跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巫榮東
研究生(外文):Jung-Tung Wu
論文名稱:鮪魚蒸煮液製備抗微生物胜肽之研究
論文名稱(外文):Study on production of antimicrobial peptides from tuna cooking juice
指導教授:胡淼琳胡淼琳引用關係
口試委員:沈賜川
口試日期:2011-07-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:79
中文關鍵詞:抗微生物胜肽抗微生物胜肽抗微生物胜肽抗微生物胜肽
外文關鍵詞:antimicrobial peptidestuna cooking juicepathogenprotein hydrolysates
相關次數:
  • 被引用被引用:2
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鮪魚蒸煮為鮪魚罐頭加工之必要程序,所產生的煮汁(約含4.0% 蛋白質;1噸鮪魚可產生160公斤蒸煮汁)通常予以廢棄,不僅蛋白質資源損失且造成廢水處理上相當的負擔。因此,本研究擬應用鮪魚蒸煮液中蛋白質為原料開發具有經濟價值之抗微生物活性物質。實驗應用三種商業蛋白質水解酵素Orientase、Alcalase 2.4L、Flavourzyme進行對鮪魚蒸煮液進行水解,並進行水解物之抗菌試驗。實驗所使用菌株包括Staphylococcus aureus、Bacillus subtilis、Escherichia coli、Pseudomonas aeruginosa、Candida albicans、Salmonella enterica subsp. Enterica、Listeria innocua、 Shiegella sonnei 等八株病原菌。結果顯示Alcalase 2.4L蛋白酶水解物具較佳抗微生物活性,(製備條件為:E/S = 1/100 (w/v),50℃,pH 7.0,3 h)。將蛋白質水解物經由膠過濾層析分離可獲得四個抗微生物活性較高的區分物:(Tuna cooking juice Alcalaes 1,TA1),(Tuna cooking juice Alcalaes 2,TA2), (Tuna cooking juice Alcalaes 3,TA3),(Tuna cooking juice Alcalaes 4,TA4)。結果顯示具有最高活性的區分物為TA2 (M.W.1060~6500),其對上述八株病原菌之最小抑制濃度 (minimal inhibitory concentration,MIC)分別為800、750、800、750、850、800、850、800 (μg/mL)。爲了解水解物經胃腸道中抗菌活性之變化,使用腸胃消化酵素進行消化試驗。結果顯示,區分物TA2 經胃蛋白酶(pepsin)水解(pH 3.0,37℃,6 h)後,抗微生物活性下降17.6% ~ 26.7%;再經胰蛋白酶(trypsin)、胰凝乳蛋白酶(chymotrysin)水解(pH 8.0,37℃,12 h)後,對八株病原菌抗微生物活性無明顯差異,因此推測區分物TA2在胃消化道中,消化酵素反應造成抗微生物活性的下降。區分物TA2經由HPLC純化可獲得抗微生物活性更高的抑制物,分離後所得五個主要區分物為:TA2H-1、TA2H-2、TA2H-3、TA2H-4、TA2H-5,其中TA2H-1對Candida albicans及Shiegella sonnei具有良好之抑制效果;TA2H-4對其餘六種菌株具有良好之抑制效果,經胺基酸序列分析結果為:
1. Lys-Asp-Ser-Pro-Gly-Gly-Gln-Asp-Arg-Arg ;
2. Pro-Ser-Cys-Trp-Thr-Phe-Gly-Phe-Ser-Glu-Asn-His;
3. Pro-Ser-Ser-Pro-Arg-Glu-Glu-Val-Ser-Leu-Asp-Leu-Asp。
綜合以上結果顯示,鮪魚蒸煮液之蛋白質可做為開發製備抗微生物胜肽之來源。


Tuna cooking is a processing of necessity procedures for canned tuna, The side product (about a 4.0% protein; 1 ton tuna can produce 160 kg of cooking juice) is normally discarded, this waste not only brings the loss of resources and the resulting protein waste water treatment is also considerable burden. Therefore, this study applied the protein from tuna cooking juice for the development of economic value anti-microbial substances. Three commercial protease Orientase, Alcalase 2.4L and Flavourzyme are used in this study. Eight bacteria, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Salmonella enterica subsp. Enterica, Listeria innocua and Shiegella sonnei are choose for the experiment studies. The results showed that protease Alcalase 2.4L hydrolysates reveal better anti-microbial activity, (preparation conditions: E / S = 1 / 100 (w / v), 50 ℃, pH 7.0, 3 h). Higher antimicrobial activity inhibitors of protein hydrolysates are obtained by gel filtration chromatography, the four major fractions after the separation are:(Tuna cooking juice Alcalaes 1, TA1), (Tuna cooking juice Alcalaes 2, TA2), (Tuna cooking juice Alcalaes 3, TA3), (Tuna cooking juice Alcalaes 4, TA4). The results showed that TA2 fraction reveal the highest activity (MW1060 ~ 6500), its minimal inhibitory