跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃馨瑩
研究生(外文):Praewphan Jomngam
論文名稱:芒果栽培種耐逆境溫度篩選指標的建立
論文名稱(外文):Establishing Screening Methods and Indices for Tolerance under Stress Temperatures in Mango (Magifera indica L.)
指導教授:謝慶昌謝慶昌引用關係
口試委員:王自存許仁宏林慧玲李堂察
口試日期:2011-06-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:90
中文關鍵詞:芒果溫度逆境葉綠素螢光離子滲漏率乙烯呼吸率
外文關鍵詞:MangoTemperature stressChlorophyll fluorescenceElectrolyte leakageEthylene productionRespiration
相關次數:
  • 被引用被引用:3
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
溫度是影響芒果生長與發育的重要的環境因子之一。研究探討,十個芒果品種葉片在溫度逆境(包含高溫與低溫)下對葉綠素螢光、電解質滲漏率、乙烯生成量以及呼吸率的影響。在高溫逆境部分,芒果葉片於黑暗生長箱內分別以30、35、40、45、50、55℃熱處理24個小時。結果顯示,葉綠素螢光有隨著處理溫度與時間的上升而下降之趨勢。在50與55℃時,電解質滲漏率在溫度上升或處理時間拉長時會有顯著的增加,乙烯的生成量與呼吸率在溫度上升時都有增加的現象。另外,當芒果葉片對溫度的反應到達高峰之後,乙烯生成量與呼吸率會下降。
低溫處理把葉片置於7個溫度(25、12、9、5、3、1、-3℃),調查其葉綠素螢光之改變。然而僅取4個溫度(25、9、1、-3℃)測定電解質滲透率、乙烯生成量以及呼吸作用的改變。結果顯示,葉綠素螢光會隨著低溫處理時間增長而有下降的趨勢,而電解質滲漏率則會隨著溫度下降以及時間增長而上升。在低溫逆境下乙烯生成量與呼吸率的改變則不明顯。
上述四種用檢測芒果不同品種葉片在高溫以及低溫下其耐受性的方法中,以葉綠素螢光法最有效率。以葉綠素螢光作為指標,可選出 ‘M-18’、 ‘Yai Klam’、 ‘愛文’、 ‘Sensation’ 為對熱具有耐受性之品種。對低溫有耐受性之品種則為: ‘Chin Hwang’、 ‘愛文’、 ‘FP-1’、 ‘Sensation’與 ‘海頓’。

Temperature is one of the most important environmental factors, that affects growth and development of all liking creatures, including mango. In this study, the leaves of ten mango cultivars were exposed to temperature stresses (high and low temperature) and the changes in chlorophyll fluorescence, electrolyte leakage, ethylene production, and respiration were determined. For high temperature stress, mango leaves were treated in a dark-incubator at 30, 35, 40, 45, 50 and 55oC for 96h. Results showed that, chlorophyll fluorescence tended to decrease as temperature and duration of treatment increased. At 50 and 55oC, electrolyte leakage showed marked increase with the increase in temperature and/or duration of treatment. Ethylene production and respiration also increased with temperature rise. But responses to heat shock in mango leaves are decreased ethylene production and respiration rate.
For low temperature stress, leaves were exposed to seven temperatures (25, 12, 9, 5, 3, 1 and -3oC) and the changes in chlorophyll fluorescence were determined. However only four temperatures (25, 9, 1 and -3oC) were used to determine the changes in electrolyte leakage, ethylene production and respiration. Results showed that chlorophyll fluorescence tended to decrease at prolonged exposure to low temperatures, while electrolyte leakage increased as temperature decreased and duration increased. The changes under low temperature stress in ethylene production and respiration were not clear.
Out of the four methods used for the screening of heat and chilling tolerance in the leaves of mango cultivars, using chlorophyll fluorescence was the most effective. Chlorophyll fluorescence was used in this study to indicate that ‘M-89’, ‘Yai Klam’, ‘Irwin’ and ‘Sensation’ are high temperature tolerant cultivars, while low temperature tolerant cultivars were found to be ‘Chin Hwang’, ‘Irwin’, ‘FP-1’, ‘Haden’, and ‘Sensation’.


