跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍玄錦
研究生(外文):Syuan-Jin Lan
論文名稱:生長調節劑及秋水仙素促進茄子果實無子化之研究
論文名稱(外文):Seedless fruit production in eggplant (Solanum melongena L.) by using plant growth regulators and colchicines
指導教授:宋妤
指導教授(外文):Yu Sung
口試委員:曾夢蛟戴順發曹幸之
口試日期:2011-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:75
中文關鍵詞:茄子生長調節劑秋水仙素多倍體三倍體無子果實
外文關鍵詞:eggplantplant growth regulatorscolchicinepolyploidytriploidsseedless fruits
相關次數:
  • 被引用被引用:1
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本試驗目的為研究生產茄子無子化果實之可行性,將以三種果形之茄子進行GA與Auxin類生長調節劑之不同藥劑濃度、施用方法、次數處理,以期選出其最適之方式,促進單為結果,提供日後茄子無子化果實生產之參考。另研究秋水仙素誘導茄子多倍體化之最佳方式及鑑定多倍體方法,並進行茄子三倍體之育種試驗,以期達到略精結實。
以不同濃度之NAA及2,4-D於開花當日分別處理除雄及未除雄之茄子子房,‘麻芝茄’以除雄加上10 mg l-1 2,4-D處理之果重及無子果實率最佳,分別為90.9 g、76.2%。未除雄以10 mg l-1 2,4-D 、100 mg l-1 NAA處理之果重174.5及176.8 g最佳。‘粉紅佳人’以未除雄、10 mg l-1 2,4-D處理之果重231.4 g最好,無子果實率以除雄加上100 mg l-1 NAA之80.6%最佳,施用生長調節劑增加可收果數。‘紫水’ 果重無論除雄或未除雄,皆隨生長調節劑濃度提高而增加,其無子果實率介於47.6-60.3%,處理間無顯著差異。施用方法上,‘麻芝茄’ 果重及果實生長情形以浸漬效果最佳。‘粉紅佳人’以噴灑對果重最佳,生長情形以滴之表現最佳、‘紫水’ 果重及果實生長情形以羊毛脂膏塗抹方式最佳。於無子化果實生產上, GA以200 mg l-1之效果最佳,Auxin類之生長調節劑處理最適種類及濃度,分別為‘麻芝茄’10 mg l-1 2,4-D、‘粉紅佳人’5 mg l-1 2,4-D、‘紫水’150 mg l-1 NAA,可得最少種子數及最高無子果實百分率。
茄子多倍體誘導上以秋水仙素混和展著劑後,進行生長點處理,‘麻芝茄’以0.2%之誘導率為41.7%。‘粉紅佳人’誘導率為50%,提高處理濃度其誘導率無顯著變化,‘昭君’則以0.4及1%秋水仙素之75%效果最好。四倍體之葉部型態、花器、氣孔、花粉及植株型態的大小或數量皆大(多)於二倍體者。以流式細胞儀檢測倍數體情形,‘麻芝茄’之多倍體率介於58.3-91.7%,嵌合體介於8.3-16.7%,與染色體鏡檢之41.7-66.7%及16.7-41.7%之結果不符。‘粉紅佳人’以流式細胞儀及染色體鏡檢之結果比較,前者之四倍及嵌合體分別介於16.7-75%、8.3-50%,後者為8.3-58.3%、25-66.7%。‘昭君’經由誘導後為四倍及嵌合體之比率分別為58.3-83.3及8.3-25%,以染色體鏡檢後則減少至41.7-75%和16.7-41.7%。三倍體育種試驗,以‘粉紅佳人’四倍體作為母本,授以二倍體植株之花粉,可獲得三倍體之茄子種子,且種子發芽率可達73.3%。三倍體植株栽種於田間,皆可有效座果、果實發育,但果實皆較二倍體之果實小,果長、寬分別為6.7 cm及2.8 cm,果實內部無種子產生。
本研究以生長調節劑誘導單為結果或三倍體茄子之略精結實,皆可達到無子化茄子果實生產之目的。

The purpose of this study was to develop procedures to grow seedless fruit of the eggplant and use the results as a reference for practical production on the farm. In order to discover the optimal feasible procedures to induce parthenocarpy, three cultivars of eggplant were treated with plant regulators (including GAs and auxins) at differing concentrations using different treatment methods and frequencies of treatment. In addition, colchicines was used to induce polyploidy in the eggplant, and a method of identifying differing polyploidy was established for the development of triploid offspring.
