跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/23 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳言銘
研究生(外文):Yan-Ming Chen
論文名稱:以廢紙製備聚乳酸及聚乳酸塗佈紙的研製
論文名稱(外文):Preparation of PLA from Wastepaper and Manufacturing of PLA Coated Paper
指導教授:蘇裕昌蘇裕昌引用關係
口試委員:王益真張上鎮王升陽彭元興
口試日期:2011-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:81
中文關鍵詞:回收廢紙聚乳酸乳酸菌直接聚合開環聚合聚乳酸塗佈紙
外文關鍵詞:recycled wastepaperpolylactidelactic acid bacteriadirect polymerizationring opening polymerizationpolylactide coated paper
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  聚乳酸(Polylactide)是在自然環境下可被水及微生物降解的材料,藉由合成因子的調控可以改變聚乳酸的性質並賦予聚乳酸製品各種不同的用途。目前乳酸的生產方式主要以葡萄糖為原料,利用乳酸菌進行發酵,最後從發酵液中即可萃取純化出乳酸。若能利用木質廢棄物來生產乳酸,將可有效降低聚乳酸的生產成本,同時提高木質廢棄物的利用價值。本篇論文以回收廢紙作為原料,經過一連串的化學轉換(硫酸水解糖化、發酵、聚合)並縮聚合反應合成出聚乳酸,再將其作為耐水紙塗佈材料進行耐水紙的製備試驗,使紙品具備多功能之特殊機能紙,如抗水抗油產品、免洗餐具等。以上應用試驗分三大方面進行,分別為酸水解產糖並發酵產乳酸、高分子聚乳酸合成、以及聚乳酸塗佈紙的製備。
  在酸水解方面,以72%硫酸對回收廢紙進行酸水解,最高可得約81%的葡萄糖,再以所產之糖類進行乳酸發酵,使用菌種為Lactobacillus paracasei subsp. pacasei,在適當條件下發酵72小時每莫耳葡萄糖約可產1.87 mole乳酸。在聚乳酸合成方面,以直接聚合法進行合成,在催化劑辛酸亞錫添加量0.3%,反應溫度190℃,反應24小時可得平均分子量12,248的聚乳酸,以開環聚合法進行合成,在催化劑辛酸亞錫0.3%添加下,反應溫度150℃進行12小時可得最高平均重量分子量44,730。在塗佈紙製備方面,結果顯示,若以PVA做黏著劑進行塗佈,當聚乳酸分子量10,000,塗佈量達8 g/m2以上時,塗佈紙之抗張強度約可提升20%,適當塗佈方法下伸長率可提升40%,抗張強度在濕潤後的保留率達60%以上,效果接近市售紙杯的抗水性質,Cobb吸水度方面由未塗佈的30.21 g/㎡降至10.03 g/㎡,塗佈後之抗水性質明顯獲得提升。


The polylactide is biodegradable plastic that can be degraded by water and environmental microorganisms. We can offer it different properties using different synthetic factors. Currently, lactic acid is produced from the fermentation of glucose with lactic acid bacteria, then followed by steps of extraction and purification. If lactic acid could be produced from wood base waste material, the producing cost of polylactide will be effectively reduced and wood base waste material will be more valuable.
