跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宜璋
研究生(外文):Yi-Jhang Tsai
論文名稱:基於模糊目標規劃之指數投資組合建構
論文名稱(外文):Index Portfolio Construction Based on Fuzzy Goal Programming
指導教授:巫亮全巫亮全引用關係
口試委員:賴榮裕溫演福陳郁方
口試日期:2011-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:科技管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:47
中文關鍵詞:台灣五十指數標竿指數追蹤誤差超額報酬指數基金
外文關鍵詞:Benchmark indexindex fundTaiwan 50 Indextracking error
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
共同基金是投資人熱愛的商品之一,乃因對於一般投資人,藉由專業經理人可降低其風險,且省去研究選股與擇時的心力。然而研究顯示,大部分的主動式基金績效難以超越市場指標,而指數化投資受到越來越多投資人的青睞。指數化投資工具例如指數型基金及ETFs,皆以複製或貼近市場績效為目的。然而指數追蹤投資組合因受限於實務上追隨指數變動調整成分股需付出手續費的成本,另外仍需維持一定的現金部位供投資人贖回,因此將產生較大的追蹤誤差。所以除了盡可能地最小化追蹤誤差,仍須追求適度的超額報酬以達到真正的複製或貼近市場績效的目的。追求低追蹤誤差與追求超額報酬為兩相衝突的目標。目標規劃適合處理兩互相衝突目標之問題,但目標規劃的基本精神乃為預先設定明確目標,然而現實金融市場環境,決策者的期望目標往往不明確。「極小化追蹤誤差」 及 「極大化超額報酬」 此兩相衝突目標在本研究將以模糊理論中的歸屬函數表示其滿意程度,以模糊目標規劃方式建立一指數追蹤模型,標竿指數為台灣五十指數。結果顯示透過適當的歸屬函數與模型,可建構出追蹤誤差比台灣五十指數基金低但超額報酬近似的投資組合。

Mutual fund is one of favorite tools of the investors. Individual investors need no efforts on stock-picking and market-timing because the investing risk can be lowered through the professional management. But the researches indicate that most actively managed mutual fund’ performance is difficult to beat the market, and index investing is more and more popular among the investors. Index investing instruments, such as index funds and ETFs, aim to track the market performance. In practical, an index tracking portfolio has to pay the transaction cost due to following the change of benchmark index and also has to remain certain cash position. This result in the higher tracking error, therefore we want to pursuit both tracking error minimization and excess return maximization to attain the real performance tracking. Both are conflicting objectives. Goal programming is suitable for handling multiple conflicting objectives, but the basic goal programming concept is first to set up the crisp goals. In the real financial environment, the desired/expected level of the decision maker is usually imprecise. Minimizing the tracking error and maximizing the excess return are both represented as “fuzzy goals” in this research. Results show that through certain membership function and tracking model, an index tracking portfolio whose tracking error is lower than 0050 index fund but excess return is similar to 0050 index fund can be constructed.

Section 1. Introduction 1
Section 2. Literature Review 4
2.1 Index tracking 4
2.2 Fuzzy theory and goal programming 11
2.3 Different types of fuzzy goal programming 19
Section 3. Data and Methodology 23
3.1 Data 23
3.2 Performance measurement 25
3.3 Fuzzy goal programming models for index tracking portfolio 29
Section 4. Empirical Results 31
Section 5. Conclusion 37
References 39
Appendix 44

Aouni, B., Martel, J.-M., & Hassaine, A. (2009). Fuzzy goal programming model: an overview of the current state-of-the art. Journal of Multi-Criteria Decision Analysis, 16(5-6), 149-161. doi: 10.1002/mcda.448

Beasley, J. E., Meade, N., & Chang, T. J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3), 621-643. doi: 10.1016/s0377-2217(02)00425-3

Bellman, R. E., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), B-141-164. doi: 10.1287/mnsc.17.4.B141

Black Rock, Inc. ETF Landscape Global Handbook. (2011 Q1). Retrieved from http://www.blackrockinternational.com/content/groups/internationalsite/documents/literature/etfl_globalhandbook_q111.pdf

Bogle, J. C. (1998). The Implications of Style Analysis for Mutual Fund Performance Evaluation. [Article]. Journal of Portfolio Management, 24(4), 34-42.
Busse, J. A. (2001). Another Look at Mutual Fund Tournaments. The Journal of Financial and Quantitative Analysis, 36(1), 53-73.

Canakgoz, N. A., & Beasley, J. E. (2009). Mixed-integer programming approaches for index tracking and enhanced indexation. European Journal of Operational Research, 196(1), 384-399. doi: DOI: 10.1016/j.ejor.2008.03.015

Carhart, M. M. (1997). On Persistence in Mutual Fund Performance. The Journal of Finance, 52(1), 57-82.

Charnes, A. (1957). Management models and industrial applications of linear programming. Management Science, 4(1), 38.

