(3.237.178.91) 您好!臺灣時間:2021/03/07 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:游宗旻
研究生(外文):Chung-Min Yu
論文名稱:可預測式可回復式與無失真影像藏密學之研究
論文名稱(外文):A Study of Predictable Reversible and Distortion-free Image Data Hiding Algorithms
指導教授:王宗銘王宗銘引用關係
指導教授(外文):Chung-Ming Wang
口試委員:林偉洪國寶賈坤芳周文光陳澤雄
口試日期:2011-05-31
學位類別:博士
校院名稱:國立中興大學
系所名稱:資訊科學與工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:121
中文關鍵詞:資訊藏密學差值擴張演算法直方圖可預測式高動態範圍E值調整演算法可回復式
外文關鍵詞:data hiding algorithmsdifference expansionhistogramspredictable schemehigh dynamic rangeE-value adjustment algorithmreversible
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
資訊藏密學乃是利用數位媒體之掩護將欲傳遞的秘密訊息嵌入其中,並將嵌入秘密訊息後的偽裝媒體安全送達到預期接收者的一種技術。利用此技術可以減低第三者之注意,避免非預期接收者知曉訊息的傳遞或訊息的內容,達到秘密通訊之目的。本論文提出三種資訊隱藏演算法,可預測式高效率、高動態範圍可回復式低失真及高動態範圍影像無失真資訊隱藏演算法。
首先,我們針對差值擴張類型的資訊隱藏演算法提出可預測式高效率資訊隱藏演算法。雖然差值擴張演算法為可回復式演算法之一,然而,在使用者層面卻有三個問題仍未解決,第一:如何產生一個滿足使用者需求的偽裝影像,第二:如何自動產生一張最高效率的偽裝影像,第三:如何在一個影像資料庫中選取一張最符合使用者需求以及具最高嵌入效率之掩護影像。為此,我們提出了可預測式高效率資訊隱藏演算法;利用此演算法,當直方圖建立完成之後,我們可以在O(1)時間複雜度內解決上述三項問題。我們的演算法可以在實際嵌入訊息之前準確預估嵌入藏量及影像品質,進而求出嵌入效率。實驗結果顯示,此預測演算法具極小之誤差率,嵌入效率預測誤差率僅2.63 %,嵌入藏量誤差率僅1.53 %,影像品質誤差率僅0.3 %;演算法之預測執行時間僅需15毫秒;演算法可由大量影像資料庫中選取最適合之掩護影像。我們的演算法具有簡單、準確、可行且具有效率之特性。
我們延伸可預測式高效率演算法,使其應用至高動態範圍。我們提出一個可預測的高動態範圍可回復式低失真資訊隱藏演算法。高動態範圍影像格式RGBE中,其指數(E)的特性能大幅提涵蓋可表示的顏色範圍。利用此指數的特性,我們提出E值調整演算法,找出較相近的實際色彩值,進而利用此色彩值做差值擴張來嵌入秘密訊息,並達到可回復性之目的。我們也導入上章提出的預測機制,使得在實際做秘密訊息嵌入前,演算法即可預測產出實際嵌入的結果。實驗證實,相較於不使用E值調整演算法,在需求之嵌入藏量為0.3 bpp以上時,我們的方法可以產生與掩護影像較相近之偽裝影像。此外,我們的預測機制相當準確;嵌入藏量錯誤率僅有0.51 %,嵌入效率錯誤率僅有1.37 %。我們的演算法具有新穎性、可預測性、低失真、可回復式之特性。
最後,我們提出高動態範圍影像無失真資訊隱藏演算法。演算法具有三項優點。第一,可以產生一張相對於掩護影像無失真的偽裝影像;也就是說,當我們對作色調映射(tone mapping)處理時,偽裝影像與掩護影像未具任何量化之差異數值;偽裝影像與掩護影像代表相同影像,無法有任何視覺化之差異性。據我們所知,目前並未有其他文獻能夠達到此種效益。第二,此方法為可適應性,對於高同位表示性之像素,我們嵌入更多量之訊息。數值分析顯示偽裝影像及掩護影像之浮點數差異極小。第三,我們的演算法具高效率性,嵌入及擷取秘密訊息僅需數百毫秒;應用於影像註解應用之藏量可達0.12 ~0.29 bpp;在偽裝應用上藏量可達0.0010~ 0.0026 bpp,且具有抗偽裝偵測特性。
綜合本研究,我們提出的演算法分別具有可預測性、可回復性以及無失真三種性質,可以嵌入不等量之秘密訊息,並提供較佳的偽裝影像品質。實驗結果印證演算法之優點。