Chinese abstract...........................................i
English abstract..........................................ii
Contents.................................................iii
List of figure...........................................vii
List of table.............................................ix
Chapter 1: Introduction....................................1
Chapter 2: Literature review...............................4
2.1 Botany of mango........................................5
2.1.1 Taxonomy.............................................5
2.1.2 Origin and Distribution..............................5
2.1.3 Polyembryony.........................................6
2.1.4 Fruit morphology.....................................6
2.1.5 Fruit growth and development.........................6
2.2 Environment............................................7
2.3 Breeding...............................................8
2.4 Temperature stress.....................................8
2.4.1 High temperature stress..............................9
2.4.2 Physiological responses to high temperature stress..10
2.4.2.1 Photosynthesis....................................10
2.4.2.2 Membrane permeability.............................12
2.4.2.3 Ethylene production...............................13
2.4.2.4 Respiration rate..................................14
2.4.2 Low temperature stress..............................15
2.4.4 Physiological responses to chilling stress..........16
2.4.4.1 Photosynthesis....................................18
2.4.4.2 Membrane permeability.............................20
2.4.4.3 Ethylene production...............................21
2.4.4.4 Respiration.......................................23
Chapter 3: Materials and methods .........................25
3.1. Plant material ......................................25
3.2 Heat stress treatment ................................26
3.2.1 Chlorophyll fluorescence ...........................26
3.2.2 Electrolyte leakage.................................28
3.2.3 Ethylene production.................................29
3.2.4 Respiration rate....................................30
3.3 Cold stress treatment.................................31
3.3.1 Chlorophyll fluorescence............................31
3.3.2 Electrolyte leakage.................................31
3.3.3 Ethylene production ................................32
3.3.4 Respiration rate....................................32
3.4 Statistical analysis..................................33
Chapter 4: Results........................................34
4.1 High temperature stress in mango......................34
4.1.1 Indices or methods for screening high temperature tolerancefor ‘Irwin’ mango leaves.......................34
4.1.2 Effect of high temperature stress on chlorophyll fluorescence at different maturity stages of ‘Irwin’ mango leaves..............................................39
4.1.3 Chlorophyll fluorescence as a predictive method for screening the high temperature tolerance among 10 mango cultivars.................................................41
4.1.3.1 Chlorophyll fluorescence in mango leaves..........41
4.1.3.2 Chlorophyll fluorescence in mango fruits..........41
4.2 Low temperature stress in mango.......................44
4.2.1 Response of ‘Irwin’ leaves maturity to low temperature stress........................................44
4.2.2 Effect of low temperature on chlorophyll fluorescence among ten cultivars of mango leaves......................47
4.2.3 Effect of low temperature on electrolyte leakage among ten cultivars of mango leaves.......................53
4.2.4 Effect of low temperature on ethylene production among ten cultivarsof mango leaves........................56
4.2.5 Effect of low temperature on respiration among ten cultivars of mango leaves.................................62
Chapter 5: Discussions....................................67
5.1 High temperature stress in mango......................67
5.1.1 Indices or methods for screening high temperature tolerance ‘Irwin’mango leaves...........................67
5.1.2 Effect of high temperature stress on chlorophyll fluorescence at different maturity stages of ‘Irwin’ mango leaves..............................................68
5.1.3 Chlorophyll fluorescence as a predictive method for screening the high temperature tolerance among 10 mango cultivars.................................................69
5.2 Low temperature stress in mango.......................70
5.2.1 Response of ‘Irwin’ leaves maturity to low temperature stress........................................70
5.2.2 Effect of low temperature on chlorophyll fluorescence among ten cultivars of mango leaves.......................72
5.2.3 Effect of low temperature on electrolyte leakage among ten cultivars of mango leaves.......................73
5.2.4 Effect of low temperature on ethylene production among ten cultivars of mango leaves.......................74
5.2.5 Effect of low temperature on respiration among ten cultivars of mango leaves.................................75
Chapter 6: Conclusions....................................76
References................................................78


Ahn, Y. J. and J. L. Zimmerman. 2006. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant Cell Environ. 29:95–104.
