跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙中譽
研究生(外文):Chung-Yu Chao
論文名稱:溶膠-凝膠法製作含生物質熱塑型PU樹脂/矽氧混成材料之性質
論文名稱(外文):Properties of Hybrids Prepared from Biomass Containing Thermoplastic PU Resin/Silica by Sol-Gel Process
指導教授:李文昭李文昭引用關係
指導教授(外文):Wen-Jau Lee
口試委員:黃金城宋憶青張上鎮劉正字
口試日期:2011-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:76
中文關鍵詞:3-(三乙氧矽基)丙胺有機-無機混成材料多元醇液化柳杉溶膠-凝膠法四乙基矽氧烷熱塑型聚胺基甲酸酯
外文關鍵詞:3-AminopropyltriethoxysilaneOrganic-inorganic hybridsPolyol liquefactionCryptomeria japonicaSol-gel processTetraethoxysilaneThermoplastic polyurethane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以聚四甲基醚二醇 (Polytetramethylene ether glycol; PTMG) 、六亞甲基二異氰酸酯 (1,6-Hexamethylene diisocyanate; HDI) 及1,4-丁二醇 (1,4-Butanediol; 1,4-BD) 為原料,合成兩種不同硬鏈段含量之熱塑型聚胺基甲酸酯樹脂 (Thermoplastic polyurethane; TPU) ,並將其與四乙基矽氧烷 (Tetraethoxysilane; TEOS) 混合後藉由溶膠-凝膠法 (Sol-gel process) 製備有機-無機混成材料,進一步則利用多元醇液化柳杉取代部分PTMG合成液化木材改質TPU樹脂 (LTPU) ,另於樹脂合成階段添加3-(三乙氧矽基)丙胺 (3-Aminopropyltriethoxysilane; APTES) 製備含矽氧烷分子團之矽氧烷改質TPU樹脂,並探討經不同改質處理之TPU樹脂與TEOS所製作混成材料之性質。由試驗結果得知硬鏈段含量為23.5%之TPU-A-0具有較佳之拉伸性質,而硬鏈段含量為27.5%之TPU-B-0則有較佳之耐溶劑性及熱穩定性;將TPU與TEOS混合製作TPU/矽氧混成材料時,隨TEOS添加量增加,混成材料薄膜具備較高之儲存模數及加熱至600℃之重量保留率。而於TPU樹脂結構中導入多元醇液化柳杉或矽氧烷分子團可提高TPU樹脂薄膜之拉伸強度、儲存模數及熱穩定性,其所製作之矽氧混成材料薄膜亦隨TEOS添加量增加,耐溶劑性及熱穩定性提高。

In this study, two kinds of thermoplastic polyurethane resin (TPU) with different hard segment contents were synthesized from polytetramethylene ether glycol (PTMG) , 1,6-hexamethylene diisocyanate (HDI) and 1,4-butanediol (1,4-BD) . These TPU resins were blended with tetraethoxysilane (TEOS) to prepare organic-inorganic hybrids by sol-gel process. Furthermore, the liquefied wood-modified TPU were prepared by replacing part of PTMG with polyol-liquefied Cryptomeria japonica and the alkoxysilane-modified TPU that containing alkoxysilane groups were prepared by adding 3-aminopropyltriethoxysilane (APTES) during resin synthesis. The properties of hybrids made by blending the modified TPU resins and TEOS were investigated. The results show that TPU-A-0 with 23.5% of hard segment content had better tensile properties and TPU-B-0 that contained 27.5% of hard segment content possess better solvent resistance and thermal stability. When mixed TPU with TEOS to prepare TPU/silica hybrids, increment of TEOS content would lead hybrids with higher storage modulus and more char yield at 600℃. Incorporating liquefied Cryptomeria japonica or alkoxysilane groups into the molecular structure of TPU resins, the tensile strength, storage modulus and thermal stability of TPU films could be advanced. The solvent resistance and thermal stability of hybrids made with modified TPU would raise as the content of TEOS increased.