The intention of data hiding algorithms is to convey hidden messages inside a cover medium in such a way that no one, apart from the sender and intended recipient, suspects the existence of a concealed message within a stego medium. In this thesis, we propose three data hiding algorithms.
For reversible data hiding using the difference expansion approach there are three problems that are not yet solved: how to efficiently produce a stego image that satisfies the user’s desired pure capacity and image quality; how to automatically achieve the highest embedding efficiency ratio to balance the pure capacity and the image quality for a given cover image; and, given an image database, how to efficiently select the most appropriate cover image that has the highest embedding efficiency ratio to convey the secret messages without trying each of them. In the first algorithm, we introduce an efficient predictable scheme with the time complexity of O(1) to solve these three problems. By this method, we can foretell the embedding efficiency without real embedding. This provides an advantage when handling large data embedding systems such as an image database. Experimental results verify that our predictable scheme is precise where the average error rates are 2.63% for predicting the highest embedding efficiency, 1.52% for forecasting pure capacity, and finally, 0.3% for foreseeing image quality. We conclude that our prediction scheme is simple, precise, feasible, and efficient, and the average prediction time is around 15 milliseconds.
We extend our first algorithm to support the reversibility when employing high dynamic range images such as our cover media. The high dynamic range image of interest is encoded by the red-green-blue-exponent encoding format. We present an E-value adjustment algorithm for secret message embedding taking advantage of the encoding format. The algorithm allows us to find a closer pixel value that greatly reduces the image distortion due to the hidden message. As a result, our algorithm produces a stego image with better image quality when the user demands the capacity of over 0.3 bits per pixel. The experimental results verify that our E-value adjustment algorithm has a better performance than that collected using a naïve difference expansion approach which indicates of using the difference expansion on the red-green-blue channels only regardless of the exponent channel encoding. .
The third algorithm we present is a distortion-free data hiding method. Our scheme provides three significant benefits. First, it enables us to convey secret messages to produce a stego HDR image. To the best of our knowledge, our algorithm is the first approach in HDR literature that can provide capability of distortion-free data embedding. When we operate the tone mapping technique to reduce the high contrast to a displayable range, no distortion is encountered between the tone-mapped cover and the stego images. A quantitative measure verifies that histograms of the cover and stego HDR images are correlated with linear dependency. Second, our algorithm performs with adaptive message embedding where pixels conceal different amounts of secret messages based on their homogeneous representations. Quantitative analysis indicates that our algorithm offers an insignificantly small magnitude of the maximal pixel difference between the cover and stego HDR images. This feature and the histogram distribution of similarity between the cover and stego HDR images increase the difficulty of detecting whether any message is hidden in an HDR image. Third, our scheme is efficient. The time required for message embedding or extraction is in the range of several hundred milliseconds. Our approach belongs to a blind detection, and we believe our proposed scheme is suitable for applications such as image annotation or image steganography.
In conclusion, we believe the three algorithms we propose extend the feasibility and applications for conveying secret messages through the data hiding approach.


誌謝 i
中文摘要 ii
Abstract iv
Table of Contents vi
List of Figures ix
List of Tables xv

Chapter 1 Introduction 1
1.1 Advances of Data Hiding 1
1.2 The Problems 3
1.2.1 Problems about LDR Reversible Algorithms 3
1.2.2 Problems about HDR Reversible Algorithms 4
1.2.3 Problems about Distortion-free HDR Data Embedding Algorithms 6
1.3 The Structure of the Thesis 6

Chapter 2 Background and Related Works 8
2.1 Reversible Data Hiding Algorithms 8
2.2 High Dynamic Range Image Steganography Algorithms 12

Chapter 3 A Predictable Scheme for Reversible Data Hiding 15
3.1 An Overview of the Proposed Algorithm 15
3.2 Image Analysis and Histogram Generation 16
3.3 The Prediction Method 19
3.3.1 Pure Capacity Prediction 19
3.3.2 Image Quality Prediction 24
3.3.3 Embedding Efficiency Prediction 26
3.4 The Real Secret Message Embedding and Extraction 27
3.4.1 Message Embedding 27
3.4.2 Message Extraction 30
3.5 Experimental Results 32
3.5.1 Results of the Capacity and Image Quality Prediction 32
3.5.2 Results of the Embedding Efficiency Prediction 37
3.5.3 Results for an Image Database 42
3.6 Summary 48