This study will describe the methodology of isolating glucose from recycled wastepaper, and converting through a series of chemical process to polylactide, then coating polylactide on base paper to produce functional paper, such as waterproof products and disposable utensils. There are three major aspects of investigation, including acid hydrolysis and fermentation of lactic acid, synthesis of polylactide, and manufacturing of polylactide coated paper. In terms of acid hydrolysis, using 72% concentrated sulfuric acid to hydrolyze the recycled waste paper, and the maximum yield of glucose is about 81%. Then fermentation of these sugars to lactic acid with bacteria, Lactobacillus paracasei subsp. pracasei. Each mole of glucose can produce 1.87 mole lactic acid. In terms of polylactide synthesis, using direct polymerization and ring opening polymerization,. The results indicated that the optimal condition of the direct polymerization method is lactic acid added 0.3% stannous octoate at 190 ℃ for 24 hours. The best distribution of average molecular weight of polylactide can be obtained under this condition, and the molecular weight is 12,248. On the other hand, with ring-opening polymerization method, lactic acid was added 0.3% stannous octoate at 150℃ for 12 hours, and more than 44,730 molecular weight of polylactide were obtained. In terms of manufacturing of polylactide coated paper, using two coating methods, one is solution coating method and the other is polylactide particles with PVA as coating binder method. The results indicated that when paper were coated with PVA as coating binder, the tensile strength of coated paper can be improved about 20% with the molecular weight 10,000 of polylactide and the coating amount of 8 g/㎡. It also effectively improve the elongation about 40%, the retention of wet tensile strength is more than 60%. And the water absorption of Cobb test of PLA coated paper was from 30.21 g/㎡ down to 10.03 g/㎡ after coating , it showed that water resistant properties were greatly improved.


目次
摘要……………………………………………………………………i
Abstract………………………………………………………………ii
目次……………………………………………………………………iv
表目次…………………………………………………………………vii
圖目次…………………………………………………………………ix
第一章緒言………………………………………………………………1
第二章文獻回顧…………………………………………………………3
一、回收廢紙的利用……………………………………………………3
二、蘊含豐富之生質能源-纖維素材料………………………………4
三、乳酸的發酵…………………………………………………………5
四、生物可分解材料……………………………………………………6
五、聚乳酸之發展近況…………………………………………………7
六、聚乳酸合成原料與催化劑…………………………………………9
七、聚乳酸的合成調控…………………………………………………14
八、聚乳酸與其他材料混合應用實例…………………………………16
九、機能性塗佈紙-防水紙及防油紙介紹……………………………17
第三章廢紙的硫酸水解與乳酸的發酵…………………………………19
一、前言…………………………………………………………………19
二、材料與方法…………………………………………………………20
(一)試驗材料…………………………………………………………20
(二)試驗方法…………………………………………………………20
三、結果與討論…………………………………………………………26
(一)回收廢紙成分分析………………………………………………26
(二)乳酸發酵試驗……………………………………………………28
四、小結…………………………………………………………………34
第四章聚乳酸的合成……………………………………………………36
一、前言…………………………………………………………………36
二、材料與方法…………………………………………………………36
(一)試驗材料…………………………………………………………36
(二)試驗方法…………………………………………………………37
三、結果與討論…………………………………………………………41
(一)乳酸寡聚體合成…………………………………………………41
(二)直接聚合法-對催化劑添加量進行調控………………………43
(三)直接聚合法-對反應溫度進行調控……………………………47
(四)開環聚合法………………………………………………………48
四、小結…………………………………………………………………51
第五章耐水性聚乳酸塗佈紙的研製……………………………………53
一、前言…………………………………………………………………53
