跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊諺
研究生(外文):Jun-Yan Huang
論文名稱:Pt/C 觸媒在全釩液流電池中硫酸氧釩電解液(V4+/V5+)的電化學行為
論文名稱(外文):The study of electrochemical behavior of Pt/C catalysts in VOSO4 electrolyte (V4+/V5+) for Vanadium Redox Flow Battery
指導教授:薛富盛薛富盛引用關係
口試委員:薛康琳楊聰仁
口試日期:2011-07-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:68
中文關鍵詞:全釩氧化還原液流電池鉑/碳黑(Pt/C)觸媒旋轉圓盤電極循環伏安法充放電測試
外文關鍵詞:Vanadium redox flow battery (VRFB)Pt/C catalystRotating disk electrode(RDE)cyclic voltammetry (CV)charge-discharge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:517
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討自製鉑/碳黑(Pt/C)觸媒應用於全釩氧化還原液流電池(VRB, Vanadium Redox Flow Battery) 的陽極觸媒層藉以提升電池效能。採用熱迴流還原法分別製備鉑/碳黑(Pt/C)觸媒 10 wt%、Pt/C 20 wt%、Pt/C 30 wt%。鉑粒子藉由X光繞射儀(XRD)、場發射掃描式電子顯微鏡(FESEM)、穿透式電子顯微鏡(TEM)鑑定其為FCC晶體結構、粒徑約為10±3 nm且均勻分散於碳黑表面結構。
使用掃描循環伏安法(Cyclic Voltammetry)當掃描速率是0.01 V/s時,碳黑的陽極峰電流值為29 mA,而Pt/C 30 wt% 的陽極峰電流值提升至104 mA;在陰極峰電流方面,碳黑為19 mA,而Pt/C 30 wt% 則提升至55 mA。另以旋轉圓盤電極(RDE)運用線性掃描伏安法可得動力學參數,隨著鉑粒子單載量濃度的增加其反應速率常數K0由6.37 ×10-15 cm/s 增加到2.11×10-13 cm/s,其交換電流密度i0則由3.79 μA增加到82.96 μA。從上述電化學分析證實鉑/碳黑(Pt/C)觸媒在硫酸氧釩溶液中具有電催化活性。
在充放電測試中,有陽極端電極活性層之電催化活性比單純石墨氈在操作電流10mA下可使電池之能量效率由37.0%大幅提升至58.4%,由充放電圖可發現鉑粒子添加可有效降低電極活性層的電極電阻值。隨著鉑粒子含量越多,放電電壓值隨之越高,效能測試結果由高到低依次為Pt/C 30 wt% ,Pt/C 20 wt% ,Pt/C 10 wt% ,石墨氈。藉由自製鉑/碳黑(Pt/C)觸媒改善電極的電催化活性,能使反應速率增加,增進電池能量效能。



In the study, the homemade platinum/carbon black (Pt/C) electrode material was used as the catalyst layer of the anode in vanadium redox flow battery (VRFB) to improve its performance . The Pt/C-10 wt%, 20 wt% and 30 wt% electrode materials were synthesized by thermal reflux method. Characteristics of the homemade Pt/C was investigated by X-ray diffraction , Field Emission Scanning Electron Microscope (FESEM), and Transmission Electron Microscope (TEM). The XRD results indicated that the Pt has FCC structure. The average particle size of Pt was 10±3 nm by FESEM and TEM. In addition, Pt partical was well dispersed on the carbon black
The anodic peak current of Pt/C 30 wt% was 104 mA, higher than that of carbon black, was 29 mA, at scan rate of 0.01 V/s by the Cyclic Voltammetry. Moreover, the cathode peak current of Pt/C 30 wt% was 55 mA higher than that of carbon black, was 19 mA. The dynamic scanning of Linear Sweep Voltammetry LSV in Rotating Disk Electrode (RDE) obtained the heterogeneous rate constant K0 cm/s and exchange current density i0 μA . The heterogeneous rate constant K0 cm/s was increased from 6.37 ×10-15 cm/s to 2.11×10-13 cm/s with increasing concentration of Pt loadings. The exchange current density i0 μA was increased from 3.79 μA to 82.96 μA with increasing concentration of Pt loading. The Pt/C catalyst had electrocatalysis active in VOSO4 electrode by electrochemical analysis.
