陳天任、賴景陽、何平合、柳芝蓮、陳章波:台灣常見魚介類圖說(下)----魚類,(1996).
陳怡宏:蛋白質酵素水解液之生產技術。食品工業,29(11):34-40 (1997).鄭名凡:蛋白質水解物的功能與應用。食品資訊,160:49-54 (1999).鄭靜桂:蛋白質之水解與水解液之利用。食品工業,29(5):10-17 (1997).
Alder-Nissen (1986). A review of Food protein hydrolysis. In: Enzymatic hydrolysis of food proteins. NewYork: Elsevier Applied Sci, Pub. Ltd.
Anon, J. B. (1992). Otolaryngic allergy. The last half-century. Otolaryngol Clin North Am 25(1): 1-12.
Bandyopadhyay, K., Misra, G. et al. (2008). Preparation and characterisation of protein hydrolysates from Indian defatted rice bran meal. J Oleo Sci 57(1): 47-52.
Beak, H. H. and Cadwallader K. R. (1995). Enzymatic Hydrolysis of Crayfish Processing By-products. J Food Sci 60: 929-935.
Bolscher, J. G., Kraan M. I. et al. (2006). A one-enzyme strategy to release an antimicrobial peptide from the LFampin-domain of bovine lactoferrin. Peptides 27(1): 1-9.
Boudrant, J. and Cheftel C. (1976). Continuous proteolysis with a stabilized protease. II. Continuous experiments. Biotechnol Bioeng 18(12): 1735-1749.
Brantl, V., Teschemacher H. et al. (1979). Novel opioid peptides derived from casein (beta-casomorphins). I. Isolation from bovine casein peptone. Hoppe Seylers Z Physiol Chem 360(9): 1211-1216.
Brogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3): 238-250.
Calbet, J. A. and MacLean D. A. (2002). Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr 132(8): 2174-2182.
Clemente, A., Vioque J. et al. (1999). "Protein quality of chickpea (Cicer arietinum L.) protein hydrolysates." Food Chemistry 67(3): 269-274.
Cushman, D. W. and Cheung H. S. (1971). Concentrations of
angiotensin-converting enzyme in tissues of the rat. Biochim Biophys Acta 250(1): 261-265.
Daoud, R., Dubois V. et al. (2005). New antibacterial peptide derived from bovine hemoglobin. Peptides 26(5): 713-719.
Dionysius, D. A. and Milne J. M. (1997). Antibacterial peptides of bovine lactoferrin: purification and characterization. J Dairy Sci 80(4): 667-674.
Fiat, A. M., Migliore-Samour D. et al. (1993). Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities. J Dairy Sci 76(1): 301-310.
Freitas, V. R., Fraser-Smith E. B. et al. (1993). Efficacy of ganciclovir in combination with zidovudine against cytomegalovirus in vitro and in vivo. Antiviral Res 21(4): 301-315.
Ganz, T. (2004). Antimicrobial polypeptides. J Leukoc Biol 75(1): 34-38.
Gibbs, B. F., Zougman A. et al. (2004). Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int 37(2): 123-131.
Gomes, V. M., Carvalho A. O. et al. (2005). Purification and characterization of a novel peptide with antifungal activity from Bothrops jararaca venom. Toxicon 45(7): 817-827.
Grimble, G. K. (1994). The significance of peptides in clinical nutrition. Annu Rev Nutr 14: 419-447.
Hidalgo, J. and Gamper E. (1977). Solubility and heat stability of whey protein concentrates. J Dairy Sci 60(10): 1515-1518.
Hill, M. W. and Karthigasan J. (1989). Glucose metabolism and protein synthesis in stratified squamous epithelia from young and old mice. Exp Gerontol 24(4): 331-340.
Hinsberger, A. and Sandhu B. K. (2004). Digestion and absorption. Current Paediatrics 14: 605-611.
Hof, W., Veerman E. C. I. et al. (2001). Antimicrobial peptides: properties and applicability. Biol Chem 382(4): 597-619.