Allen. D. J. and D. R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm climate plants. Trends Plant Sci. 6:36-42.
Amin, J. V. 1969. Some aspects of respiration and respiration inhibition in low temperature effects of the cotton plant. Plant Physiol. 22:1184-1191.
Antunes, M. D. C. and E.M. Sfakiotakis. 2000. Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of ‘Hayward’ kiwifruit. Postharvest Biol. Technol. 20:251–259.
Anonymous. 2004. FAO Production Yearbook. Food and Agricultural Organization of United Nations Rome.
Arshad, M. and W. T. J. Frankenberger. 2002. Ethylene, agricultural sources and applications. Kluwer Academic/Plenum Publishers. New York.
Ashraf, M., M. M. Saeed, and M. J. Qureshi. 1994. Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ. Exp. Bot. 34:275–283.
Atkin, O. K. and M. G. Tjoelker. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trend Plant Sci. 8:343-351.
Baek, K. H. and D. Z. Skinner. 2003. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci. 165:1221–1227.
Baker, N. R. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89-113.
Bally, I. S. E., P. Lu, and P. R. Johnson. 2009. Mango breeding. pp.51-82. In: S.M. Jain and P.M. Priyadarshan (eds). Breeding plantation tree crops: tropical species. Springer Science+business meadia, LLC.
BAPHIQ. 2004. Production and Cultivation of Lichi, Carambola and Mango in Taiwan. Bureau of Animal and Plant Inspection and Quarantine, Council of Agriculture, Executive Yuan. R.O.C.
Ben-Amor, M., B. Flores, A. Latche, M. Bouzayen, J. C. Peach, and F.Fomojaro. 1999. Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevent chilling injury in Charentais cantaloupe melons. Plant Cell Environ. 22:1579-1586.
Blum, A. 1988. Plant Breeding for stress environments. CRC Press Inc., Boca Raton, Florida, pp. 223.
Blum, A., N. Klueva, and H. T. Nguyen. 2001. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117:117–123.
Bompard, J. M. and R. J. Schnell. 1997. Taxonomy and systematic. pp.21-47. In: R.E. Liztz (ed). The mango: botany, production and and uses. CAB International Press, London.
Bukhov, N. G., C. Wiese, S. Neimanis, and U. Heber. 1999. Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible. Photosynthesis Research. 59:81-93.
Camejo, D., P. Rodriguez, M. Angeles Morales, J. M. Dell’s Amico, A. Torrecillas, and J. J. Alarcon. 2005. High temperature effects an photosynthetic activity of two tomato cultivars with different heat susceptibility. Plant Physiol. 162:281-289.
Camejo, D., A. Jimenez, J. J. Alarcon, W. Torres, J. M. Gomez, and F. Sevilla. 2006. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct. Plant Biol. 33:177–187.
Campos, P. S., V. Quatin, J. C. Ramalho, and M.A. Nunes. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp plants. J. Plant Physiol. 160:283-292.
Castrillo, M., N. J. Kruger, and F. R. Whatley. 1992. Sucrose metabolism in mango fruit during ripening. Plant Sci. 84:45-51.
Chen, T. H. H., Z. Y. Shen, and P. H. Lee, 1982. Adaptability of crop plants to high temperature stress. Crop Sci. 22:719–725.
Choinskin, Js. Jr., P. Ralph, and D. Eamus. 2003. Changes in photosynthesis during leaf expansion in Corymbia gummifera. Australian J. Bot. 51:111-118.
COA. 2005. Season Agricultural Products-Mango. Council of Agriculture website, Council of Agirculture, ExecutiveYuan,R.O.C. <http://english.coa.gov.tw/content.php?catid=9437>.
Colum, M. R. and C. Vazzana. 2003. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ. Exp. Bot. 49:135–144.
Cook, D., S. Fowler, O. Fiehn, and M. F. Thomashow. 2004. A prominent role for the CBF cold response pathway in configuring the lowtemperature metabolome of Arabidopsis, Proc. Natl Acad. Sci. (USA) 101:15243–15248.
