl. Sur. Sci. 257 (2010) 591. [2-29] A. Lauwers , P. Besser, T. Gutt, A. Satta, M. d. Potter, R. Lindsay, N. Roelandts, F. Loosen , S. Jin , H. Bender , M. Stucchi , C. Vrancken , B. Deweerdt , K. Maex, “Comparative study of Ni-silicide and Co-silicide for sub 0.25-mm technologies”, Microelectronic Eng. 50 (2000) 103. [2-30]S. P. Maruarka,“Silicide for VLSI Applications”, 1983, Academic ress, New York. [2-31]C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, K. Maex,“CoSi2 Formation through SiO2”, Thin Solid Films 386 (2001) 19. [2-32]G. D. J. Smit, S. Rogge, T. M. Klapwijk, “Enhanced tunneling across nanometer-scale metal–semiconductor interfaces”, Appl. Phys. Lett. 80 (2002) 2568. [2-33]J. L. Tedesco, J. E. Rowe, R. J. Nemanich, “Conducting atomic force microscopy studies of nanoscale cobalt silicide Schottky barriers on Si (111) and Si (100)”, J. Appl. Phys. 105 (2009) 083721. [4-1]J. Rybczynski, U. Ebels, M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochem. Eng. Aspects 219 (2003) 1. [4-2] P. I. Stavroulakis, N. Christou, D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Mat. Sci. and Eng. B 165 (2009) 186. [4-3]J. Yu, Q. Yan, D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water Interface”, Appl. Mater. Interfaces 2 (2010) 1922. [4-4]Y. Xia, B. Gates, Y. Yin, Y. Lu, “Monodispersed colloidal spheres :old materials with new applications”, Adv. Mater. 12 (2000) 693. [4-5]N. D. Denkov, D. Velev, P. A. Kralchevsky, I. B. Ivanov, J.H. Yoshimura, K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir 8 (1992) 3183. [4-6]P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, K. Nagayamat,“Capillary meniscus interaction between colloidal particles attached to a liquid-fluid interface”, J. Colloid Interface Sci. 151 (1992) 79. [4-7]A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching-adding flexibility to colloid lithography”, Adv. Funct. Mater. 19 (2009) 3279. [4-8] H. Fang, Y. Wu, J. Zhao, J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays”, Nanotechnology 17 (2006) 3768. [4-9] S. L. Cheng, C. H. Chung, H. C. Lee, “A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrayson (001)Si substrates”, J. Electrochem. Soc. 155 (2008) D711. [4-10]C. M. Comrie, R. T. Newman, “Dominant diffusing species during cobalt silicide formation”, J. Appl. Phys. 79 (1996) 153. [4-11]R. H. Fowler, L. Nordheim,“Electron emission in intense electric fields”, Proc. R. Soc. London Ser. A 119 (1928) 173. [4-12]C. M. Chang, Y. C. Chang, C. Y. Lee, P. H. Yeh, W. F. Lee, L. J. Chen, “Ti5Si4 nanobats with excellent field emission properties”, J. Phys. Chem. C 113 (2009) 9153. [4-13]H. B. Michaelson, “The work function of the elements and its periodicity”, J. Appl. Phys. 105 (1977) 4729. [4-14]W. Zheng, Y. Wu, H. Shiraiwa, M. T. Ramsbey, T. Kamal, “Memory device having high work function gate and method of erasing same”, US Patent 6912163 B2 (2005). [4-15]H. K. Lin, Y. F. Tzeng, C. H. Wang, N. H. Tai, I. N. Lin, C. Y. Lee, H. T. Chiu “Ti5Si3 nanowire and its field emission property”, Chem. Mater. 20 (2008) 2429. [4-16]C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, L. J. Chen, “Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties”, J. Phys. Chem. C113 (2009) 2286. [4-17]C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, L. J. Chen,“An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology 22 (2011) 055603.
|