跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖智偉
研究生(外文):Jhih-Wei Liao
論文名稱:二次噴注系統之操作條件對於柴油引擎濾煙器再生過程的影響
論文名稱(外文):Effects of Engine Operating Condition and Secondary Fuel Injection Rate on the Regeneration Process of Diesel Engine Particulate Filter
指導教授:盧昭暉盧昭暉引用關係
口試委員:洪榮芳施國亮張一屏葉啟南
口試日期:2011-07-08
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:96
中文關鍵詞:濾煙器再生再生模式稀釋道
外文關鍵詞:Diesel Particulate FilterRegeneration ProcessDilution System
相關次數:
  • 被引用被引用:2
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
穩態再生系統為替代傳統式再生系統最佳的方式,目前國內加裝柴油車後處理器,是濾煙器累積到一定程度時拆下於再生加熱爐進行,再生後利用鼓風機將殘留的碳粒吹除,此再生時間太長,車主較無意願裝置後處理器,若使用穩態再生,雖要把車停置後再生,但再生時間短,即為較便利的方式。
氧化觸媒為再生中重要元件,其中氧化觸媒各有不同的操作溫度及柴油轉換率,此條件會隨著噴油率而變化,本篇論文發現,比較實際噴入的燃油與所計算燃燒掉的燃料可以發現燃油並未完全燒掉,這與燃料的濃度、排氣中的氧氣濃度、氧化觸媒的入口溫度有關。
穩態再生為引擎在定轉速與負載下,排氣管噴入柴油進行再生,其操作條件有排氣溫度、噴油脈寬與噴油時間,排氣溫度與噴油脈寬會影響柴油在氧化觸媒中的停滯時間與氧化觸媒後的溫度變化率,而噴油時間則是依據濾煙器內所累積的碳粒,在操作條件整理過後,將排氣溫度控制於350℃,噴油率固定於27%,此溫度變化率為0.95,再生時間為17.83分鐘,總噴油量為800c.c.,由最佳的條件再生,碳粒清除率可達96%。
在濾煙器再生當中,排氣溫度相當的高,在汙染之PM2.5的採樣,若貿然利用不銹鋼管接上濾紙進行採樣,則會有水氣及高溫廢氣通過濾紙,使濾紙富含水氣及容易將濾紙燒破,建制稀釋道可改善水氣與高溫的採樣環境,本篇論文將設計採樣之稀釋道使採樣能達到準確,且也可保護採樣之設備與濾紙。


Nowadays, the steady regeneration system is the best substitution for the boiler regeneration. Although vehicles have to stop the DPF (Diesel Particulate Filter) to regenerate, it takes less time. DPF usually be regenerated the by the boilers, and blow away the residual carbon particles after the regeneration, which takes too much time, and thus causing most of people have no interest to installing the DPF.
The Direct Oxidation Catalyst (DOC) is an important element in the regeneration, it has different operating temperature and diesel conversion efficiency, and the condition varies with the fuel injection rate. In this article, different burning fuel injection and the simulation value of burned fuel, were compared, results showed the fuel is not totally combusted. It is observed that regeneration process are complicated and related to the fuel injection rate、the oxygen density in exhaust and the inlet temperature of DOC.
The steady regeneration was operated under different steady engine speed and engine load operating condition. The main operating variables are exhaust temperature、fuel injection rate and regeneration time. The exhaust temperature and the fuel injection rate can effects the delay time of DOC, and the temperature ramp after the DOC. The regeneration time is based on the accumulated carbon particles in the DPF. When the exhaust temperature is controlled at 350℃,the fuel injection rate on 27%,the temperature ramp is 0.95, the regeneration time is 17.83 minutes, and the total fuel injection is 800c.c., 96% of the carbon particles can be burned out according to the weight record.
In the DPF regeneration period, the exhaust temperature is very high, we may there are some humid air and high temperature exhaust pass through the PM2.5 were found. The dilution system must construct to make sure that under high exhaust temperature condition exhaust can be sampled. A simulated test using pure CO2 as engine exhaust was carried out to validate the system performance. It was found that the dilute ratio varied in the range of 18~22, with the average value of 19.7 and standard deviation of 1.4%.