Cooper, W. C., G. K. Rasmussen, and E. S. Waldon. 1969. Ethylene evolution stimulated by dulling in citrus and Persea sp. Plant Physiol. 44:1194-1196.
Corbineau, F., F. Engelmann, and D. Come. 1990. Ethylene production as an indicator of chilling injury in oil plam (Elaeis guineensis Jacq.) somatic embryos. Plant Sci. 71:29-34.
Cottee, N. S., D. K. Y. Tan, M. P. Bange, and J. A. Cheetham. 2007. Simple electrolyte leakage protocols to detect cold tolerance in cotton genotypes. The World Cotton Research Conference-4 (September 10-14, 2007).
Covey-Crump, E.M., R.G. Attwood, O.K. Atkin. 2002. Regulartion of root respiration in two speacies of Plantago that differ in relative growth rate: the effect of short-and long-term changes in temperature. Plant Cell Environ. 24:1501-1514.
Crafts-Brandner, S. J. and M. E. Salvucci. 2002. Sensitivity of the C4 plant, maize, to heat stress. Plant Physiol. 129: 1773-1780.
Crane, J. H. 2008. Mangifera indica - Mango. pp. 15-20. In: J. Janick and R.E. Paull (eds.). The encyclopedia of fruit and nuts. CAB International, Wallingford, Oxon, UK.
DeEll, J. R., O. Kooten, R. K. Prange, and D. P. Murr. 1999. Applications of chlorophyll fluorescence techniques in postharvest physiology. Hortic. Rev. 23:69–107.
Dubey, R. S. 1997. Photosynthesis in plants under stressful conditions. pp. 859-875. In: M. Pessarakli (ed). Handbook of Photosynthesis. Marcel Dekker Inc, New York.
Eaks, I. L., L. L. Morris. 1956. Respiration of cucumber fruits associated with physiological injuring at chilling temperatures. Plant Physiol. 31:308-314.
Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra. 2009. Plant drought stress: effects, mechanisms and management, Agron. Sustain. Dev. 29:185–212.
Feder, M. E. and G. E Hoffman. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61:243–282.
Fitter, A. H., P. Geigenberger, and M. Sitt. 2005. Flux an important, but neglected, component of functional genomics, curr. Opin. Plant Biol. 8:174-182.
Frachebood, Y., P. Haldimann, J. Leipner, and P. Stamp. 1999. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J. Exp. Bot. 50:1533-1540.
Frankow-Lindberg, B. E. 2001. Adaptation to winter stress in nine white clover populations: changes in non-structural carbohydrates during exposure to simulated winter conditions and ‘spring’ regrowth potential, Ann. Bot. 88:745–751.
Gerasopoulos, D., G. Chlioumis, and E. Sfakiotakis. 2006. Non-freezing points below zero induce low-temperature breakdown of kiwifruit at harvest. Sci Food Agri. 86:886–890.
Gross, K. C., C. Y. Wang, and M. Saltveit. 2004. The commocial storage of fruits, vegetables and florist and nursery stocks. Agricultural Handbook number 66, USA: Agricultural Research Service, USDA, BARC-WEST. Beltsvill, MD 20705.
Guo, Y. P., H. F. Zhou, and L. C. Zhang. 2006. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci. Hort. 108:260–267.
Guy, C. L. 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism, Annu. Rev. Plant Phys. 41:187–223.
Hall, A. E.1992. Breeding for heat tolerance. Plant Breed. Rev. 10:129–168.
Hall, A. E. 2001. Crop Responses to Environment.CRC Press LLC, Boca Raton, Florida.
Harber, R. M. and L. H. Fuchigami. 2000. Ethylene-induced stress resistance. pp.81-89. In: H. L. Paul (ed). Low temperature stress physiology in crops. CRC Press Inc., Florida.
Heino, P. and E. T. Palva. 2003. Signal transduction in plant cold acclimation. pp.151–186. In: H. Hirt and K. Shinozaki (Eds) Topic in Current Genetics Vol.4. Plant Responses to Abiotic Stress. Springer-Verlag Berlin Heidelberg.