Chapter 4 A Reversible Data Hiding Algorithm for High Dynamic Range Images
……………………………………………………………………………50
4.1 The Overview of the Embedding Algorithm 51
4.1.1 E-Value Adjustment Operation…………………………….……….…52
4.1.2 Difference Expansion Operation…………………………...……….…54
4.2 The Prediction Method 56
4.2.1 Pixel Pair Categorization and Histogram Generation 56
4.2.2 Pure Capacity Prediction 59
4.2.3 Image Distortion Prediction 63
4.2.4 Embedding Efficiency Prediction 64
4.3 Experimental Results 65
4.3.1 E-value Adjustment Performance 65
4.3.2 Prediction Results 69
4.4 Summary 76

Chapter 5 A Distortion-free Data Hiding Scheme for High Dynamic Range Images
……………………………………………………………………………..78
5.1 Our Proposed Algorithm 78
5.2 Pixel Categories Classification 88
5.3 An Analysis of the Pixel Difference 90
5.4 An Analysis of the HDR Image Database 95
5.5 Experimental Results 97
5.5.1 Pixel Distribution Analysis 97
5.5.2 Distortion-free Verification 100
5.5.3 Results of an Image Database 106
5.6 Summary 107

Chapter 6 Conclusion and Future Work 109
6.1 Conclusions 109
6.2 Future Work 112
References 114
Index 120