On the date of flowering, different concentrations of auxin (NAA and 2,4-D) were used to treat the ovaries of the emasculated or unemasculated flower. The results showed that the best seedless fruit production was obtained from emasculated flowers upon treatment with 10 mg l-1 2,4-D, resulting in a fruit weight of 90.9 g and a seedless rate of 76.2% for ‘Matsu’; while fruits obtained from unemasculated flowers exhibited the best production rate upon treatment with 10 mg l-1 2,4-D and 100 mg l-1 NAA, resulting in a fruit weight of 174.5 and 176.8 g, respectively. For ‘Pink Diana’, fruits obtained from emasculated flowers exhibited the best fruit weight upon treatment with 10 mg l-1 2,4-D and the best seedless rate of 80.6% upon treatment with100 mg l-1 NAA and the number of harvestable fruits was increased with the use of growth regulators. ‘Shisui’ cultivar, fruit obtained from emasculated flowers had a seedless rate in the range of 47.6-60.3%, but no significant differences were seen with different concentrations of growth regulators. In addition, the fruit weight increased with an increasing concentration of growth regulators in both emasculated and unemasculated flowers.
In terms of the treatment method, in order to produce more seedless fruit, the best methods of application of growth regulators to the plants were spraying and dropping for ‘Matsu’, spraying for ‘Pink Diana’, and lanolin paste for ‘Shisui’. For GAs, a concentration of 200 mg l-1 resulted in the best seedless rates in all cultivars. For auxin, the best concentrations and type of auxin in order to obtain the lowest total seed number and the highest percentage of seedless fruits for ‘Matsu’, ‘Pink Diana’, and ‘Shisui’ were 10 mg l-1 2,4-D, 5 mg l-1 2,4-D, and 150 mg l-1 NAA, respectively.
For polyploidy induction, colchicines mixed with surfactant was used to treat the shoot apexes. Polyploidy induction with 0.2% colchicines in ‘Matsu’ and ‘Pink Diana’ was 41.7% and 50%, respectively; and no significant increase in the induction rate was seen with higher concentrations of colchicine. On the other hand, for the ‘Fullness’, 0.4% and 1% of colchicines mixed with surfactant resulted in the best induction rate of 75%. The leaf morphology, flowers, and the size and number of stomata and pollen of the tetraploid plants were all greater than those of the diploid plant. In addition, the polyploids of the shoot apexes treated with colchicines mixed surfactant were analyzed by flow cytometry, and the results were as follow in ‘Matsu’, flow cytometry analysis showed the percentage of polyploidy to be 58.3-91.7% and chimeras to be 8.3-16.7%, which differed greatly from the actual polyploidy according to microscopic examination (41.7-66.7% and 16.7-41.7%, respectively). In ‘Pink Diana’, flow cytometry analysis showed the polyploidy and chimera rates to be 16.7-75% and 8.3-50%, respectively, while the percentages obtained by microscopic examination were 8.3-58.3% and 25-66.7%, respectively. ‘Fullness’, flow cytometry analysis showed the polyploidy and chimera rates to be 58.3-83.3% and 8.3-25%, respectively, while the percentages obtained by microscopic examination were 41.7-75% and 16.7-41.7%, respectively. The triploid breeding experiment was performed using tetraploid ‘Pink Diana’ as the female parent, which was then crossed with pollen from a male diploid parent. The generated triploid seeds had a germination rate of 73.3%, and had good effective fruit set rates and fruit development in the field on the farm. The fruit of triploids were seedless; however, the fruit length and width were only 6.7 and 2.8 cm, smaller than the diploids.
This study used growth regulators to develop triploid offspring by stenospermocarpy in eggplants. The results indicated that the procedures could produce seedless fruits. This will help to overcome and seed hardening and fresh brownization problems.