Hernández-Nistal, J., B. Dopico, and E. Labrador. 2002. Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase, Plant Sci. 163:507–514.
Heureux, G. P. L., M. Bergevin, J. E. Thompson, and C. Willemot. 1994. Molecular species of phosphatidylcholine, phosphatidylethanolamine and diglycerides of tomato pericarp during ripening, chilling and subsequent storage at 20 °C. Plant Physiol. 143:699–703.
Hopkins, W. G. 1999. The physiology of plants under stress. pp. 451–475. In: Introduction to Plant Physiology, 2nd ed., Wiley, New York.
Howarth, C. J. 2005. Genetic improvements of tolerance to high temperature. pp.277-300. In: M. Ashraf, Harris, P.J.C. (Eds.). Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. Howarth Press Inc., New York.
Iba, K. 2002. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53:225–245.
Ibanez, M. L. 1964. Role of cotyledon in sensitivity to cold of cacao seed. Nature (London) 201:414-415.
Ismail, A. and A. E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39: 1762-1768.
Iyer, C. P. A. and C. Degani. 1997. Classical breeding and genetics. pp.46-68. In: R.E. Litz (ed). The mango: botany, production and uses. CAB International Press, London.
Jeffrey, K., Brecht, and A. A. Kader. 1984. Regulation of ethylene production by ripening nectarine fruit as influenced by ethylene and low temperature. J. Amer. Soc. Hort. Sci. 109: 869-872.
Kaker, N. R. and E. Rosenquivt. 2004. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibities. J. Exp. Bot. 15:1607-1621.
Karihaloo, J. L., Y. K. Dwivedi, Sunil-Archak, and A. B. Gaikwad. 2003. Analysis of genetic diversity of Indian mango cultivars using RAPD markers. J. Hort. Sci. Biotech. 78:285-289.
Karim, M. A., Y. Fracheboud, and P. Stamp. 1999. Photosynthetic activity of developing leavea mays is less affected by heat stress than that of developed leaves. Physiol. Plant. 105:685–693.
Kimmerer, T. W. and T. T. Kozlowski. 1982. Ethylene, ethane, acetaldehyde and ethanol production by plant under stress. Plant Physiol. 69:840-847.
Kostermans, A. J. G. H. and J. M. Bompard. 1993. The mangoed. Botany, nomenclature, horticulture, and utilization. Academic Press, London.
Kotak, S., J. Larkindale, U. Lee, P. von Koskull-Doring, E. Vierling, and K. D. Scharf. 2007. Complexity of the heat stress response in plants, Curr. Opin. Plant Biol. 10:310–316.
Kratsch, H. A. and R. R. Wise. 2000. The ultrastructure of chilling stress. Plant Cell Environ. 23:337-350.
Krishna, H. and S. K. Singh. 2007. Biotechnological advances in mango (Mangifera indica L.) and their future implication on crop improvement-a review. Biotech. Advances. 25:223-243.
Kubien, D. S., S. Von-Caemmerer, R. T. Furbank, and R. F. Sage. 2003. C4 photosynthesis at low temperature. A study using transgenic plants with reduced amounts of rubisco, Plant Physiol. 132:1577–1585.
Kumar, N. V. H., P. Narayanawany, D. T. Prasad, G. K. Mukunda, and S. N. Sondhur. 2001. Estimation of genetic diversity of commercial mango (Mangifera indica L.) cultivars using RAPD markers. J. Hort. Sci. Biotech. 76:529-533.
Kurets, V. K., S. N. Drozdov, E. G. Dembo, N. I. Khilkov, and S. A. Trofimova. 2003. Effect and after effect in respiration of intact plants. Russ. J. Plant Physiol. 50:308-312.
Kurimoto, K., A. H. Millar, H. Lambers, D. A. Day, K. Noguchi. 2004. Maintenance of growth rate at loe temperature in rice and wheat cultivars with a high degree of respiratory ATP production. Plant Cell Physiol. 45:1015-1022.
Larkindale, J., J. D. Hall, M. R. Knight, and E. Vierling. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance, Plant Physiol. 138:882–888.