In, M. J., Kim D. C. et al. (2003). Effects of degree of hydrolysis and pH on the solubility of heme-iron enriched peptide in hemoglobin hydrolysate. Biosci Biotechnol Biochem 67(2): 365-367.
Jackson, A. and McLaughlin J. (2006). Digestion and absorption. Surgery 24(7): 250-254.
Kitts, D. D. and Weiler K. (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9(16): 1309-1323.
Kloczewiak, M., Timmons S. et al. (1984). Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the gamma chain.
Biochemistry 23(8): 1767-1774.
Korhonen, H. and Pihlanto (2005). Bioactive peptides: Production and functionality. Int Dairy J 16(9): 945-960.
Lahl, W. and Grindstaff D. (1989). Spices and Seasonings: Hydrolyzed Proteins. Proceedings of the 6th SIFS Symposuim of Food Ingredients Applications, Status and Safety. Singapore Inst of Food Sci. and Tech, Singapore 29:
51-65.
Lahl, W. J. and Braun S. D. (1994). Enzymatic production of proteins hydrolysates for food use. Food Technol 46: 68-71.
Ledward, D. A. and Lawrie R. A. (1984). Recovery and utilisation of by-product proteins of the meat industry. J Chem Technol Biotechnol 34: 223-228.
Li, G. H., Le G. W. et al. (2003). Angiotensin I converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research 24(7): 469-486.
Liu, Z., Dong S, et al. (2008). Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control 19(3): 231-235.
Mahmound, M.J., 1994. Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol 48: 89-95.
Meisel, H. and FitzGerald R. J. (2003). Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des 9(16): 1289-1295.
Meisel, H. and Frister H. (1988). Chemical characterization of a caseinophosphopeptide isolated from in vivo digests of a casein diet. Biol Chem Hoppe Seyler 369(12): 1275-1279.
Miyoshi, S., Ishikawa H. et al. (1991). Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate. Agric Biol Chem 55(5): 1313-1318.
Mullally, M. M., Meisel H. et al. (1997). Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine beta-lactoglobulin. FEBS Lett 402(2): 99-101.
Mykkanen, H. M. and Wasserman R. H. (1980). Enhanced absorption of calcium by casein phosphopeptides in rachitic and normal chicks. J Nutr 110(11): 2141-2148.
Panyam, D. and Kilara A. (1996). Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science & Technology 7(4): 120-125.
Prioult, G. and Nagler-Anderson C. (2005). Mucosal immunity and allergic responses: lack of regulation and/or lack of microbial stimulation? Immunol Rev 206: 204-218.
Reddy, V., Yedery R. D. et al. (2004). Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6): 536-547.
Shai, Y. and Oren Z. (2001). From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22(10): 1629-1641.
Shimizu, M. (2004). Food-derived peptides and intestinal functions. Biofactors 21(4): 43-47.
Skerlavaj, B., Benincasa M. et al. (1999). SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett 463(2): 58-62.
Steiner, H., Hultmark D. et al. (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820): 246-248.
Tandang, M. R., Atsuta N. et al. (2005). Evaluation of the solubility and emulsifying property of soybean proglycinin and rapeseed procruciferin in relation to structure modified by protein engineering. J Agric Food Chem 53(22): 8736-8744.
Tomita, M., Bellamy W. et al. (1991). Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74(12): 4137-4142.
Vijayalakshmi, P., Sastry D. V. et al. (1986). Interaction between salinity and toxicity of phosphamidon in Metapenaeus monoceros (Fabricius). Bull Environ Contam Toxicol 37(6): 797-801.
Zasloff, M. (2002). Antimicrobial peptides in health and disease. N Engl J Med 347(15): 1199-1200.
Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415(6870): 389-395.
Zioudrou, C., Streaty R. A. et al. (1979). Opioid peptides derived from food proteins. The exorphins. J Biol Chem 254(7): 2446-2449.