摘要 i
Summary ii
目錄 iii
圖目次 vi
表目次 xi
第一章 前言 1
第二章 文獻回顧 3
一、TPU樹脂之製備與性質 3
(一) PU樹脂之發展 3
(二) PU樹脂之反應機制 3
(三) TPU樹脂之製備 5
(四) TPU樹脂之兩相性質 6
(五) TPU樹脂之單體原料組成對兩相結構之影響 8
二、生物質材料於PU樹脂製備之應用 10
(一) 多元醇液化條件 10
(二) 多元醇液化產物製備PU樹脂之性質 10
三、PU/矽氧有機-無機混成材料之製備 11
(一) 有機-無機混成材料之製備 11
(二) 溶膠-凝膠反應 13
(三) 溶膠-凝膠法製備TPU/矽氧混成材料之性質 14
第三章 TPU與TPU/矽氧混成材料之製備與性質 17
一、材料與方法 17
(一) 試驗材料 17
(二) 試驗方法 17
二、結果與討論 21
(一) TPU樹脂之性質 21
(二) TEOS預聚物組成條件對TPU/矽氧混成材料薄膜性質之影響 21
(三) TPU/矽氧混成材料薄膜之分子結構分析 23
(四) TPU/矽氧混成材料薄膜之形態分析 24
(五) TPU/矽氧混成材料薄膜之耐水及耐溶劑性 26
(六) TPU/矽氧混成材料薄膜之機械性質 27
(七) TPU/矽氧混成材料薄膜之熱性質 28
第四章 液化木材改質TPU/矽氧混成材料之製備與性質 35
一、材料與方法 35
(一) 試驗材料 35
(二) 試驗方法 36
二、結果與討論 39
(一) 多元醇液化柳杉之性質 39
(二) LTPU樹脂之性質 39
(三) 混成材料薄膜之機械性質 40
(四) 不同LTPU及LTPU/矽氧混成材料薄膜之分子結構分析 42
(五) 不同LTPU及LTPU/矽氧混成材料薄膜之耐水及耐溶劑性 46
(六) 不同LTPU及LTPU/矽氧混成材料薄膜之形態分析 47
(七) 不同LTPU及LTPU/矽氧混成材料薄膜之熱性質 48
第五章 矽氧烷改質TPU/矽氧混成材料之製備與性質 55
一、材料與方法 55
(一) 試驗材料 55
(二) 試驗方法 55
二、結果與討論 58
(一) ATPU及ALTPU樹脂之性質 58
(二) 矽氧烷改質TPU/矽氧混成材料薄膜之機械性質 58
(三) 矽氧烷改質TPU/矽氧混成材料薄膜之分子結構分析 60
(四) 矽氧烷改質TPU/矽氧混成材料薄膜之耐水與耐溶劑性 62
(五) 矽氧烷改質TPU/矽氧混成材料薄膜之形態分析 63
(六) 矽氧烷改質TPU/矽氧混成材料薄膜之熱性質 65
第六章 結論 70
參考文獻 72


1.Ahn, T.O., L.S. Choi, H.M. Jeong and K. Cho (1993) Thermal and mechanical properties of thermoplastic polyurethane elastomers from different polymerization methods. Polym. Int. 31:329-333.
2.Aneja, A. and G.L. Wilkes (2003) A systematic series of model PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer 44:7221-7228.
3.Cervantes-Uc, J.M., J.I. Moo Espinosa, J.V. Cauich-Rodirguez, A. Avila-Ortega, H. Vazquez-Torres, A. Marcos-Fernandez and J. San Roman (2009) TGA-FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites. Polym. Degrad. Stabil. 94:1666-1677.
4.Chang, H.T., T.F. Yeh and S.T. Chang (2002) Comparisons of chemical characteristic variations for photodegraded softwood and hardwood with/without polyurethane clear coatings. Polym. Degrad. Stabil. 77:129-135.
5.Chattopadhyay, D.K. and K.V.S.N. Raju (2007) Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 32:352-418.
6.Chattopadhyay, D.K. and D.C. Webster (2009) Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34:1068-1133.