Lee, B. H., D. A. Henderson, and J. K. Zhu. 2005. The Arabidopsis cold responsive transcriptome and its regulation by ICE1, Plant Cell 17:3155–3175.
Lewis, D. A. and L. L. Morris. 1956. Effect of chilling storage on respiration and deterioration of several sweet potato varieties. Pro. Amer. Soc. Hort. Sci. 68:421-428.
Lewis, T. L. and M. Workman. 1964. The effect of low temperature on phosphate esterification and cell membrane permeability in tomato fruit and cabbage leaf tissue. Aust. J. Biol. Sci. 17:147-152.
Lurie, S. and J. D. Klein.1990. Heat treatment of ripening apples: differential effects on physiology and biochemistry. Physiol. Plant. 78:181–186.
Lu, Q., C. Lu, J. Zhang, and T. Kuang. 2002. Photosynthesis and chlorophylla fluorescence during flag leaf senescence of field-grown wheat plants. J. Plant Physiol. 159:1173-1178.
Lynch, D. V. 1990. Chilling injury in plants: the relevance of membrane lipids. pp. 17–34. In: F. Katterman (ed.). Environmental Injury to Plants, Academic Press, New York.
Lyons, J. M. and J. M. Raison. 1970. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol. 45:386-389.
Maestri, E., N. Klueva, C. Perrotta, M. Gulli, H. T. Nguyen, and N. Marmiroli. 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 48:667–681.
MAF. 2004. Taiwan Mangoes. Importation and clearance of fresh fruit and vegetables into New Zealand. MAF Biosecurity Standard 152.02, 12 July 2004. MAF Biosecurity: Wellington, New Zealand. WEB site: http://www.biosecurity.govt.nz/imports/plants/standards/152-02.pdf, Accessed November 2005.
Mancuso, S., F. P. Nicese, E. Masi, and E. Azzarello. 2004. Comparing fractal analysis, electrical impedance and electrolyte leakage for the assessment of cold tolerance in Callistemon and Grevillca spp. Hort. Science. Biotechnol. 79:627-632.
Marangoni, A. G., T. Palma, and D. W. Stanley. 1996. Membrane effects in postharvest physiology. Postharvest Biol Technol. 7:193–217.
Martineau, J. R., J. E. Specht, J. H. Williams, and C. Y. Sullivan. 1979. Temperature tolerance in soybean. I. Evaluation of technique for assessing cellular membrane thermostability. Crop Sci. 19:75–78.
Mattsson, A. 1996. Predicting field performance using seedling quality assessment. New Forests. 13: 223-248.
Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence – a practical guide. J. Exp Bot. 51:659-668.
McKersie, B. D. and S. R. Bowley. 1998. Active oxygen and freezing tolerance in transgenic plants. pp. 203–214. In: P. H. Li and T. H. H. Chen (eds.). Plant Cold Hardiness: Molecular Biology, Biochemistry and Physiology, Plenum, New York.
Mcdonald, G. K. and G. M. Paulsen. 1997. High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil 196:47–58.
Momcilovic, I. and Z. Ristic. 2007. Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J. Plant Physiol. 164:90–99.
Mukherjee, S. K. 1997. Introduction: botany and importance. pp.1-19. In: R.E. Liztz, (ed). The mango: botany, production and uses. CAB International Press, London.
Munne-Bosch, S., M. Lopez-Carbonell, L. A. Alegre, and H. A. Van Onckelen. 2002. Effect of drought and high solar radiation on 1-aminocyclopropane-1- carboxylic acid and abscisic acid in Rosmarinus officinalis plants. Physiol. Plant. 114:380–386.
Munro, D. M., D. M. Hodges, J. M. Delong, C. F. Forney, and D. N. Kristie. 2004. Low temperature effect on ubiquinone content, respiration rate and lipid peroxidation levels of etiolated seedling of two differentially chilling sensitive species. Plant Physiol. 121:488-497.
Nakamoto, H. and T. Hiyama, 1999. Heat-shock proteins and temperature stress. pp. 399–416. In: M. Pessarakli, (ed.). Handbook of Plant and Crop Stress. Marcel Dekker, New York.