中文摘要 i
英文摘要 ii
表目次................................................................................................... v
圖目次………………………………………………………………………………..vi
壹、前言 1
貳、前人研究 2
一、茄子生長特性及品種分類 2
二、果實發育 3
三、生長調節劑與果實發育 3
四、多倍體育種 6
參、材料與方法 9
一、植物生長調節劑生產茄子無子果實 9
二、茄子多倍體之誘導 11
三、茄子不同倍數體生育比較 13
肆、試驗結果 15
一、植物生長調節劑生產茄子無子果實 15
二、茄子多倍體之誘導 40
三、茄子不同倍數體生育比較 59
伍、討論 62
陸、參考文獻 69


李懋學、張贊平。1996。作物染色體及其研究技術。p.1-31. 中國農業出版社。北京。
李信興、林孝義。1992。秋水仙素之作用機轉及其臨床運用。臨床醫學 29: 467-471。
何明勳、吳智遠、陳妙娟、馮海東。2005。以動態表面張力及接觸角變化評估展著劑之功效。植物保護學會會刊 47: 59-68。
林禎祥。2003。夜來香組培苗發根、田間植株性狀表現及核型分析之研究。國立嘉義大學園藝學系碩士論文。嘉義、臺灣。
林學詩。1988。植物生長調節劑在西瓜栽培上的應用:無子西瓜單為結果試驗。植物生長調節劑在園藝作物之應用研討會專集 pp. 121-127.
留欽培。2008。韭蘭屬物種之種間雜交。國立中興大學園藝學系碩士論文。臺中、臺灣。
高典林。2002。現代作物育種學。藝軒出版社 pp. 258。
高景輝。1998。植物荷爾蒙生理。華香園出版社 pp. 13-15。
黃柄龍。1992。木瓜不同物種之組織培養與染色體倍加方法之研究。中國文化大學生物科技研究所碩士論文。台北、臺灣。
黃健覃。2007。秋水仙素對離體培養台灣金線連多倍體誘導研究。國立中興大學農藝學系碩士論文。臺中、臺灣。
陳忠勇。1984。食用香蕉小胞形成及染色體遺傳行為。國立台灣大學碩士論文。臺北、臺灣。
陳景明、葉茂生。2010。藥用植物大薊組織培養大量繁殖與其染色體數之研究。植物種苗 12: 32-46.
陳敏祥。1988。植物生長調節劑在番石榴果實無子化之應用。植物生長調節劑在園藝作物之應用研討會專集 pp. 241-251.
葉振賢。1990。植物生長調節劑對枇杷果實發育之研究。國立中興大學園藝學系碩士論文。臺中、臺灣。
戴振洋。1992。茄子畸形果發生的原因。台中區農情月刊 37.
戴振洋。1995。茄子V型整枝簡介。農業世界 147: 43-47.
戴順發、戴振洋、黃賢喜。2005。茄子。台灣農家要覽增修訂三版農作篇(二)。豐年社 p. 541-544。臺北。
Acciarri, N., F. Restaino, G. Vitelli, D. Perrone, M. Zottini, T. Pandolfini, A. Spena, and G. L. Rotino. 2002. Genetically modified parthenocarpic eggplants improved fruit productivity under both greenhouse and open field cultivation. BMC Biotechnol. 2: 4-10.
Adaniya, H. and D. Shirai. 2001. In vitro induction of tetraploid ginger(Zingiber officinale Roscoe) and its pollen fertility and germinability. Sci. Hort. 88: 277-287.
Agnieszka, S. and M. Bieniasz. 2008. Pollination, fertilization and fruit formation in eggplant(Solanum melongena L.). Acta Agrobot. 61: 107-113.
Belling, J. 1924. The distribution of chromosomes in pollen grains of a triploid hyacinth. Amer. Naturalist 58: 440-446.
Bingham, E. T. 1968. Stomatal chloroplasts in alfalfa at four ploidy levels. Crop Sci. 8: 509-510.
Borrino, E. M. and W. Powell. 1988. Stomatal guard cell length as an indicator of ploidy in microspore-derived plants of barley. Genome 30: 158-160.
Brown, M. L., J. M. Rieger, and T. L. Macdonald. 2000. Comparative molecular field analysis of colchcine inhibition and tubulin polymerization for combretastatins binding to the colchicine binding site on β-tubulin. Bioorg. Med. Chem. 8: 1433-1441.
Chakraborti, S. P., K. Vijayan, B. N. Roy, and S. M. Qadri. 1998. In vitro induction of tetraploidy in mulberry(Morus alba L.). Plant Cell Rep. 17: 799-803.
Chaudhari, H. K. and J. R. Barrow. 1975. Identification of cotton haploids by stomatal chloroplast-count technique. Crop Sci. 15: 760-793.