concentration (minimal inhibitory concentration, MIC) on eight pathogens were 800, 750, 800, 750, 850, 800, 850, 800 (μg/mL). To understand the changes of hydrolysate in the gastrointestinal tract, digestive enzymes are applied to digest hydrolysis. The results showed that the anti-microbial activity of fractions TA2 is decreased in 17.6% ~ 26.7% sequence by pepsin (pepsin) hydrolysis (pH 3.0, 37℃, 6 h); While treating with trypsin (trypsin) and chymotrypsin (chymotrysin) hydrolysis (pH 8.0, 37℃, 12 h), the anti-microbial activity remained unchanged. The revelation expermental gave that the anti-microbial Activity of fractions TA2 decreased in the stomach and the digestive tract by digestive enzyme. The TA2 fraction is further purified by HPLC to obtained a higher antimicrobial activity inhibitor, the five major fractions are labeled after the separation as: TA2H-1, TA2H-2, TA2H-3, TA2H-4, TA2H-5, where TA2H -1 shows inhibitory effect on Shiegella sonnei and Candida albicans , and TA2H-4 have inhibitory effect on the remaining six strains, the amino acid sequence analysis of the results:
1.Lys-Asp-Ser-Pro-Gly-Gly-Gln-Asp-Arg-Arg, 2.Pro-Ser-Cys-Trp-Thr-Phe-Gly-Phe-Ser-Glu-Asn-His,
3. Pro-Ser-Ser-Pro-Arg-Glu-Glu-Val -Ser-Leu-Asp-Leu-Asp.
These results provided that tuna cooking juice can be applied to the development of the source of antimicrobial peptides.


謝誌………………………………………………………………………I
中文摘要 ………………………………………………………………II
英文摘要 ………………………………………………………………IV
圖表索引………………………………………………………………IX
壹、 前言 ………………………………………………………………1
貳、 文獻回顧 …………………………………………………………2
一、 鮪魚簡介 ……………………………………………………2
二、 抗微生物胜肽(Antimicrobial peptide, AMPs)…………4
三、 蛋白質酵素水解……………………………………………8
四、 蛋白質的水解方法…………………………………………9
五、 蛋白質水解物的應用………………………………………11
六、 蛋白質水解物的生物活性 (biological activity) …12
參、目的………………………………………………………………16
肆、 材料與方法………………………………………………………17
一、 研究材料 …………………………………………………17
(1) 鮪魚蒸煮液……………………………………………17
(2) 酵素……………………………………………………17
(3) 試藥……………………………………………………18
(4) 微生物…………………………………………………19
(5) 培養基…………………………………………………19
二、 實驗方法 …………………………………………………20
(一) 一般成分分析……………………………………………20
(1) 水分…………………………………………………20
(2) 灰分…………………………………………………20
(3) 粗蛋白質……………………………………………21
(4) pH值…………………………………………………21
(5) 粗脂肪………………………………………………21
(二) 水解率(degree of hydrolysis DH) 之測定………22
(1) 胺基態氮測定 ……………………………………22
(2) 水解前之總氮含量………………………………22
(三) 最小抑制濃度( MIC )………………………………23
(四) 抗微生物操作法……………………………………23
(1) 試驗菌株懸浮液製備…………………………23
(2) 培養皿製備……………………………………24
(3) 培養條件及測定………………………………24
(五) 鮪魚蒸煮液蛋白質酵素水解物之分子量分佈…24
(六) 鮪魚蒸煮液抗菌測定法…………………………24
(七) 模擬消化試驗……………………………………25
(八) 鮪魚蒸煮液之區分物具抑菌活性胜肽之分離與純化25
(九) 胺基酸序列分析………………………………………26
三、 實驗架構 ………………………………………………27
伍、 結果與討論 …………………………………………………29
一、由鮪魚蒸煮液製備抗微生物活性物質…………………29
(一) 鮪魚蒸煮液一般成分分析…………………………29
(二) 選擇水解鮪魚蒸煮液之蛋白酶……………………31
(三) 水解率(degree of hydrolysis DH) 之測定……43
(四) alcalase水解物之區分物抗微生物活性………45
(五) alcalase水解物之區分物最小抑制濃度( MIC )50
二、鮪魚蒸煮液蛋白質水解物之模擬消化試驗…………54
(一) pepsin 對區分物抗微生物活性之影響 ………54
(二) trypsin 及chymotrypsin 對區分物抗微生物活性之影響…54
三、鮪魚蒸煮液蛋白質區分物之抗微生物胜肽之純化與序列分 析…61

陸、 結論………………………………………………………………74
柒、 參考文獻…………………………………………………………76


陳天任、賴景陽、何平合、柳芝蓮、陳章波:台灣常見魚介類圖說(下)----魚類,(1996).