Nayyar, H., K. Chander, S. Kumar, and T. Bains. 2005. Glycine betaine mitigates cold stress damage in Chickpea, Agron. Sustain. Dev. 25:381–388.
Nilsen, E. T. and D. M. Orcutt. 1996. High temperature and energy balance. pp.445-485. In: E. T. Nilsen and D. M. Orcutt (eds.). Physiology of plant under stress. John Wiley and Sons, New York.
Olien, C. R. and M. N. Smith. 1997. Ice adhesions in relation to freeze stress, Plant Physiol. 60:499–503.
Oquist, G. and R. Was. 1988. A portable, microprocessor operated instrument for measuring chlorophyll fluorescence kinetics in stress physiology. Physiol. Plantarum. 73:211-217.
Ort, D. R. and B. Martin. 1983. Chilling-induced inhibition of photosynthesis in tomato. pp.227-235. In: R. Marcelle, H. Clijsters and M. Van Poucke (eds.). Effect of stress on photosynthesis. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, Netherlands.
Palma, T., A. G. Marangoni, and D. W. Stanley. 1995. Environmental stresses affect tomato microsomal membrane function differently than natural ripening and senescence. Postharvest Biol Technol. 6:257–273.
Paull, R. E. and N. J. Chen. 2000. Heat treatment and fruit ripening. Postharvest Biol Technol. 21:21-37.
Peet, M. M. and D. H. Willits. 1998. The effect of night temperature on greenhouse grown tomato yields in warm climate. Agric. Forest Meteorol. 92:191–202.
Pereira, W. E., D. L. De Siqueira, C. A. Martynez, and M. Puiatti. 2000. Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. Plant Physiol. 157: 513-520.
Ribas-Carbo, M., A. Ricado, A. Miquel, JJI. Gonzalez-Meler, and M. Sanchez-Diaz. 2000. The electron portioning between the cytochrom and alternative respiratory pathway during chilling recovery in two cultivars of maize differing in chilling sensitivity. Plant Physiol. 122:199-204.
Rose, R. and D. Haase. 2002. Chlorophyll fluorescence and variations in tissue cold hardiness in response to freezing stress in Douglas-fir seedlings. New Forests 23: 81-96.
Saltveit, M. E. 2002. The rate of ion leakage from chilling-sensitive tissue does not immediately increase upon exposure to chilling temperatures. Postharvest Biol Technol. 26:295–304.
Samson, J. A. 1986. Tropical fruits, 2nd ed. Longman Inc. New York.
Savchenko, G. E., E. A. Klyuchareva, L. M. Abrabchik, and E. V. Serdyuchenko. 2002. Effect of periodic heat shock on the membrane system of etioplasts. Russ. J. Plant Physiol. 49:349–359.
Schoffl, F., R. Prandl, and A. Reindl. 1999. Molecular responses to heat stress. pp. 81–98. In: K. Shinozaki and K. Yamaguchi-Shinozaki (eds.). Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. R.G. Landes Co., Austin, Texas.
Schwender, J., J. Ohlrogge, and Y. Shachar-Hill. 2004. Understanding flux in plant metabolic networks, Curr. Opin. Plant Biol. 7: 309–317.
Shinozaki, K. and K. Yamaguchi-Shinozaki. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways, Curr. Opin. Plant Biol. 3:217– 223.
Schirra, M. and P. Sass. 1994. Fatty acid profile changes in Marsh Seedless grapefruit in response to storage conditions. Acta Hort. 368:429–434.
Smillie, R. M. and S. E. Hetherington. 1983. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence In vivo. Plant Physiol. 72:1043-1050.
Somerville, C. 1995. Direct tests of the role of membrane lipid composition in low temperature-induce photoinhibition and chilling sensitivity in plants and cyanobacteria, Proc. Natl Acad. Sci. (USA) 92: 6215–6218.
Stefano, M., P. N. Francesco, and A. Elisa. 2004. Comparing fractal analysis, electrical impedance and electroluty leakage for the assessment of cold tolerance in Callistemin and Grevillea spp. Hort Sci & Biol. 74:627-632.