Chowdhury, R. N., M. G. Rasual, A. K. M. A. Islam, M. A. K. Mian, and J. U. Ahmed. 2007. Effect of plant growth regulators for induction of parthenocarpic fruit in kakrol(Momordica dioica Roxb.). Bangladesh J. Pl. Breed. Genet. 20: 00-00.
Cohen, D and J. L. Yao. 1996. In vitro chromosome doubling of nine. Zantedeschia cultivars. Plant Cell Tiss. Org. Cult. 47: 43-49.
Crane, J. C. 1964. Growth substance in fruit setting and development. Ann. Rev. Plant Physiol. 15: 303-326.
Dhawan, O. P. and U. C. Lavania. 1996. Enhacing the productivity of secondary metabolites via induced polyploidy: a review. Euphytica 87: 81-89.
Dolezel. J., and J. Bartos. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95: 99-100.
Donzella, G., A. Spena, and G. L. Rotino. 2000. Transgenic parthenocarpic eggplants: superior germplasm for increased winter production. Mol. Breed. 6: 79–86.
Ercan, C. and M. Akilli. 1996. Reasons for parthenocarpy and the effects of various hormone treatments on fruit set in pepino (Solanum muricatum Ait.). Sci. Hort. 66: 141-147.
Fabrice, V., B. Robert, D. Michel, and G. Patrick. 2000. Less is better: new approaches for seedless fruit production. Trends Biotechnol. 18: 233-242.
Federico, M., S. L. Uratsu, R. L. Reagan, Y. Chen, D. Tricoli, O. Fiehn, D. M. Rocke, C. S. Gasser, and A. M. Dandekar. 2009. Gene regulation in parthenocarpic tomato fruit. 60: 3873-3890.
Fos M., F. Nuez, and J. L. Garcıa-Martınez. 2000. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiology 122: 471-480.
Fos, M., K. Proano, F. Nuez, and J. L.Garcia-Martinez. 2001. Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiologia Plantarum 111: 545-550.
Gao, S. L., D. N. Zhu, Z. H. Cai, and D. R. Xu. 1997. Autotetraploid plants from colchicine-treated bud culture of Salvia miltiorrhiza Bge. Plant Cell Tiss. Org. Cult. 47: 73-77.
Gardens, N. B. and I. Lucknow. 1971. Cytogenetics of tropical bulbous ornamentals Ⅷ: Pollen grain mitosis in Zephyranthes puertoricensis. Genetic 42: 239-247.
Gate, R. R. 1908. The behavior of chrpmpspme of Oenothera lata × gigas. Bot. Gaz. 48: 179-199.
Gillaspy, G. 1993. Fruits: a developmental perspective. Plant Cell 5: 1439–1451.
Gorguet, B., A. W. van Heusden, and P. Lindhout. 2005. Parthenocarpic fruit development in tomato. Plant Biol. 7: 131-139.
Goubran, F. H. and B. M. E. Zeftawi. 1986. Induction of seedless loguat. Acta Hort. 179: 381-384.
Gustafson, F. G. 1936. Inducement of fruit development by growth promoting chemicals. Botany 22: 628-635.
Harris, J. M., P. E. Kriedemann, and J. V. Possinghm. 1968. Anatomical aspects of grape berry development. Vitis 7: 106-119.
Ikeda, T., H. Yakushiji, M. Oda, A. Taji, and S. Imada. 1999. Growth dependence of ovaries of facultatively parthenocarpic eggplant in vitro on indole-3-acetic acid content. Sci. Hort. 79: 143-150.
Irene, O., S. Francesca, C. Riccardo, M. Lorenzo, C. Nello, P. S. Gian, and M. Andrea. 2007. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellins biosynthesis. Planta. 226: 877-888.
Joao, L., E. Rodriguez, J. Dolezel, and C. A. Santos. 2007. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot. 100: 875-888.
Johnston, J. S., M. D. Bennett, A. L. Rayburn, D. W. Galbraith, and H. J. Price. 1999. Reference standards for determination of DNA content of plant nuclei. Amer. J. Bot. 86: 609-613.
Jonathan M. L., M. H. Brand, and J. D. Lubell. 2008. Induction of tetraploidy in meristematically active seeds of Japanese barberry(Berberis thunbergii var. atropurpurea) through exposure to colchicine and oryzalin. Sci. Hort. 119: 67-71.