陳怡宏:蛋白質酵素水解液之生產技術。食品工業,29(11):34-40 (1997).
鄭名凡:蛋白質水解物的功能與應用。食品資訊,160:49-54 (1999).
鄭靜桂:蛋白質之水解與水解液之利用。食品工業,29(5):10-17 (1997).
Alder-Nissen (1986). A review of Food protein hydrolysis. In: Enzymatic hydrolysis of food proteins. NewYork: Elsevier Applied Sci, Pub. Ltd.
Anon, J. B. (1992). Otolaryngic allergy. The last half-century. Otolaryngol Clin North Am 25(1): 1-12.
Bandyopadhyay, K., Misra, G. et al. (2008). Preparation and characterisation of protein hydrolysates from Indian defatted rice bran meal. J Oleo Sci 57(1): 47-52.
Beak, H. H. and Cadwallader K. R. (1995). Enzymatic Hydrolysis of Crayfish Processing By-products. J Food Sci 60: 929-935.
Bolscher, J. G., Kraan M. I. et al. (2006). A one-enzyme strategy to release an antimicrobial peptide from the LFampin-domain of bovine lactoferrin. Peptides 27(1): 1-9.
Boudrant, J. and Cheftel C. (1976). Continuous proteolysis with a stabilized protease. II. Continuous experiments. Biotechnol Bioeng 18(12): 1735-1749.
Brantl, V., Teschemacher H. et al. (1979). Novel opioid peptides derived from casein (beta-casomorphins). I. Isolation from bovine casein peptone. Hoppe Seylers Z Physiol Chem 360(9): 1211-1216.
Brogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3): 238-250.
Calbet, J. A. and MacLean D. A. (2002). Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr 132(8): 2174-2182.
Clemente, A., Vioque J. et al. (1999). "Protein quality of chickpea (Cicer arietinum L.) protein hydrolysates." Food Chemistry 67(3): 269-274.
Cushman, D. W. and Cheung H. S. (1971). Concentrations of
angiotensin-converting enzyme in tissues of the rat. Biochim Biophys Acta 250(1): 261-265.
Daoud, R., Dubois V. et al. (2005). New antibacterial peptide derived from bovine hemoglobin. Peptides 26(5): 713-719.
Dionysius, D. A. and Milne J. M. (1997). Antibacterial peptides of bovine lactoferrin: purification and characterization. J Dairy Sci 80(4): 667-674.
Fiat, A. M., Migliore-Samour D. et al. (1993). Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities. J Dairy Sci 76(1): 301-310.
Freitas, V. R., Fraser-Smith E. B. et al. (1993). Efficacy of ganciclovir in combination with zidovudine against cytomegalovirus in vitro and in vivo. Antiviral Res 21(4): 301-315.
Ganz, T. (2004). Antimicrobial polypeptides. J Leukoc Biol 75(1): 34-38.
Gibbs, B. F., Zougman A. et al. (2004). Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int 37(2): 123-131.
Gomes, V. M., Carvalho A. O. et al. (2005). Purification and characterization of a novel peptide with antifungal activity from Bothrops jararaca venom. Toxicon 45(7): 817-827.
Grimble, G. K. (1994). The significance of peptides in clinical nutrition. Annu Rev Nutr 14: 419-447.
Hidalgo, J. and Gamper E. (1977). Solubility and heat stability of whey protein concentrates. J Dairy Sci 60(10): 1515-1518.