第一章 緒論 1
1.1前言 1
1.2 濾煙器簡介 3
1.2.1濾煙器介紹 3
1.2.2再生分類 5
1.2.3 ISUZU濾煙系統介紹 6
1.2.4 Ford濾煙系統介紹 9
1.2.5 GM濾煙系統介紹 10
1.3文獻回顧 12
1.4 研究動機與方法 14
第二章 實驗系統設置 15
2.1 實驗設備 15
2.1.1柴油引擎 15
2.1.2引擎動力計 17
2.1.3濾煙器之擴散器 18
2.2 濾煙器規格尺寸 18
2.2.1氧化觸媒介紹 19
2.2.2濾煙器介紹 20
2.3再生設備介紹 22
2.3.1 再生之噴嘴 22
2.3.2 柴油與空氣混合之電磁閥 22
2.3.3 訊號控制端 23
2.3.4 油泵系統 25
第三章 氧化觸媒轉化率 26
3.1觸媒轉化率模式 27
3.2觸媒轉化率計算結果 29
3.3觸媒轉化率驗證 36
3.4觸媒轉化反應機制 40
第四章 再生實驗 45
4.1 再生實驗步驟及方法 45
4.2 再生噴油率及排氣溫度固定 47
4.3排氣溫度固定,噴油率變化 49
4.3.1第二次再生 49
4.3.2第五次再生 51
4.3.3第六次再生 53
4.3.4第七次再生 55
4.3.5第八次再生 57
4.3.6第十一次再生 59
4.3.7第十二次再生 61
4.3.8第十三次再生 63
4.4排氣溫度變化,噴油量變化 65
4.4.1第一次再生 65
4.5 排氣溫度變化,噴油量固定 67
4.5.1第四次再生 67
4.6結果與討論 69
4.6.1 不同排氣溫度對DOC的停滯時間於再生之比較 69
4.6.2 不同溫度變化率對於再生之比較 70
4.6.3不同碳量對於再生過程之比較 72
4.6.4 濾煙器清除效率 73
4.6.5 較好再生條件 74
第五章 稀釋道系統 76
5.1 濾煙器設計與介紹 78
5.2 稀釋道系統設備 80
5.2.1 壓縮機與儲存空氣桶 80
5.2.2節流閥 81
5.2.3 高效微粒過濾器與活性碳 82
5.2.4流量計 83
5.2.5微差壓計 84
5.2.6真空泵 84
5.3稀釋道數學模式 85
5.4 稀釋道實驗與驗證 87
第六章 結論 92
參考文獻 94



[1] A. M. Stamatelos, “A review of the effect of particulate traps on the efficiency of vehicle diesel engines”, Energy Conversion and Management, Volume 38, Issue 1, 1997.
[2] Toshikatsu Muramatsu,Tetsuichi Kominami,Jinichi Minamikawa, Munetomo Matsunami,Junji Komatsu, Jun Ozawa, “DPR with Empirical Formula to Improve Active Regeneration of a PM Filter”, SAE Paper 2006-01-0878, 2006.
[3] 高實祥,廖慶復,顧詠元, “主動再生濾煙器介紹”, 財團法人車輛研究測試中心車輛研測資訊雙月刊, 第61期, pp. 2-9, 2007.
[4] Diesel Net website http://www.dieselnet.com/tech/dpf_top.html
[5] ISUZU MOTORS Ltd. http://www.isuzu.co.jp/world/index.html
[6] Toshiaki Sakaguchi,Akihide Ohgushi,Shogo Suzuki,Hideki Kita, Kazuo Ohsumi,Takayuki Suzuki,Hideo Kawamura,“Development of High Durability Diesel Particulate Filter by using SiC Fiber”, SAE Paper 1999-01-0463, 1999.
[7] Gang Guo,Ning Xu,Paul M. Laing,Robert H. Hammerle,M. Matti Maricq, “Performance of a Catalyzed Diesel Particulate Filter System During Soot Accumulation and Regeneration”, SAE Paper 2003-01-0047, 2003.
[8] Geon Seog Son,Cheon Seog Gwak,Eui Rak Choi,Cheol Won Hwang, Soong Kee Kim, Ki Kyoung Bae, “PM Reduction in Diesel Exhaust Gases with a Photocatalytic DPF Reactor”, SAE Paper 2006-01-0876, 2006.
[9] John P. A. Neeft,Michiel Makkee,Jacob A. Moulijn,“Diesel Particulate Emission Control”, Fuel Processing Technology, Volume 47, Issue 1, 1996.
[10] W. McCabe,M. Sinkevitch,“Oxidation of Diesel Particulates by Catalyzed Wall-Flow Monolith Filters”, SAE Paper 870009, 1987.