Chen, L.-H., & Tsai, F.-C. (2001). Fuzzy goal programming with different importance and priorities. European Journal of Operational Research, 133(3), 548-556. doi: 10.1016/s0377-2217(00)00201-0

Chen, L., & Huang, L. (2009). Portfolio optimization of equity mutual funds with fuzzy return rates and risks. Expert Systems with Applications, 36(2), 3720-3727.
Colwell, D., El-Hassan, N., & Kang Kwon, O. (2007). Hedging diffusion processes by local risk minimization with applications to index tracking. Journal of Economic Dynamics and Control, 31(7), 2135-2151. doi: 10.1016/j.jedc.2006.06.005

Corielli, F., & Marcellino, M. (2006). Factor based index tracking. Journal of Banking & Finance, 30(8), 2215-2233. doi: 10.1016/j.jbankfin.2005.07.012

David, D. Y., Shuzhong, Z., & Xun Yu, Z. (2006). Tracking a Financial Benchmark Using a Few Assets. Operations Research, 54(2), 232.

Ellis, C. D. (1975). The Loser''s Game. [Article]. Financial Analysts Journal, 31(4), 19-26.

Fabozzi, F. J., Gupta, F., & Markowitz, H. M. (2002). The Legacy of Modern Portfolio Theory. The Journal of Investing, 11(3), 7-22. doi: 10.3905/joi.2002.319510

Fang, Y., & Wang, S.-Y. (2005). A Fuzzy Index Tracking Portfolio Selection Model. Lecture Notes in Computer Science, 3516, 413-434. doi: 10.1007/11428862_76

Gaivoronski, A. A., Krylov, S., & van der Wijst, N. (2005). Optimal portfolio selection and dynamic benchmark tracking. European Journal of Operational Research, 163(1), 115-131. doi: 10.1016/j.ejor.2003.12.001

Gil-Bazo, J., & Ruiz-VerdU, P. (2009). The Relation between Price and Performance in the Mutual Fund Industry. The Journal of Finance, 64(5), 2153-2183. doi: 10.1111/j.1540-6261.2009.01497.x

Grinold, R. C., & Kahn, R. N. (2000). Active portfolio management: a quantitative approach for providing superior returns and controlling risk: McGraw-Hill.

Gruber, M. J. (1996). Another Puzzle: The Growth in Actively Managed Mutual Funds. [Article]. Journal of Finance, 51(3), 783-810.
Guu, S.-M., & Wu, Y.-K. (1999). Two-phase approach for solving the fuzzy linear programming problems. Fuzzy Sets and Systems, 107(2), 191-195. doi: 10.1016/s0165-0114(97)00304-7

Hannan, E. L. (1981). ON FUZZY GOAL PROGRAMMING*. Decision Sciences, 12(3), 522.

Hsu, G. J. Y. (2003). Multi-objective Decision ((in Chinese edition) ed.). Taipei: Wu-Nan Book Inc.

Israelsen, C. (2005). A refinement to the Sharpe ratio and information ratio. Journal of Asset Management, 5(6), 423.

Kirkwood, C. W., & Sarin, R. K. (1980). Preference Conditions for Multiattribute Value Functions. Operations Research, 28(1), 225-232. doi: 10.1287/opre.28.1.225

Kwang-Jae, K., & Dennis, K. J. L. (1998). Dual response surface optimization: A Fuzzy modeling approach. Journal of Quality Technology, 30(1), 1.

Li, Q., Sun, L., & Bao, L. (2011). Enhanced index tracking based on multi-objective immune algorithm. Expert Systems with Applications, 38(5), 6101-6106. doi: 10.1016/j.eswa.2010.11.001

M. Gilli, E. K. (2002). The threshold accepting heuristic for index tracking. in: P. Pardalos, V.K. Tsitsiringos (Eds.), Financial Engineering E-Commerce and Supply Chain Kluwer Applied Optimization Series, 70, 1-18.

Maringer, D., & Oyewumi, O. (2007). Index tracking with constrained portfolios. International Journal of Intelligent Systems in Accounting, Finance & Management, 15(1-2), 57-71. doi: 10.1002/isaf.285

Meade, N., & Salkin, G. R. (1989). Index Funds—Construction and Performance Measurement. Journal of The Operational Research Society, 40(10), 871-879. doi: 10.1057/palgrave.jors.0401004

Moskowitz, H. (1993). On assessing the H value in fuzzy linear regression. Fuzzy Sets and Systems, 58(3), 303-327. doi: 10.1016/0165-0114(93)90505-c

Narasimhan, R. (1980). GOAL PROGRAMMING IN A FUZZY ENVIRONMENT. Decision Sciences, 11(2), 325-336. doi: 10.1111/j.1540-5915.1980.tb01142.x

Oh, K. J., Kim, T. Y., & Min, S. (2005). Using genetic algorithm to support portfolio optimization for index fund management. Expert Systems with Applications, 28(2), 371-379. doi: 10.1016/j.eswa.2004.10.014

Okay, N., & Akman, U. (2003). Index tracking with constraint aggregation. Applied Economics Letters, 10(14), 913-916. doi: 10.1080/1350485032000158636

R. Jansen, R. v. D. (2002). Optimal benchmark tracking with small portfolios. Journal of Portfolio Management, 28(2), 33-39.