[Alat2003]A. M. Alatter, “Reversible Watermarking Using Difference Expansion of Triplets,” in Proceedings of the IEEE International Conference on Image Processing, vol. 1, pp. 501-504, September 2003.
[Alat2004]A. M. Alatter, “Reversible Watermarking Using Difference Expansion of Quads,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 377-380, May 2004.
[Alat2006]A. M. Alattar, J. Stach, and J. Tian, “Reversible Watermarking Using Expansion, Rate Control and Iterative Embedding,” United States Patent Application 20070053550, February 2006.
[Borg2008]P. Borges, J. Mayer, and E. Izquierdo, “Robust and Transparent Color Modulation for Text Data Hiding,” IEEE Transactions on Multimedia, vol. 10, no. 8, pp. 1479-1489, December 2008.
[Celi2005]M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Lossless Generalized-LSB Data Embedding,” IEEE Transactions on Image Processing, vol. 12, no. 2, pp. 157-160, February 2005.
[Chao2009]M. W. Chao, C. H. Lin, C. W. Yu, and T. Y. Lee, “A High Capacity 3D Steganography Algorithm,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 2, pp. 274-284, March 2009.
[Chen2009a]Y. M. Cheng and C. M. Wang, “A Novel Approach to Steganography in High-Dynamic-Range Images,” IEEE MultiMedia, vol. 16, no. 3, pp. 70-80, 2009.
[Chen2009b]M. Cheng, Z. Chen, X. Zeng and Z. Xiong, “Reversible Data Hiding Using Additive Prediction-Error Expansion,” in Proceedings of ACM multimedia and security 09, pp. 19-24, 2009.
[Daub1998]I. Daubechies, R. Calderbank, W. Sweldens and B. L. Yeo. “Wavelet Transforms that Map Integers to Integers,” Applied and Computational Harmonic Analysis (ACHA), vol. 5, no. 5, pp. 332-369, 1998.
[DB2011]http://pfstools.sourceforge.net/hdr_gallery.html
http://ict.debevec.org/~debevec/Probes/
http://www.anyhere.com/gward/hdrenc/pages/originals.html
http://www.cis.rit.edu/research/mcsl2/icam/hdr/rit_hdr/ (Munsell Color Science Laboratory HDR Database)
[Drag2003]F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive Logarithmic Mapping for Displaying High Contrast Scenes,” Computer Graphics Forum, (Proceedings of Eurographics 2003), vol. 22, no. 3, pp. 419-426, 2003.
[Dura2002]F. Durand, and J. Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images,” in Proceedings of ACM SIGGRAPH 2002, pp. 257-266, 2002.
[Frid2002] J. Fridrich, M. Goljan, and R. Du, “Lossless Data Embedding—New Paradigm in Digital Watermarking,” EURASIP Journal on Advances in Signal Processing, vol. 2002, no. 2, pp. 185-196, February 2002.
[Gang2004] L. Gang, A. N. Akansu, and M. Ramkumar, “Linear and Nonlinear Oblivious Data Hiding,” EURASIP Journal on Applied Signal Processing, vol. 2004, no. 14, pp. 2102-2112, 2004.
[Hu2008] Y. Hu, H. K. Lee, K. Chen, and J. Li, “Difference Expansion Based Reversible Data Hiding Using Two Embedding Directions,” IEEE Transactions on Multimedia, vol. 10, no. 8, pp. 1500-1512, December 2008.
[Hu2009] Y. Hu, H. K. Lee, and J. Li, “DE-Based Reversible Data Hiding With Improved Overflow Location Map,” IEEE Transactions on Circuits and System for Video Technology, vol. 19, no. 2, pp. 250-260, February 2009.
[Huan2009] N. C. Huang, M. T. Li, and C. M. Wang, “Toward Optimal Embedding Capacity for Permutation Steganography,” IEEE Signal Processing Letters, vol. 16, no. 9, pp. 802-805, 2009.
[Kams2005] L. Kamstra and H. J. A. M. Heijmans, “Reversible Data Embedding into Images Using Wavelet Techniques and Sorting,” IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2082-2090, December 2005.
[Kim2008] H. J. Kim, V. Sachnev, J. Nam, and H. G. Choo, “A Novel Difference Expansion Transform for Reversible Data Embedding,” IEEE Transactions on Information Forensics and Security, vol. 3, no. 3, pp. 456-465, September 2008.
[Kim2009] K. S. Kim, M. J. Lee, H. Y. Lee, and H. K. Lee, “Reversible Data Hiding Exploiting Spatial Correlation between Sub-sampled Images,” Patten Recognition, vol. 42, no. 11, pp. 3083-3096, April 2009.
[Lee2007] S. Lee, C. D. Yoo, and T. Kaller, “Reversible Image Watermarking Based on Integer-to-Integer Wavelet Transform,” IEEE Transactions on Information Forensics and Security, vol. 2, no. 3, pp. 321-330, September 2007.
[Li2009] M. T. Li, N. C. Huang, K. C. Wu, C. K. Jan, and C. M. Wang, “An Effective Message Embedding Scheme for 3D Models,” Fundamenta Informaticae, vol. 97, no. 1-2, pp. 93-109, 2009.
[Li2011A] M. T. Li, N. C. Huang, and C. M. Wang, “A Novel High Capacity 3D Steganographic Algorithm,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 3, p. 1055-1074, 2011.
[Li2011B] M. T. Li, N. C. Huang, and C. M. Wang, “A Data Hiding Scheme for High Dynamic Range Images,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 5(A), pp. 2021-2036, 2011.
[Lin2009] I. C. Lin, Y. B. Lin, and C. M. Wang, “Hiding Data in Spatial Domain Images with Distortion Tolerance,” Computer Standards and Interfaces, vol. 31, no. 2, pp. 458-464, 2009.