[11] K. N. Pattas ,A. M. Stamatellos,N. A. Patsatzis,P. S. Kikidis, J. K. Aidarinis , Z. C. Samaras, “Forced Regeneration by Exhaust Gas Throttling of the Ceramic Diesel Particulate Trap”, SAE Paper 860293, 1986.
[12]Yong Yi,“Simulating the Soot Loading in Wall-flow DPF Using a Three-Dimensional Macroscopic Model”, SAE Paper 2006-01-0264, 2006.
[13] Ronald M. Heck,Robert J. Farrauto,Suresh T. Gulati,“Catalytic Air Pollution Control ”, John Wiley P.118, 1995.
[14] Nik Birkby,Steven Beesley,Andrew Hatton,Hassan El-Khatib, “The Development and Testing of an Active Particulate Regeneration System Using Model Based Control”, SAE Paper 2006-01-3258, 2006.
[15] 張耀升,“柴油車濾煙器中擴散器設計對碳粒累積與再生效果之影響”, 碩士論文, 國立中興大學機械工程學系, 2010。
[16] Athanasios G. Konstandopoulos, EM Department, Margaritis Kostoglou, Evangelos Skaperdas, Eleni Papaioannou , Dimitrios Zarvalis, Evdoxia Kladopoulou, “Fundamental Studies of Diesel Particulate Filters: Transient Loading, Regeneration and Aging”, SAE Paper 2000-01-1016, 2000.
[17] H. Burtscher, “Physical characterization of particulate emissions from diesel engines: a review ”, Journal of Aerosol Science, Volume 36, Issue 7, 2005.
[18] William M. Silvis, Gerald Marek, Norbert Kreft, Wolfgang Schindler, “Diesel Particulate Measurement with Partial Flow Sampling: Systems A New Probe and Tunnel Design that Correlates with Full Flow Tunnels”, SAE Paper 2002-01-0054, 2002.
[19] Imad A. Khalek, Terry L. Ullman, Cleophas C. Jackson, Bennett Dharmawardhana, William M. Silvis, Norbert Kreft, R. Neal Harvey, Dave Munday, Yutaka Yamagishi, Rob Graze, John Smitherman, Jesse Adkins, “Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation”, SAE Paper 2002-01-1718, 2002.
[20] Maricq MM, Chase RE, Xu N, Podsiadlik DH, “A constant-volume rapid exhaust dilution system for motor vehicle particulate matter number and mass measurements”, Journal of the Air and Waste Management Association 53 1196–1203, 2003.
[21] Ch. Hueglin, L. Scherrer, H. Burtscher, “An accurate, continuously adjustable dilution system (1:10 to 1:104) for submicron aerosols”, Journal of Aerosol Science, Volume 28, Issue 6, 1997.
[22] Stephen R. Turns, “An Introduction to Combustion”, Concepts and Application, second edition.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林奇賢(1999)。虛擬學校的建置與應用。教育資料文摘,43,118-130。
2. 顏龍源(2000)。主題化電腦融入課程概念。資訊與教育,80,32-39。
3. 鐘樹椽(2002)。實際用網路於科學學習之探討。菁莪季刊,10(4),10-17。
4. 黃寶鈿、李武勳(2002)。抽象概念的具體化教學﹕以莫耳概念為例。科學教育月刊,253,48-50。
5. 溫學賢、洪登南(2008)。化學教學與多媒體運用。黃埔學報,54,155-166。
6. 溫嘉榮、施文玲(2002)。從網路學習理論觀點談教師在科技變革中的因應之道。資訊與教育,91,90-99。
7. 張梅鳳(2004)。資訊融入生物科教學之教材製作與教學策略初探。圖書館學與資訊科學。30(1),55-65 。
8. 張鳳燕 (1991)。教導心理學微觀—從概念學習談國小的數學教育。師友月刊,284,24-29。
9. 張國恩(1999)。資訊融入各科教學之內涵與實施。資訊與教育雜誌,72,2-9。
10. 張清濱(2000)。探究教學法。師友月刊,395,45-49 。
11. 張靜儀(1995)。自然科探究教學法。屏師科學教育,1,36-45。
12. 張正宙(1994)。台灣省立美術館視聽媒體應用情形。社教雙月刊,63,28-30。
13. 戴淑貞、黃琴雅、李曉君 (2008)。國中生網路成癮與親子互動關係之研究。南榮學報,11,1-20。
14. 謝青龍 (1995)。從迷思概念到另有架構的概念改變。科學教育月刊,180,23-29。
15. 錢正之(2003)。方程式定性分析在運動學的教學與研究。科學教育學刊,11(3),331-350。