Thomas F. Coleman, Yuying Li, & Henniger, J. (2006). Minimizing tracking error while restricting the number of assets. The Journal of Risk, 8(4), 33.
Tiwari, R. N., Dharmar, S., & Rao, J. R. (1987). Fuzzy goal programming -- An additive model. Fuzzy Sets and Systems, 24(1), 27-34. doi: 10.1016/0165-0114(87)90111-4

Ulrich Derigs, N.-H. N. (2003). Meta-heuristic based decision support for portfolio optimization with a case study on tracking error minimization in passive portfolio management. OR Spectrum, 25(3), 345-378. doi: 10.1007/s00291-003-0127-5

Vanguard 500 Index Fund Investor Shares. from https://personal.vanguard.com/us/FundsSnapshot?FundId=0040&FundIntExt=INT

Wang, J., & Hwang, W. (2007). A fuzzy set approach for R&D portfolio selection using a real options valuation model. Omega-international Journal of Management Science, 35(3), 247-257. doi: 10.1016/j.omega.2005.06.002

Wu, L., Chou, S., Yang, C., & Ong, C. (2007). Enhanced Index Investing Based on Goal Programming. The Journal of Portfolio Management, 33(3), 49-56.
Wu, L. C. (2008). Index fund construction based by fuzzy theory. working paper.
Yang, T., Ignizio, J. P., & Kim, H.-J. (1991). Fuzzy programming with nonlinear membership functions: Piecewise linear approximation. Fuzzy Sets and Systems, 41(1), 39-53. doi: 10.1016/0165-0114(91)90156-k

Yu, L., Zhang, S., & Zhou, X. Y. (2006). A Downside Risk Analysis based on Financial Index Tracking Models. In A. N. Shiryaev, M. R. Grossinho, P. E. Oliveira & M. L. Esquivel (Eds.), Stochastic Finance (pp. 213-236): Springer US.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi: Doi: 10.1016/s0019-9958(65)90241-x

Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi: 10.1016/0165-0114(78)90031-3

童偉恩. (2011). 台灣基金無法長期打敗大盤. 貨幣觀測與信用評等, 88, 130-144.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳文星,〈日據時期台灣書房之研究〉,《思與言》,16卷3期,臺北:思與言雜誌社,1978年9月。
2. 林翠鳳,〈陳肇興《陶村詩稿》的文學表現與詩史價值〉,《東海大學文學院學報》41期,臺中:東海大學,2000年7月。
3. 吳文星,〈日據時期台灣書房教育之在檢討〉,《思與言》,26卷1期,臺北:思與言雜誌社,1988年5月。
4. 王順隆,〈日治時代台灣人「漢文教育」的時代意義〉,《臺灣風物》,49卷4期,臺北:臺灣風物雜誌社,1999年12月。
5. 黃美娥,〈日治時代台灣詩社林立的社會考察〉,《臺灣風物》,47卷3期,臺北:臺灣風物雜誌社,1997年9月。
6. 施懿琳,〈由反抗到傾斜-日治時期彰化文人吳德功身分認同之分析〉,《中國學術年刊》,18期,臺北:國立台灣師範大學國文研究所畢業同學會,1997年3月。
7. 曾祥鐸,〈論歷史哲學家維柯的名著《新科學》〉,《興大歷史學報》,10期,臺中巿:中興大學歷史學系,2000年6月。
8. 尤昭和,〈維柯(Giambattista Vico)歷史思想分析〉,《淡江史學》,6期,臺北:淡江大學歷史學系,1994年6月。
9. 章綺霞,〈親近文學,親近土地-淺談《筆記濁水溪》的教學引導與設計〉,《國文天第》,第19卷8期,臺北市:國文天地雜誌社,2004年1月。
10. 章綺霞,〈解構與重塑-論《筆記濁水溪》的在地社會史與自然史書寫〉,《修平人文社會學報》,第3期,臺中市:修平技術學院,2004年3月。
11. 吳靖國,〈論《新科學》中的社會起源過程及其教育蘊義〉,《臺灣教育社會學研究》,第5期,臺北市:臺灣教育社會學學會,2005年12月。
12. 黃美娥,〈差異/交混、對話/對譯-日治時期台灣傳統文人的身體經驗與新國民想像(1895-1937)〉,《中國文哲研究集刊》,28期,臺北:中央研究院中國文哲研究所,2006年3月。
13. 陳家煌,〈論孫元衡及其《赤崁集》〉,《漢學研究》,23卷第2期,2005年12月。
14. 徐慧鈺,〈林占梅潛園雅集及其文化義涵-清中葉臺灣文士生活之一例〉,《兩岸發展史研究》,第4期,桃園縣:國立中央大學歷史研究所,2007年12月。
15. 章綺霞,〈以書寫建構鄉土:濁水溪流域作家的鄉土書寫(1970-2000)〉,《修平人文社會學報》,第10期,臺中市:修平技術學院,2008年3月。