跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝一平
研究生(外文):I-Ping Hsieh
論文名稱:一個有效率且符合最大等待時間的IEEE 802.16e/16j上行方向排程機制
論文名稱(外文):Development of an Efficient Uplink Scheduling Mechanism with Low Maximum Latency Violation in IEEE 802.16e/16j Coexistence Networks
指導教授:高勝助高勝助引用關係
指導教授(外文):Shang-Juh Kao
口試委員:詹進科廖宜恩何建明陳孟彰
口試日期:2011-06-23
學位類別:博士
校院名稱:國立中興大學
系所名稱:資訊科學與工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:48
中文關鍵詞:IEEE 802.16eIEEE 802.16j同步傳輸干擾偵測封包最大等待時間
外文關鍵詞:IEEE 802.16eIEEE 802.16jparallel transmissioninterference detectionmaximum latency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
身為第四代通訊網路的標準之ㄧ,802.16技術提供了優良的涵蓋率、傳輸速度、服務品質和低廉的使用成本。在眾多的IEEE 802.16子技術中,IEEE 802.16e提供了更好的可移動性和服務品質,而802.16j則是利用中繼站技術提昇網路的覆蓋範圍和傳輸品質。因此,802.16j較適合佈建在人口稠密的都會環境中,而在地廣人稀的環境下則以採用802.16e技術較為適當。如此一來,採用WiMAX為無線存取技術的第四代通訊網路將會形成由802.16e及802.16j共存的網路環境。在此種環境下,基地台若是可以同時支援802.16e及802.16j,WiMAX網路的佈建將會變的相當有彈性。在本論文中,我門設計了一套新的排程機制可以提升傳輸速度及服務品質,並適用於802.16e及802.16j共存網路環境中。
由於802.16j採用了正交分頻多工存取技術,導致封包傳送的排程變的更複雜,但是卻可實現多個無線裝置同步傳輸資料的可能性。然而,大部分的研究並未在排程器中考量加入同步傳輸的能力。而專門研究同步傳輸的論文對於實現同步傳輸的第一要務,無線裝置間的干擾偵測,皆假設無線裝置間的干擾為已知條件,並無提出一套可行的機制。在考慮802.16e及16j的特性後,我們設計了一個可同時在802.16e及802.16j網路環境下高效能且不違反封包最大等待時間的上行排程演算法,PT-MLV。本演算法包含了一個可偵測無線裝置間干擾的機制。為求最有效率的使用頻寬資源,動態分割上行子訊框亦加入到該演算法中。實驗證明PT-MLV在802.16e及802.16j網路中皆能有效的降低違反最大等待時間封包之比例及提高平均的傳輸速率。

The IEEE 802.16 family is a candidate fourth-generation mobile communication standard that provides ubiquity, high transmission rate, quality of service (QoS), and low-cost services. Among the 802.16 family, 802.16e specifies QoS support at the MAC level, while 802.16j spreads out the coverage of Worldwide Interoperability for Microwave Access (WiMAX) networks and strengthens wireless signal transmission using relay technology. Thus, 802.16j is chosen in the metropolitan environment and 802.16e is preferred in sparsely populated territories in order to deploy 802.16 services efficiently. Consequently, 802.16e/802.16j coexistence environment is beginning to take shape. The deployment of WiMAX networks would be flexible, if the base station supports both 802.16e and 802.16j technologies. In this paper, a novel scheduling mechanism is presented for high transmission rate and QoS in 802.16e/16j coexistence networks.
The adoption of OFDMA and relay techniques in 802.16e/802.16j networks, although adding complexity, increases flexibility over the original 802.16 networks. This may permit parallel transmission among multiple devices. However, little current research has addressed the issue of parallel transmission in a scheduling algorithm. And, the interference profile among multiple devices is assumed to be already known before transmission commencement. In this paper, an efficient uplink scheduling mechanism, Parallel Transmission with Low Maximum Latency Violation (PT-MLV), which allows parallel transmission, is proposed. Using PT-MLV, uplink resource utilization can be improved and the requirement of real-time applications can be better satisfied due to the MCS and low maximum latency violation. In addition, we first present an interference detection mechanism for parallel transmission. Our experimental results demonstrate that PT-MLV scheduling outperforms regular relay scheduling in average transmission rate and maximum latency violation.