The active layer in the anode electrode can improve the energy efficiency from 37.0% to 58.4% higher, than pristine graphite felt at constant current 10 mA. This study discovered that the Pt/C based on catalyst could effectively reduce the electrode resistance of the active layer from the charge-discharge curve. The VRB efficiency decreases in the order (high to low) of Pt/C 30 wt%>Pt/C 20 wt%>Pt/C 10 wt%>raw graphite felt. The reaction rate and battery energy efficiency were improved by the Pt/C catalyst added in the electrodes.



中文摘要 I
ABSTRACT II
圖目錄 V
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2能量儲存 2
1-3 儲能電池的比較 3
1-4不同電解液之液流電池介紹 4
1-4-1多硫化鈉/溴 液流電池(Bromine/polysulphide flow battery ) 4
1-4-2溴/釩液流電池 5
1-4-3鋅/銫液流電池 6
1-4-4全釩液流電池 7
1-4-5鉛酸液硫電池 8
1-4-6儲能系統的應用範圍 9
1-5研究動機及目的 10
第二章 文獻回顧 11
2-1 電化學能之氧化還原液流電池 11
2-2 全釩氧化還原液流電池結構 13
2-2-1雙極板(Bipolar plate) 13
2-2-2質子交換膜(Proton exchange membrane, PEM) 13
2-2-3電極材料之石墨(Graphite) 16
2-4全釩氧化還原液流電池充放電原理 17
2-5硫酸氧釩的氧化還原動力研究 19
2-5-1循環伏安法(Cyclic voltammetry CV) 19
2-5-2線性掃描伏安法(linear sweep voltammetry) 21
第三章 實驗方法及步驟 24
3-1實驗步驟架構圖 24
3-2實驗藥品 25
3-3實驗耗材 25
3-4實驗儀器 26
3-5材料分析 27
3-5-1 X光繞射分析儀(X-ray diffraction) 27
3-5-2場發射掃瞄式電子顯微鏡(FESEM) 28
3-5-3穿透式電子顯微鏡(Transmission electron microscopy) 29
3-6電化學分析實驗步驟 30
3-6-1奈米白金碳觸媒製備 30
3-6-2 Nafion 117的前處理 31
3-6-3 碳電極與旋轉圓盤電極之漿料製備 31
3-6-4 碳氈漿料製備 31
3-6-5 碳氈前處理 31
3-6-6 電化學分析電解液的製備 32
3-6-7 充放電解液的製備 32
3-7 硫酸氧釩電解液電化學性質測試 33
3-7-1循環伏安法(CYCLIC VOLTAMMETRY) 33
3-7-2旋轉圓盤電極(ROTATING DISC ELECTRODE) 34
3-7-3充放電實驗 36
第四章 研究結果與討論 37
4-1材料分析 37
4-1-1 X光繞射分析 37
4-1-2掃描式電子顯微鏡與穿透式電子顯微鏡分析 38
4-2 循環伏安法電化學分析 42
4-2-1 Pt/C 電極材料的硫酸氧釩電解液電化學特性分析 42
4-2-2 Pt/C 電極材料對硫酸氧釩液之V3+/V4+與V4+/V5+氧化還原可逆性反應研究 43
4-3旋轉圓盤電極線性掃描之電化學動力分析 54
4-4單電池充放電之效能分析 61
第五章 結論 66
參考文獻 67


[1]行政院國家科學委員會補助專題研究計畫:氧化還原儲能電池系統
NO:NSC 97-2623-7-239-007-ET.
[2]C. J. Rydh, B. A. Sande’n , Energy Conversion and Management, 1957 , 46 (2005).
[3]L. H. Thaller, US Patent 3996064, (2002).
[4]Skyllas-Kazacos, M, J. Power Sources, 179 , 15 (1985).
[5]G. Oriji, and Y. Katayama , Electrochim. Acta, 3091, 49 (2004).
[6]D. Brownson, D. Kampouris, and C. Banks, J. Power Sources, 4873, 196 (2011).
[7]Y. H. Wen, J. Cheng, P. H. Ma, and Y. S. Yang, Electrochim. Acta, 3514, 53 (2008).
[8]C . Sun, J. Chen, H. H. Zhang, J. Power Sources, 890, 195 (2010).
[9]B. Fang, S. Iwasa, Y. Wei, Electrochim. Acta, 3971, 47 (2002).
[10]M. Perrin, P. Malbranche, J. Power Sources,545,154 (2006).
[11]N. Tokuda, et. Al., SEI technical review, 50, 88, (2000).
[12]X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, and J. Yu, J. Power Sources, 75, 79 , (1999).