7.Chen, S., J. Sui and L. Chen (2004) Positional assembly of hybrid polyurethane nanocomposites via incorporation of inorganic building blocks into polymer. Colloid Polym. Sci. 283:66-73.
8.Chen Y. and J.O. Iroh (1999) Synthesis and characterization of polyimide/silica hybrid composites. Chem. Mat. 11:1218-1222.
9.Coleman, M.M., K.H. Lee, D.J. Skrovanek and P.C. Painter (1986) Hydrogen bonding in polymer. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19:2149-2157.
10.Cooper, S.L. and A.V. Tobolsky (1966) Properties of linear elastomeric polyurethanes. J. Appl. Polym. Sci. 10:1837-1844.
11.Dubois, C., M. Rajabian and D. Rodrigue (2006) Polymerization compounding of polyurethane-fumed silica composites. Polym. Eng. Sci. 46:360-371.
12.Frost, R.L. and E. Mendelovici (2006) Modification of fibrous silicates surfaces with organic derivatives: An infrared spectroscopic study. J. Colloid Interface Sci. 294:47-52.
13.Irusta, L. and M.J. Fernandez-Berridi (1999) Photooxidative behaviour of segmented aliphatic polyurethanes. Polym. Degrad. Stabil. 63:113-119.
14.Jeon, H.T., M.K. Jang, B.K. Kim and K.H. Kim (2007) Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process. Colloid Surf. A-Physicochem. Eng. Asp. 302:559-567.
15.Jiang, H., Z. Zheng, W. Song, Z. Li and X. Wang (2007) Alkoxysilane functionalized polyurethane/polysiloxane copolymer: Synthesis and the effect of end-capping agent. Polym. Bull. 59:53-63.
16.Kim, H.D., T.J. Lee, J.H. Huh and D.J. Lee (1999) Preparation and properties of segmented thermoplastic polyurethane elastomers with two different soft segments. J. Appl. Polym. Sci. 73:345-352.
17.Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53:617-622.
18.Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour. Technol. 74:151-157.
19.Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001a) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour. Technol. 77:33-40.
20.Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001b) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass Bioenerg. 21:381-390.
21.Lai, S.M., C.K. Wang and H.F. Shen (2005) Properties and preparation of thermoplastic polyurethane/silica hybrid using sol-gel process. J. Appl. Polym. Sci. 97:1316-1325.
22.Lee, S.H., Y. Teramoto and N. Shiraishi (2002) Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J. Appl. Polym. Sci. 84:468-472.
23.Lee, S.H., T. Ohkita and Y. Teramoto (2005) Polyol recovery from biomass-based polyurethane foam. J. Appl. Polym. Sci. 95:975-980.
24.Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi (1995) Physical properties of moldings from liquefied wood resins. J. Appl. Polym. Sci. 55:1563-1571.
25.Liu, H. and S. Zheng (2005) Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromol. Rapid Commun. 26:196-200.
26.Mahfuz, H., V.K. Rangari, M.S. Islam and S. Jeelani (2004) Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams. Compos. Pt. A-Appl. Sci. Manuf. 35:453-460.
27.Mattia J. and P. Painter (2007) A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules 40:1546-1554.
28.Narayan, R., D.K. Chattopadhyay, B. Sreedhar, K.V.S.N. Raju, N.N. Mallikarjuna and T.M. Aminabhavi (2006) Synthesis and characterization of crosslinked polyurethane dispersions based on hydroxylated polyesters. J. Appl. Polym. Sci. 99:368-380.
29.Novak, B.M. (1993) Hybrid nanocomposite materials between inorganic glasses and organic polymers. Adv. Mater. 5:422-433.
30.Paik Sung, C.S., C.B. Hu and C.S. Wu (1980) Properties of segmented poly(urethaneureas) based on 2,4-toluene diisocyanate. 1. Thermal transitions, X-ray studies, and comparison with segmented poly(urethanes). Macromolecules 13:111-116.
31.Pereira, A.P.V., W.L. Vasconcelos and R.L. Orefice (2000) Novel multicomponent silicate-poly(vinyl alcohol) hybrids with controlled reactivity. J. Non-Cryst. Solids 273:180-185.