Steponkus, P. L., M. Uemura, and M. S. Webb. 1993. A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. pp. 211–312. In: P. L. Steponkus (ed.). Advances in Low Temperature Biology, Vol. 2, JAI Press, London.
Stone, P. 2001. The effects of heat stress on cereal yield and quality. pp. 243–291. In: A.S. Basra (ed.). Crop Responses and Adaptation to Temperature Stress. Food Products Press, Binghamton, New York.
Stone, C., L. Chisholm, and S. McDonald. 2005. Effect of leaf age and psyllid damage on the spectral reflectance properties of Eucalytus saligna foliage. Australian J. Bot. 53:45-54.
Talts, P., T. Pamik, P. Gardestrom, and O. Keerberg. 2004. Respiratory acclimation in Arabidopsis thaliana leaves at low temperature. J. Plant Physiol. 161:573-579.
Tan, C., Z. W. Yu, H. D. Yang, and S. W. Yu. 1988. Effect of high temperature on ethylene production in two plant tissues. Acta Phytophysiol. Sin. 14:373–379.
Tanino, K. K. and B. D. McKersie. 1985. Injury within the crown of winter wheat seedlings after freezing and icing stress. Can. J. Bot. 63:432.
Thomashow, M.F. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms, Annu. Rev. Plant Phys. 50:571–599.
Urban, L., M. Jannoyer, X. Le Roux, H. Sinoquet, and S. Jaffuel. 2004. A model of leaf photosynthesis for mango cv. Lirfa. Acta Hort. 645:411-416.
Van Hasselt, P. R., J. Woltjes, and F. De Jong. 1983. The effect of temperature on chlorophyll fluorescence induction of cucumber lines differing in growth capacity at suboptimal condition. pp.257-265. In: M. Marcelle, H. Clijsters and M. Van Poucke (eds). Effect of stress on photo synthesis. Martinus Nijhoff/Dr. W. Junk Publishers. The Hague, Netherlands.
Wahid, A. and A. Shabbir. 2005. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Reg. 46:133–141.
Wahid, A. and A. Ghazanfar. 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant Physiol. 163:723–730.
Wang, J. W., F. P. Yang, X. Q. Chen, R. Q. Liang, L. Q. Zhang, D. M. Geng, X. D. Zhang, Y. Z. Song, and G. S. Zhang. 2006. Induced expression of dreb transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genetica Sinica. 33: 468–476.
Watada, A. E. and L. L. Morris. 1967. Growth and respiration patterns of snap bean fruits. Plant Physiol. 42:757-761.
Welti, R., W. Li, M. Li, Y. Sang, H. Biesiada, H. E. Zhou, C. B. Rajashekar, T. D. Williams, and X. Wang. 2002. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. Biol Chem. 277: 31994–32002. 
Whiley, A. W., C. Searle, B. Schaffer, and D. R. Simson. 1997. Leaf gas exchange responses of avocado (Persea Americana Mill.) and mango (Mangifera indica L.) trees to photon and CO2 fluxes. Tree Physiology.
Wise, R. R., A. J. Olson, S. M. Schrader, and T. D. Sharkey, 2004. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ. 27:717–724.
Wu, L. 2004. Taiwan Banana Exports Fall To Five-Year Low. Changhua County Grovernment website.
Yamada, M., T. Hidaka, and H. Fukamachi. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci. Hort. 67:39-48.
Yu, X. M., M. Griffith, and S. B. Wiseman. 2001. Ethylene induces antifreezed activity in winter rye leaves. Plant Physiol. 126:1232-1240.
Zhou, Y. H., J. Q. Yu, W. H. Mao, L. F. Huang, X. S. song, and S. Nogues. 2006. Genotypic variation of rubisco expression, photosynthetic electron flow and anitioxidant metabolism in the chloroplasts of chill-exposed cucumber plant s. Plant Cell Physiol. 47:192-199.
Zhu J., C. H. Dong, and J. K Zhu. 2007. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation, Curr. Opin. Plant Biol. 10:290–295.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