1. Introduction 1
2. Related Work 5
2.1 IEEE 802.16 Families 5
2.2 MAP multiplexing 9
2.3 Deadline First Scheduling Strategy 11
3. Parallel Transmission with Low Maximum Latency Violation Scheduling Mechanism 14
3.1 Bandwidth Allocation of PT-MLV in 802.16e Networks 14
3.1.1 Calculation of deadline and priority. 15
3.1.2 Bandwidth-allocation procedures 17
3.2 Bandwidth Allocation of PT-MLV in 802.16j Networks 19
3.2.1 Process of Interference Detection 19
3.2.2 Procedure of Bandwidth Allocation 26
4. Evaluation and Comparison Results 30
4.1 Simulation environment 30
4.2 Performance Evaluation in 802.16e Networks 33
4.3 Performance Evaluation in 802.16j Networks 38
5. Conclusions 42
References 44

[1]IEEE Computer Society and IEEE Microwave Theory and Techniques Society, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” IEEE Standard for Local and Metropolitan Area Networks, 8th April, 2002.
[2]IEEE Computer Society and IEEE Microwave Theory and Techniques Society, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” IEEE Standard for Local and Metropolitan Area Networks, 1st October, 2004.
[3]IEEE Computer Society and IEEE Microwave Theory and Techniques Society, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems,” 29th May, 2009.
[4]IEEE Computer Society and IEEE Microwave Theory and Techniques Society, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1,” 28th February, 2006.
[5]M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar, “Providing quality of services over a shared wireless link,” IEEE Communication Magazine, February 2001; Page(s): 150-154.
[6]K. Wongthavarawat and A. Ganz, “IEEE 802.16 based last mile broadband wireless military networks with quality of service support,” Military Communications Conference, Boston, USA, 13-16 October, 2003, Page(s): 13-16.
[7]K. Wongthavarawat and A. Ganz, “Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems,” International Journal of Communication Systems, 2003, Volume 16, Issue 1, Page(s): 81-96.
[8]J.F. Chen, W.H. Jiao, and H.X. Wang, “A service flow management strategy for IEEE 802.16 broadband wireless access systems in TDD mode,” IEEE International Conference on Communications, 16-20 May, 2005, Seoul, Korea, Page(s): 3422–3426.
[9]A. Sayenko, O. Alanen, and T. Hamalainen, ”Scheduling solution for the IEEE 802.16 base station,” Computer Networks, 2008, Volume 52, Issue 1, Page(s): 96-115.
[10]Y.N. Lin, Y.D. Lin, Y.C. Lai, and C.W. Wu, “Highest Urgency First (HUF): a latency and modulation aware bandwidth allocation algorithm for WiMAX base stations,” Computer Communications, 2009, Volume 32, Issue 2, Page(s): 332-342.
[11]IEEE Computer Society and IEEE Microwave Theory and Techniques Society, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband ireless Access Systems Amendment 1: Multiple Relay Specification”, 12th June, 2009.
[12]J. Wang, P. Du, W.J. Ji, L.S. Huang, and H. Li, “Joint bandwidth allocation, element assignment and scheduling for wireless mesh networks with MIMO links”, Computer Communications, Volume 31, Issue 7, 2008, Page(s): 1372-1384.
[13]D.C. Schultz, B. Walke, R. Pabst, and T. Imrich, “Fixed and planned relay based radio network deployment concepts,” Proceeding of 10th Wireless World Research Forum, 27-28 October, 2003, New York, USA.
[14]W.H. Park adn S. Bahk, “Resource management policies for fixed relays in cellular networks,” Computer Communications, 2009, Volume 32, Issue 4, Page(s): 703-711.
[15]I.K. Fu, W.H. Sheen, and F.C. Ren, “Deployment and Radio Resource Reuse in IEEE 802.16j Multi-hop Relay Network in Manhattan-like Environment,” 6th International Conference on Information, Communications and Signal Processing, 10-13 December, 2007, Singapore, Page(s): 1-5.
[16]H. Izumikawa, K. Saito, N. Fuke, T. Ueda, and K. Sugiyama, “MAP Multiplexing in IEEE 802.16 Mobile Multi-Hop Relay,” 17th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 11-14 September, 2006, Helsinki, Finland, Page(s): 1-5.