32.Petrovic, Z.S. and J.B. Simendic (1985) Study of the effect of soft segment length and concentration on properties of polyetherurethanes. I. The effect on physical and morphological properties. Rubber Chem. Technol. 58:685-700.
33.Petrovic, Z.S. and J. Ferguson (1991) Polyurethane elastomers. Prog. Polym. Sci. 16:695-836.
34.Ravey, M. and E.M. Pearce (1997) Flexible polyurethane foam. І. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. J. Appl. Polym. Sci. 63:47-74.
35.Schmidt H. (1985) New type of non-crystalline solids between inorganic and organic materials. J. Non-Cryst. Solids 73:681-691.
36.Schottner G. (2001) Hybrid sol-gel derived polymers: applications of multifunctional materials. Chem. Mat. 13:3422-3435.
37.Spathis, G., M. Niaounakis, E. Kontou, L. Apekis, P. Pissis and C. Christodoulides (1994) Morphological changes in segmented polyurethane elastomers by varying the NCO/OH ratio. J. Appl. Polym. Sci. 54:831-842.
38.Tohmura, S.I., G.Y. Li and T.F. Qin (2005) Preparation and characterization of wood polyalcohol-based isocyanate adhesives. J. Appl. Polym. Sci. 98:791-795.
39.Wang, J., Y. Chen and J. Wang (2006) Preparation and properties of a novel elastomeric polyurethane/organic montmorillonite nanocomposite. J. Appl. Polym. Sci. 99:3578-3585.
40.Wei, Y., F. Cheng, H. Li and J. Yu (2004) Synthesis and properties of polyurethane resins based on liquefied wood. J. Appl. Polym. Sci. 92:351-356.
41.Wen, J. and G.L. Wilkes (1996) Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mat. 8:1667-1681.
42.Wilhelm C. and J.L. Gardette (1998) Infrared analysis of the photochemical behaviour of segmented polyurethanes: aliphatic poly(ether-urethane)s. Polymer 39:5873-5980.
43.Williams, P.T. and S. Besler (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew. Energy 7:233-250.
44.Zuo, M. and T. Takeichi (1999) Preparation and characterization of poly(urethane–imide) films prepared from reactive polyimide and polyurethane prepolymer. Polymer 40:5153-5160.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 簡永和(2010)。都市熱島效應下建築物能源管理。能源報導,9,6。
2. 劉潔心、邱詩揚、晏涵文、李恆華、潘瓊如、馮嘉玉(2004)。大學院校環境教育指標系統之發展與建構研究。衛生教育學報,21,100。
3. 楊冠政(2002)。環境倫理-環境教育的終極目標。環境教育學刊,1,1。
4. 黃運忠、盧秀琴(2004)。環境教育融入國小四年級自然與生活科技之研究。環境教育學刊,3,89。
5. 黃基森(2002)。論述購物用塑膠袋及塑膠類免洗餐具之限制使用政策。環境教育學刊,1,123-142。
6. 許晃雄(2001)。淺談氣候變化的科學。科學發展月刊,29(12),867-877。
7. 許世璋(2003)。大學環境教育課程對於環境行動與其它環境素養變項之成效分析。科學教育學刊,11(1),99-101。
8. 祝道松、盧正宗、洪晨桓、楊秀萍(2008)。環境績效對環境揭露與經濟績效的影響。當代會計,9(2),261。
9. 劉雅章(2007)。全球暖化問題的科學認識。二十一世紀雙月刊,102,15。
10. 高明瑞、黃義俊、張乃仁(2008)。企業智慧資本對環境績效之影響。環境與管理研究,9(1),29。
11. 洪肇嘉、卓雅文、吳修閘、莊燿瑋、李文亮(2000)。建立環境與安全衛生績效指標的方法及實務運用。工業污染防治,74,118-144。
12. 汪靜明(2003)。環境教育的生態理念與內涵。環境教育學刊,2,31-36。
13. 汪靜明(2000)。學校環境教育的理念與原理。環境教育季刊,43,11-27。