二、材料與方法…………………………………………………………54
(一)試驗材料…………………………………………………………54
(二)試驗方法…………………………………………………………54
三、結果與討論…………………………………………………………58
(一)塗佈紙之抗張強度與濕潤抗張強度試驗………………………59
(二)塗佈紙之伸長率試驗……………………………………………62
(三)塗佈紙之吸水度試驗……………………………………………63
(四)塗佈紙之破裂強度試驗…………………………………………65
(五)塗佈紙之剛挺度試驗……………………………………………66
(六)塗佈紙之氣阻度試驗……………………………………………68
四、小結…………………………………………………………………69
第六章結論………………………………………………………………71
參考文獻…………………………………………………………………73


羅豪偉、曾傑琳、李璜桂(1999)耐熱絕緣基層板用原紙之製造。漿紙技術 3:(2)37-43。
何振隆、蘇裕昌(2008)木質材料產製生物可分解性聚乳酸高分子材料之研究第(II)。行政院農委員會林務局科技計畫研究報告3-13。
何振隆、蘇裕昌(2009)木質材料產製生物可分解性聚乳酸高分子材料之研究第(III)。行政院農委員會林務局科技計畫研究報告6-12。
蘇裕昌(1995)木材纖維及應用。林業試驗所百週年慶論文集 389-401。
蘇裕昌(1998)製漿技術-羊皮紙的製備。漿紙技術 2(2):62-65。
蘇裕昌(1998)製漿技術-機能紙系列介紹(三-格拉辛紙)。漿紙技術 2(1):77-76。
蘇裕昌(1999)廢紙資源造紙以外的利用。漿紙技術 3(2):57-62。
蘇裕昌(2000)防水紙與防水紙版。漿紙技術 4(3):1-12。
蘇裕昌(2001)塗佈紙概說。漿紙技術 5(3):1-13。
蘇裕昌(2003)台灣紙業界之現況及未來的展望。漿紙技術 6(4):1-15。
蘇裕昌(2007)防油紙(耐油紙)。漿紙技術 11(3):1-7。
.蘇裕昌、何振隆(2007) 綠色林產。林業研究專訊3-14頁。
陳文彬(2008)回收對瓦愣紙板纖維性質的影響及再生纖維的改質。國立中興大學森林學系碩士學位論文10-63頁。
Abubark, S., G. scott and J. Klungness (1995) Fiber fractionation as a method of improving handsheet properties after repeated recycling. Tappi Journal 78: 123-126.
Achmad, F., K. Yamane and S. (2009) Synthesis of polylactic acid by direct polycondensation under vacuum withoutcatalysts, solvents and initiators. Chemical Engineering Journal 151: 342-350.
Athanasiou, K. A., G. Niederauer and C. M. Agrawal (1996) Sterilization, toxicity, biocompatibility and clinical Applications of polylactic acid/ polyglycolic acid copolymers. Biomaterials 17: 93-102.
Borchardt, L. G. and C. V. Piper (1970) A gas chromatographic method for carbohydrates as alditol-acetates. Tappi 53: 257-260.
Bungay, H. R. (2005) Biomass energy priority for developing nations. Journal of Scientific & Industrial Research 64: 628-930
Caplice, E. and G. Fitzgerald (1999) Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology 50: 131-149.
Cavazzoni, V., M. Manzoni and R. Craveri (1998) Ammonium lactate from deproteinized alfalfa juice by streptococcus faecium. Journal of Industrial Macrobiology 3: 373-376.
Coudane, J., C. U. Peyret, G. Schwach and M. Vert (1997) More about the stereodependence of DD and LL pair linkages during the ring-opening polymerization of racemic lactide. Journal of Polymer Science Part A: Polymer Chemical 35: 1651-1658.
Dahlmann, J., G. Rafler, K. Fechner and B. Mehlis (1990) Synthesis and properties of biodegradable aliphatic polyesters. British Polymer Journal 23: 235-240.
Dicks, L., F. Dellagio and M. Collins (1995) Proposal to reclassify leuconostoc oenos as oenococcus oeni gen. International Journal of Systematic Bacteriol 45: 395-397.
Dong, K. Y., D. Kim and D. S. Lee (2005) Reaction kinetics for the synthesis of oligomeric poly(lactic acid). Macromolecules 13: 68-72.
Dubois, P., C. Jacobs, R. Jerome and P. Teyssie (1991) Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 24: 2266-2270.
Engleberg, I. and J. Kohn, (1991) Physicomechanical properties of degradable polymers used in medical applications. Biomaterials 12: 292–304.
Fattah, T. M. and T. J. Pinnavaia (1996) Tin-Substituted mesoporous silica molecular sieve (Sn-HMS): synthesis and properties as a heterogeneous catalyst for lactide ring-opening polymerization. Chemical Communications 5: 665-666.