[17]X. Guo, W. Ma, Z. Guo, X. Shen, and Z. Hou, “Adaptive Resource Reuse Scheduling for Multihop Relay Wireless Network Based on Multicoloring,” IEEE Communications Letters, March, 2008, Volume 12, Issue 3, Page(s): 176-178.
[18]Y. Hujun and A. Siavash, “OFDMA: A Broadband Wireless Access Technology,” IEEE Sarnoff Symposium, 27-28 March, 2006, Princeton, USA, Page(s): 1-4.
[19]M.M. Halldorsson1 and G. Kortsarz, ”Multicoloring: Problems and Techniques,” Lecture Notes in Computer Sscience, 2004, Volume 3153, Page(s): 25-41.
[20]S.I. Chakchai, R. Jain, A.K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE Journal on Selected Areas in Communications, February 2009, Volume 27, Issue 2, Page(s): 156-171.
[21]J. Huang, V.G. Subramanian, R. Agrawal, and R. Berry, “Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks,” IEEE Journal on Selected Areas in Communications, February 2009, Volume 27, Issue 2, Page(s): 226–234.
[22]J.F. Borin and N.L.S. da Fonseca, N.L.S. Scheduler for IEEE 802.16 networks. IEEE Communications Letters, April 2008, Volume 12, Issue 4, Page(s): 274-276.
[23]H.W. Wang and W.J. Jia, “An optimized scheduling scheme in OFDMA WiMax networks,” International Journal of Communication Systems, January 2010, Volume 23, Issue 1, Page(s): 23–39.
[24]H. Wang and L. Dittmann, “Downlink resource management for QoS scheduling in IEEE 802.16 WiMAX networks,” Computer Communications, 2010, Volume 33, Issue 8, Page(s): 940-953.
[25]Y.H. Wang, S.S. Wang, S.Y. Huang, “An Adaptive Priority-based Scheduling Scheme for IEEE 802.16 Networks,” The 3rd Workshop on Wireless, Ad Hoc, and Sensor Networks, 6-7 September, 2007, Tamsui, Taiwan.
[26]V. Genc, S. Murphy and J. Murphy, “Performance Analysis of Transparent Relays in 802.16j MMR Networks,” 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, Berlin, German, 1-3 April, 2008, Page(s): 273-281.
[27]“Mobile WiMAX - Part I: A Technical Overview and Performance Evaluation, “ WiMAX Forum, August, 2006.
[28]G. Senarath, W. Tong, P. Zhu, H. Zhang, D. Steer, D. Yu, M. Naden and D. Kitchener, “Multihop System Evaluation Methodology: Traffic Models,” IEEE 802.16 Broadband Wireless Access Working Group, 5th May, 2006.
[29]S. R. Chaudhary, “Performance of WiMAX/ IEEE 802.16 with Different Modulation and Coding,” Communications in Computer and Information Science, Volume 147, Part 3, Page(s): 440 - 444.
[30]S.I. Chakchai, R. Jain, A.K. Tamimi, “Capacity evaluation for IEEE 802.16e mobile WiMAX,” Journal of Computer Systems, Networks, and Communications - Special Issue on WiMAX, LTE, and WiFi interworking, Volume 2010.
[31]T. Starr, J. M. Cioffi, and P. J. Silverman, ”Understanding digital subscriber line technology,” Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999, ISBN:0-13-780545-4.
[32]M.P. Wylie and J. Holtzman, “The non-line of sight problem in mobile location estimation,” 5th IEEE International Conference on Universal Personal Communications, Cambridge, MA , USA, 29 Sep - 2 Oct, 1996, Volume 2, Page(s): 827 - 831.
[33]S.W. Peters and R.W. Heath, “The future of WiMAX: Multihop relaying with IEEE 802.16j,” IEEE Communications Magazine, Volume 47, Issue 1, Page(s): 104 – 111.
[34]S.H. Ali, Ki-Dong Lee, and V.C.M. Leung, “Dynamic resource allocation in OFDMA wireless metropolitan area networks,” IEEE Wireless Communications, Volume 14, Issue 1, Page(s): 6 - 13.
[35]M.H. Ahmed, "Call admission control in wireless networks: a comprehensive survey", IEEE Communications Surveys & Tutorials, Volume 7, Issue 1, Page(s): 49 - 68.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top