[Lou2010] D. C. Lou, N. I. Wu, C. M. Wang, Z. H. Lin, and C. S. Tsai, “A Novel Adaptive Steganography Based on Local Complexity and Human Vision Sensitivity,” Journal of Systems and Software, vol. 83, no. 7, pp. 1236-1248, 2010.
[Mali2007] H. M. A. Malik, R. Ansari, and A. A. Khokhar, “Robust Data Hiding in Audio Using Allpass Filters,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 4, pp. 1296-1304, May 2007.
[Mant2006] R. Mantiuk, K. Myszkowski, and H. P. Seidel, “A Perceptual Framework for Contrast Processing of High Dynamic Range Images,” ACM Transactions on Applied Perception, vol. 3, no. 3, pp. 286-308, 2006.
[Ni2006] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible Data Hiding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 3, pp. 354-362, March 2006.
[Paru2009] J. K. Paruchuri, S. C. Cheung, and M. Hail, “Video Data Hiding for Managing Privacy Information in Surveillance Systems,” EURASIP Journal on Information Security, Article ID 236139, vol. 2009, 2009.
[Peti1999] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information Hiding - a Survey,” in Proceedings of the IEEE: Special Issue on Identification and Protection of Multimedia Content, vol. 87, no. 7, pp. 1062-1078, July 1999.
[Pinh2009] A. J. Pinho and J. R. Neves, “Progressive Lossless Compression of Medical Images,” in Proceedings of 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.409-412, Taipei, Taiwan, April 2009.
[Rein2002] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic Tone Reproduction for Digital Images,” ACM Transactions on Graphics, vol. 21, no. 3, pp 267-276, July 2002.
[Rein2003] E. Reinhard, “Parameter Estimation for Photographic Tone Reproduction,” Journal of Graphics Tools, vol. 7, no. 1, pp. 45-51, 2003.
[Rein2005] E. Reinhard, S. Pattanaik, G. Ward, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting, San Francisco: Morgan Kaufmann, 2005.
[Sach2009] V. Sacheny, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible Watermarking Algorithm Using Sorting and Prediction,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 7, pp. 989-999, July 2009.
[Tai2009] W. L. Tai, C. M. Yeh, and C. C. Chang, “Reversible Data Hiding Based on Histogram Modification of Pixel Differences,” IEEE Transactions on Circuits and System for Video Technology, vol. 19, no. 6, pp. 906-910, June 2009.
[Thod2007] D. M. Thodi and J. J. Rodriguez, “Expansion Embedding Techniques for Reversible Watermarking,” IEEE Transactions on Image Processing, vol. 16, no. 3, pp. 721-730, March 2007.
[Tian2003] J. Tian, “Reversible Data Embedding Using a Difference Expansion,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 8, pp. 890-896, August 2003.
[Tsai2009] P. Tsai, Y. C. Hu, and H. L. Yeh, “Reversible Image Hiding Scheme using Predictive Coding and Histogram Shifting,” Signal Processing, vol. 89, no. 6, pp. 1129-1143, June 2009.
[Tsai2011] C. S. Tsai, H. C. Wang, H. C. Wu, and C. M. Wang, “A Cheat-preventing Visual Cryptography Scheme by Referring the Special Position,” to appear in International Journal of Innovative Computing, Information and Control, 2011.
[Tsen2009] H. W. Tseng and C. P. Hsien, “Prediction-based Reversible Data Hiding,” Journal of Information Sciences, vol. 179, no. 14, pp. 2460-2469, 2009.
[Wang2008] C. M. Wang, N. I. Wu, C. S. Tsai, and M. S. Hwang, “A High Quality Steganographic Method with Pixel-value Differencing and Modulus Function,” The Journal of Systems and Software, vol. 81, no. 1, pp. 150-158, January 2008.
[Ward1988] G. Ward and R. A. Shakespeare, Rendering with Radiance, San Francisco, Morgan Kaufmann, 1988.
[Ward1991] G. Ward, “Real Pixels,” Graphics Gems II, Edited by James Arvo, Academic Press 1991, pp. 80-83.
[Ward1998] G. L. Ward, “The LogLuv Encoding for Full Gamut, High Dynamic Range Images,” Journal of Graphics Tools, vol. 3, no. 1, pp. 15-31, 1998.
[Wu2007] N. I. Wu and M. S. Hwang, “Data Hiding: Current Status and Key Issues,” International Journal of Network Security, vol. 4, no. 1, pp. 1-9, January 2007.
[Wu2010] H. C. Wu, H. C. Wang, C. S. Tsai, and C. M. Wang, “Reversible Image Steganographic Scheme via Predictive Coding,” Displays, vol. 31, no. 1, pp. 35-43, January 2010.
[Xua2002] G. Xuan, J. Zhu, J. Chen, Y. Q. Shi, Z. Ni, and W. Su, “Distortionless Data Hiding Based on Integer Wavelet Transform,” Electronics Letters, vol. 38, no. 25, pp. 1646-1648, 2002.
[Yu2011] C. M. Yu, K. C. Wu, and C. M. Wang, “A Distortion-free Data Hiding Scheme for High Dynamic Range Images,” to appear in Displays, 2011.
[Zhan2006] X. Zhang and S. Wang, “Efficient Steganographic Embedding by Exploiting Modification Direction,” IEEE Communications Letters, vol. 10, no. 11, pp. 781-783, November 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