Feerzet, A., Kenji Y., Shi Q. and Takao K. (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chemical Engineering Journal 151: 342-350.
Filachione, E. and H. Fisher (1944) Lactic acid condensation polymers. Industrial Engineering Chemical 36: 223-228.
Hiltunen, K., J. V. Seppa1a and M. Ha1rko1nen (1997) Effect of catalyst and polymerization conditions on the preparation of low molecular weight lactic acid. Macromolecules 30: 373-379.
Howard R. C. (1990) The effect of recycling on paper quality. Journal of Pulp and Paper Science 15: 143-149
Hyon, S. H., K. Jamshidi and Y. Ikada. (1997) Synthesis of polylactides with different molecular weights. Biomaterials 18: 1503-1508.
Iranmahboob, J., F. Nadim and S. Monemi (2002) Optimizing acid-hydrolysis: a Critical step for prosduction of ethanol from mixed wood chips. Biomass and Bioenergy 22: 401-404.
Irving, S. G. and J. M. Easter (1992) An improved process for converting cellulose to ethanol. Tappi Journal 8: 135-140.
Kandler, O. (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49: 209-224.
Kohn, R. D., Z. Pan, J. Sun and C. Liang (2003) Ring-opening polymerization of D,L-lactide with bis(trimethyl triazacyclohexane) praseodymium triflate. Catalysis Communication 4: 33-37.
Korhonen, H., A. Helminen and J. V. Seppala (2001) Synthesis of polylactide in the presence of co-initiators with different number of hydroxyl groups. Polymer 42: 7541-7549.
Kricheldorf, H. R. (2000) SnOct2-initiated polymerizations of lactide. mechanistic study. Macromolecules 33: 702-709.
Kricheldorf, H. R. (2001) Syntheses and application of polylactides. Chemosphere 43: 49-54.
Lillie, E. and R. Schultz (1975) 1H‐and 13C‐{1H}‐NMR spectra of stereocopolymers of lactide. Makromolekulare Chemical 176: 1901-1906.
Lunt, J. (2005) Reducing water absorption in compostable starch-based plastics. Polymer Degradation Stability 90: 563-569
Marques, S., L. Alves, F. M. Girio and J. C. Roseiro (2007) Conversion of recycled paper sludge to ethanol by SHF and SSF using pichia stipitis. Science Direct 32: 400-406.
Marques, S., L. Alves, F. M. Girio and J. C. Roseiro (2008) Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochemical Enginnering Journal 41: 210-216.
Mathew, A. P., O. Kristiina and S. Mohini (2005) Properties of biodegradable composites from poly lactic acid (PLA) and microcrystallinecellulose (MCC). Journal of Application Polymer Science 97: 2014-2025.
Mehta, R., V. Kumar, H. Bhunia and S. N. Upadhyay (2005) Synthesis of poly(Lactic acid): a review. Polymer Reviews 45: 325-349.
Moon, S. I., C. W. Lee, M. Miyamoto and Y. Kimura (2000) Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: A direct manufacturing route to high molecular weight Poly(L-lactic acid). Journal of Applications Polymer Science Part A: Polymer Chemical 38: 1763-1769.
Moon, S. I., C. W. Lee, I. Taniguchi, M. Miyamoto and Y. Kimura (2001) Melt/solid polycondensation of l-lactic acid: an alternative route to poly (l-lactic acid) with high molecular weight. Polymer 42: 5059-5062.
Mori, T., H. Nishida, Y. Shirai and T. Endo (2004) Effects of chain end structures on pyrolysis of poly(L-lactic acid) containing tin atoms. Polymer Degradation and Stability 84: 243-251.
Motoyama, T., T. Tsukegi, Y. Shirai, H. Nishida and T. Endo (2007) Effects of MgO catalyst on depolymerization of poly-L-lactic acid to L,L-lactide. Journal of Polymer Degradation and Stability 92: 1350-1358.