Hill, M. W. and Karthigasan J. (1989). Glucose metabolism and protein synthesis in stratified squamous epithelia from young and old mice. Exp Gerontol 24(4): 331-340.
Hinsberger, A. and Sandhu B. K. (2004). Digestion and absorption. Current Paediatrics 14: 605-611.
Hof, W., Veerman E. C. I. et al. (2001). Antimicrobial peptides: properties and applicability. Biol Chem 382(4): 597-619.
In, M. J., Kim D. C. et al. (2003). Effects of degree of hydrolysis and pH on the solubility of heme-iron enriched peptide in hemoglobin hydrolysate. Biosci Biotechnol Biochem 67(2): 365-367.
Jackson, A. and McLaughlin J. (2006). Digestion and absorption. Surgery 24(7): 250-254.
Kitts, D. D. and Weiler K. (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9(16): 1309-1323.
Kloczewiak, M., Timmons S. et al. (1984). Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the gamma chain.
Biochemistry 23(8): 1767-1774.
Korhonen, H. and Pihlanto (2005). Bioactive peptides: Production and functionality. Int Dairy J 16(9): 945-960.
Lahl, W. and Grindstaff D. (1989). Spices and Seasonings: Hydrolyzed Proteins. Proceedings of the 6th SIFS Symposuim of Food Ingredients Applications, Status and Safety. Singapore Inst of Food Sci. and Tech, Singapore 29:
51-65.
Lahl, W. J. and Braun S. D. (1994). Enzymatic production of proteins hydrolysates for food use. Food Technol 46: 68-71.
Ledward, D. A. and Lawrie R. A. (1984). Recovery and utilisation of by-product proteins of the meat industry. J Chem Technol Biotechnol 34: 223-228.
Li, G. H., Le G. W. et al. (2003). Angiotensin I converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research 24(7): 469-486.
Liu, Z., Dong S, et al. (2008). Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control 19(3): 231-235.
Mahmound, M.J., 1994. Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol 48: 89-95.
Meisel, H. and FitzGerald R. J. (2003). Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des 9(16): 1289-1295.
Meisel, H. and Frister H. (1988). Chemical characterization of a caseinophosphopeptide isolated from in vivo digests of a casein diet. Biol Chem Hoppe Seyler 369(12): 1275-1279.
Miyoshi, S., Ishikawa H. et al. (1991). Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate. Agric Biol Chem 55(5): 1313-1318.
Mullally, M. M., Meisel H. et al. (1997). Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine beta-lactoglobulin. FEBS Lett 402(2): 99-101.
Mykkanen, H. M. and Wasserman R. H. (1980). Enhanced absorption of calcium by casein phosphopeptides in rachitic and normal chicks. J Nutr 110(11): 2141-2148.
Panyam, D. and Kilara A. (1996). Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science & Technology 7(4): 120-125.
Prioult, G. and Nagler-Anderson C. (2005). Mucosal immunity and allergic responses: lack of regulation and/or lack of microbial stimulation? Immunol Rev 206: 204-218.
Reddy, V., Yedery R. D. et al. (2004). Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6): 536-547.
Shai, Y. and Oren Z. (2001). From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22(10): 1629-1641.
Shimizu, M. (2004). Food-derived peptides and intestinal functions. Biofactors 21(4): 43-47.
Skerlavaj, B., Benincasa M. et al. (1999). SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett 463(2): 58-62.
Steiner, H., Hultmark D. et al. (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820): 246-248.
Tandang, M. R., Atsuta N. et al. (2005). Evaluation of the solubility and emulsifying property of soybean proglycinin and rapeseed procruciferin in relation to structure modified by protein engineering. J Agric Food Chem 53(22): 8736-8744.
Tomita, M., Bellamy W. et al. (1991). Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74(12): 4137-4142.
Vijayalakshmi, P., Sastry D. V. et al. (1986). Interaction between salinity and toxicity of phosphamidon in Metapenaeus monoceros (Fabricius). Bull Environ Contam Toxicol 37(6): 797-801.
Zasloff, M. (2002). Antimicrobial peptides in health and disease. N Engl J Med 347(15): 1199-1200.
Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415(6870): 389-395.
Zioudrou, C., Streaty R. A. et al. (1979). Opioid peptides derived from food proteins. The exorphins. J Biol Chem 254(7): 2446-2449.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top