Jong, M., C. Mariani, and W. H. Vriezen. 2009. The role of auxin and gibberellin in tomato fruit set. J. Exp. Bot. 60: 1523-1532.
Juan, C. S., M. Fos, A. Atares, and J. L. Garcia-Martinez. 2007. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-tom of tomato. J. Plant Growth Regul. 26: 211-221.
Juan, C. S., Q. Ruiz-Rivero, M. Fos, and J. L. Garcia-Martinez. 2008. Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant Jo. 56: 922-934.
Juan, F. M., C. Analia, M. C. Anon, and A. R. Chaves. 2011. 1-Methylcyclopropene (1-MCP) delays senescence, maintains quality and reduces browning of non-climacteric eggplant (Solanum melongena L.) fruit. Postharvest Biol. Technol. 59: 10-15.
Kadota, M. and Y. Niimi. 2002. In vitro induction of tetraploid plants from a diploid Japanese pear cultivar(Pyrus Pyrifolia N. cv. Hosui). Plant Cell Rep. 21: 282-286.
Kermani, M. J., V. Sarasau, A. V. Roberts, K. Yokoya, J. Wentworth, and V. K. Sieber. 2003. Oryzalin-induced Chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor. Appl. Genet. 107: 1195-1200.
Khosravi, P., M. J. Kermani, G. A. Nematzadeh, M. R. Bihamta, and K. Yokoya. 2008. Role of mitotic inhibitors and genotype on chromosome doubling of Rosa. Euphytica 160: 267-275.
Kihara, H. 1951. Triploid watermelons. Proc. Amer. Soc. Hort. Sci. 58: 217-230.
Maroto, J. V., A. Miguel, S. Lopez-Galarza, A. S. Bautista, B.Pascual, J. Alagarda, and J. L. Guardiola. 2005. Parthenocarpic fruit set in triploid watermelon induced by CPPU and 2,4-D applications. Plant Growth Regul. 45: 209-213.
Mesejo, C., C. Reig, A. F. Martinez, and M. Agusti. 2010. Parthenocarpic fruit production in loquat (Eriobotrya japonica Lindl.) by using gibberellic acid. Sci. Hort. 126: 37-41.
Mozafari, J., D. J. Wolyn, and S. T. Ali-Khan. 1997. Chromosome doubling via tuber disc culture in dihaploid potato as determined by confocal microscopy. Plant Cell Rep. 16: 329-333.
Morrissette, N. S. and S. L. David. 2002. Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. J. Cell Sci. 115: 1017-1025.
Morrissette, N. S., A. Mitra, D. Sept, and L. D. Sibley. 2004. Dinitroanilines bind α-tubulin to disrupt microtubules. Mol. Biol. Cell 15: 1960-1968.
Naito, R., K. Miura, and K. Matsuda. 1974. Effects of the prebloom application of GA combined with BA and Urea on the set and growth of seedless berries in Delaware grapes. J. Japan Soc. Hort. Sci. 43: 215-223.
Nagao, S. 1935. Distribution of chromosomes in pollen grains in certain triploid and hypertriploid Narcissus plants. Jap. J. Genet. 11: 1-5.
Newton, W. C. F. and C. D. Darlington. 1929. Meiosis in ployploids. J. Genet. 21: 1-16.
Nilson, D. M. and E. C. Rossman. 1958. Chemmical induction of male sterilility in inbred maize byuce of gibberellins. Science 127: 1500-1501.
Nitsch, J. P., C. Pratt, C. Nitsch, and N. J. Shaulis. 1960. Natural growth substances in concord andconcord seedless grapes in relation to berry development. Amer. J. Bot. 47: 566-576.
Nothmann, J., I. Rylski, and M. Spigelman. 1983. Interactions between floral morphology, position in cluster and 2,4-D treatments in three eggplant cultivars. Sci. Hort. 20: 35-44.
Okamoto, A. and K. Suto. 2004. Cross incompatibility between Rhododendron sect. Tsutsusi species and Rhododendron japonicum(A. Gray) J. V. Suringar f. fiavum Nakai. J. Japan. Sco. Hort. Sci. 73: 453-459.