Noike, T., H. Takabatakea, O. Mizuno and M. Ohba (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy 27: 1367-1371.
Odian, G. (2004) Principles of polymerization. Fourth ed., John Wiley & Sons, New Yorks 87-155
Oksman, K., M. Skrifvars and J. F. Selin (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology 63: 1317-1324.
Plackett, D., V. K. Holm and P. Johansen (2006) Characterization of L-polylactide and L-polylactide-polycaprolactone co-polymer films for use in cheese packaging Applications. Packaging Technology Science 19: 1–24.
Rhim, J. W., A. K. Mohanty and S. P. Singh (2006) Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. Jouranl of Applications Polymer Science 101: 3736–3742.
Rhim, J. W., J. H. Lee and S. I. Hong (2006) Water resistance and mechanical properties of biopolymer (alginate and soy protein) coated paperboards. Food Science and Technology 39: 806-813.
Rhim, J. W., J. H. Lee and S. I. Hong (2007) Increase in water resistance of paperboard by coating with poly(lactide). Packaging Technology Science 20: 393-402.
Rhim, J. W. and J. H. Kim (2009) Properties of poly(lactide)-coated paperboard for the use of 1-way paper cup. Journal of Food Science 74: 105-111.
Robertson, G. (1993) paper and paper-based packaging materials. In: Robertson GL,editor. Food packaging, Principles and Practice. New York: Marcel Dekker Inc. 144-172.
Robson, N. C. (1993) Recycling practice and problems. In: IPP, editor. International Symposium on Packaging, Economic Development, and the Environment. Inst. of Packaging Professionals 173-189.
Schindler, A. and D. Harper (1979) Polylactide. II. Viscosity–molecular weight relationships and unperturbed chain dimensions. Journal of Polymer Science 17: 2593-2599.
Schwach, G., J. Coudane, R. Engel and M. Vert (1996) Zinc lactate as initiator of DL-lactidering-opening polymerization and comparison with stannous octoate. Polymer 37: 771-776.
Spassky, N., M. Wisnewski, C. Pluta and A. L. Borgne (1996) Highly stereoelective polymerization of rac-(D,L)-lactide with a chiral Schiff’s base/aluminium alkoxide initiator. Macromolecules Chemical Physics 197: 2627-2637.
Steinbucgel A. (2003) 12 Biodegradability of polymers: regulations and methods for testing. BioPolymer 10: 365- 391.
Sun, Y. and C. Jiayang (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Biological Technology 83: 1-11.
Teramoto, Y. and Y. Nishio (2003) Cellulose diacetate-graft-poly(lactic acid)s: synthesis of wide-ranging compositions and their thermal and mechanical properties. Polymer 44: 2701–2709.
Tice, T. R. and D. Cowsar (1984) Biodegradable controlled-release parenteral systems. Pharmaceutical Technology 11: 26-35.
Tokiwa, Y. and Calabia B. P. (2006) Biodegradability and biodegradation of poly(lactide). Applied Microbiology and Biotechnology 72: 244-251.
Tsuji, H. (2000) In vitro hydrolysis of blends from enantiomeric poly(lactide)s Part 1. Well – Stereo – complexed blend and non-blended films. Polymer 41: 3621-3630.
Van, J. H. (1981) Hydroxy carboxylic acids, in kirk-othmer encyclopedia of chemical technology. Third rd., John Wiley & Sons, New Yorks. 80-103.
Vıctor, H. O., A. F. Vargas and B. L. Lopez (2007) Study of the polymerization kinetic of lactic acid. Macromolecules 258: 45-52.
Zhang, X., D. A. MacDonald, M. F. Goosen and K. B. McAuley (1994) Mechanism of lactide polymerization in the presence of stannous octoate: The effect of hydroxyl and carboxylic acid. Journal of Polymer Science 32: 2965-2970.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top