[13]F. N. Buchi, D. Tran, and S. Srinivassan, Proceeding of the First International Symposium on Proton Conducting Membrane Fuel Cell I, the Electrochemical Society, Inc., Pennington, NJ, 226, (1995)
[14]W. H. Buck, Proceeding of the Power Sourse Conference(37th), Army Research
Lab., Fort Monmouth, p p.104, (1996).
[15]衣寶廉,〝燃料電池-原理與應用〞,五南圖書出版社,(2005)。
[16]黃鎮江,〝燃料電池〞,全華科技圖書公司,(2005)。
[17]趙文愷,〝添加親水性γ-氧化鋁於陽極觸媒層中改善PEMFC的效能〞碩士論文,國立中興大學材料工程研究所,(2007)。
[18]G. M. Loudon ,Fig24.2, Organic Chemistry 4th.ed,Oxford University Press
(2002).
[19]W.V Kotlensky, Chemistry and Physics of Carbon, p p.173, (1973)
[20]C. Ponce de Le′on, A. Fr′ıas-Ferrer, J. Power Sources, 716, 160, (2006)
[21]A. Price, S. Bartley, S. Male, G. Cooley, Power Eng. J. 13 (3) , 122,(1999).
[22]P. Morrissey, Int. J. Ambient Energy 21 (4), 213, (2000).
[23]A. Price, S. Male, M. Kleimaier, VDI Berichte,47, 1734 (2002).
[24]F.C. Walsh, Pure Appl Chem. 73 (12), 1819, (2001)
[25]R. Zito, US Patent 5, 612, 148 (1997).
[26]R. J. Remick, P. G. P. Ang, Electrically rechargeable anionically active reduction-oxidation electrical storage supply system; US Patent 4,485,154(1984).
[27]薛富盛,呂福興,吳宗明,許薰丰,黃榮鑫,趙文愷,〝掃描式電子顯微鏡實作訓練教材〞,五南圖書出版社,(2008)。
[28]M. Skyllas-Kazacos, A. Mousa, M. Kazakos, PCT Application, PCT/GB2003/001757,2003.
[29]M. Skyllas-Kazacos, Y. Limantari, J. Appl. Electrochem , 681, 34(2004).
[30]M. Skyllas-Kazacos, J. Power Sources,299, 124 (2003).
[31]H. S. Lim, A. M. Lackner, Knechtli, J. Electrochem. Soc., 1154 , 124 (1977).
[32]High Capacity Electrical Storage & Power Conditioning Units, Available
at: (accessed September 27, 2005).
[33]R. L. Clarke, B.J. Dougherty, S. Harrison, J. P. Millington, Battery with
bifunctional electrolyte. United States Patent Application, International
publication number: WO 2004/095602 A2, November 4, 2004..
[34]E. Sum, M. Skyllas-Kazacos, J. Power Sources, 179, 15 (1985).
[35]E. Sum, M. Rychcik, M. Skyllas-Kazacos, J. Power Sources, 85, 16 (1985).
[36]C. Menictas, M. Skyllas-Kazacos, Vanadium/oxygen redox fuel cell; Final Report to NSW Office of Energy, State Energy Research and Development Fund, April,( 1997).
[37]M. Kazacos, M. Skyllas-Kazacos, J. Electrochem. Soc., 2759, 136 (1989).
[38]D. Pletcher, R. Wills, Journal of Power Sources, 149, 96, (2005).
[39]VRB Power Acquires Regenesys Electricity Storage Technology, 5th October (2004).
[40]D. R. Crow, “Principles and Applications of electrochemistry”, 4th Edition, Chapman and Hall, UK, (1994).
[41]A. J. Bard and L.R. Faulkner, “Electrochemical Methods - Fundamentals and Application”, John Wiley & Sons,( 1985).
[42]顏世杰, “金屬氧化物添加劑對PtRu觸媒穩定性與甲醇氧化活 性之影響”, 國立台灣科技大學化學工程系碩士論文, (2007)。
[43]廖欣怡,“全釩氧化還原液流電池之儲能應用與電極反應動力探討”,國立聯合大學化學工程學系碩士論文,(2010)。
[44]吳泰伯、許樹恩, “X光繞射原理與材料結構分析”,中國材料科學會,(1996)。
[45]http://bahadorimehr.blogspot.com/2010/07/sem-fesem.html
[46]日本電子,“Handbook of JEM-1200EX Ⅱ”,JEOL。
[47]http://www.gamry.com/Products/RDE710_Rotating%20_Electrode.htm
[48]曾國輝,化學,藝軒圖書出版社,民國七十八年六月第八版,附錄Ⅵ A27。
[49]胡啟章,〝 電化學原理與方法〞,五南圖書出版社,(2002)。



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top