Osborn, T. C., J. C. Pires, J. A. Birchler, D. L. Auger, Z. J. Chen, H. S. Lee, L. Comai, A. Madlung, R. W. Doerge, V. Colot, and R. A. Martienssen. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19: 141-147.
Pinheiro, A. A., M. T. Pozzobon, C. B. do Valle, M. I. O. Penteado, and V. T. C. Carneiro. 2000. Duplication of the chromosome number of diploid Brachiaria brizantha plants using colchicines. Plant Cell Rep. 19: 274-278.
Predieri, S. 2001. Mutation induction and tissue culture in improving fruits. Plant Cell Tiss. Org. Cult. 64; 185–210.
Recupero, G. R., G. Russo, and S. Recupero. 2005. New promising citrus triploid hybrids selected from crosses between monoembryonic diploid female and tetraploid male parents. HortScience 40: 516–520.
Rylski, I., J. Nothmann, and L. Arcan. 1984. Differential fertility in short-styled eggplant flowers. Sci. Hort. 22: 39-46.
Sastry, K. and R. Muir. 1963. Gibberellin: effect on diffusible auxin in fruit development. Science 140: 494–495.
Segzin U. 2006. The quantitative effects of temperature and light on the number of leaves preceding the first fruiting inflorescence on the stem of tomato(Lycopersicon esculentum, Mill.) and aubergine(Solanum melongena L.). Sci. Hort. 109: 142-146.
Shen, A. Y., C. P. Chen, and S. Roffle. 1999. A chelating agent possessing cytotoxicity and antimicrobial activity: 7-morpholinomethyl-8-hydroxyquinoline. Life Sci. 64: 813-825.
Sun, W., D. Wang, Z. Wu, and J. Zhi. 1990. Seasonl change of fruit setting in eggplants(Solanum melongena L.) caused by different climatic conditions. Sci. Hort. 44: 55-59.
Susin, I. and J. M. Alvarez. 1997. Fertility and pollen tube growth in polyploid melons(Cucumis melo L.). Euphytica 93: 369-373.
Taiz, L. and E. Zeiger.1998. Plant and cell architecture. Plant physiology. Sinauer associates p. 26-29.
Takamura, T. and I. Miyajima. 1996. Colchcine induced tetraploids in yellow- flowered cyclamens and their characteristics. Sci. Hort. 65: 305-312.
Thomas, R. L., A.K. Seth, K. W. Chan, and S. C. Ooi. 1973. Induced parthenocarpy in the oil-palm. Ann. Bot. 37: 447-452.
Tiziana P. 2009. Seedless fruit production by hormonal regulation of fruit set. Nutrients 1: 168-177.
Tosca, A., R. Pandolif, S. Citterio, A. Fasoli, and S. Sgorbati. 1995. Determination by flow cytometry of the chromosome doubling capacity of colchicine and oryzalin in gynogenetic haploids of Gerbera. Plant Cell Rep. 14: 455-458.
Weaver, R. J. 1980. Growth regulators provide many benefits to grape grower. Blue Anchor 57: 28-29.
Wheeler, A. M. and E. C. Hunphries. 1963. Effect of gibberellins acid on growth , gibberellins content, and chlorophyll content of potato(solaum tuberosum). J. Exp. Bot. 14: 132-136.
Williams, M. W. and E. A. Stahly. 1969. Effect of cytokinins and Gibberellins on shape of ‘Delicious’ apples fruit. J. Amer. Soc. Hort. Sci. 94: 17-19.
Wong, C. Y. 1938. Induced parthenocarpy of watermelom, cucumber and pepper by the use of growth promoting substances. Proc. Amer. Soc. Hort. Sci. 25: 237-244.
Ye, Y. M., J. Tong, X. P. Shi, W. Yuan, and G. R. Li. 2010. Morphological and cytological studies of diploid and colchicines-induced tetraploid lines of crape myrtle(Lagerstroemia indica L.). Sci. Hort. 124: 95-101.
Yuda, E., M. Hirakawa, S. Nakagawa, I. Yamaguchi, N. Murofushi, and N. Takahashi. 1983. Fruit set and development of three pear species induced by gibberellins. ActaHort. 137: 277-283.
Zhang, W., H. Hao, L. Ma, C. Zhao, and X. Yu. 2010. Tetraploid muskmelon alters morpoological characteristics and improves fruit quality. Sci. Hort. 125: 396-400.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top