跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭聿芬
研究生(外文):Yu-Fen Kuo
論文名稱:金奈米結構表面特性對超氧化物歧化酶之電子轉移特性的探討
論文名稱(外文):Effect of The Surface Properties of Gold Nano-Structure on The Electron Transfer Characteristics of Superoxide Dismutase-Based Electrodes
指導教授:吳靖宙
指導教授(外文):Ching-Chou Wu
口試委員:張憲彰丁信智
口試日期:2011-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物產業機電工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:123
中文關鍵詞:超氧化物歧化酶超氧化物歧化酶超氧化物歧化酶超氧化物歧化酶超氧化物歧化酶
外文關鍵詞:superoxide anionsuperoxide dismutasegold nano-structurespotential of zero chargedirect electron transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞在進行呼吸或免疫反應時,會產生活性氧物質(reactive oxygen species, ROS);當體內過量ROS生成累積時,會形成氧化壓力(oxidative stress),造成心血管與神經病變,如帕金森症、類風濕性關節炎等,因此開發可即時檢測ROS之生物感測器為當今研究趨勢。本研究電沉積不同奈米金結構(gold nanostructure, GNS)於金薄膜電極上,並直接吸附或透過3-mercaptoproponic acid (MPA)修飾後再吸附超氧化物歧化酶(superoxide dismutase, SOD)於GNS上,以構成超氧陰離子(O_2^(∙-))感測電極。實驗中探討表面零電荷電位(potential of zero charge, pzc)、GNS晶格面與形狀對SOD的覆蓋率、電子轉移的影響。實驗結果證實,直接型吸附SOD電極的陰極轉移係數(α_c)與電子轉移速率(ks)受晶格面影響,其中(200)面有助於α_c與ks之反應,而SOD覆蓋率隨粗糙度增加而增加。當以MPA當促進劑(promoter)以靜電力吸附SOD時,在相同GNS電極上,pzc越正,越能促使SOD陰極反應的發生,而SOD覆蓋量則與MPA吸附量呈正相關。
以電化學參數最佳之SOD/ MPA(10 mM修飾24 h)/GNS(1+2+3)電極(SOD覆蓋量為8.79×〖10〗^(-11) mol cm^(-2),α_c與ks分別為0.66與254.1 s-1),對超氧陰離子進行檢測時,其靈敏度與線性區間分別為1.99 nA μM^(-1) cm^(-2)與0.52-1.73 μM,本研究已顯示成功開發一可量測O_2^(∙-)之第三代SOD電極。


When cells perform the behaviors of respiration or immunization, reactive oxygen species (ROS) are produced. An excessive accumulation of ROS forms the oxidative stress for an organism, causing Parkinson’s, cardiovascular disease and rheumatoid arthritis. Therefore, it is one of the tendencies to develop a biosensor to reach the real-time detection of SOD. In this study, different gold nano-structures (GNS) were electrodeposited on the thin-film gold electrodes. Subsequently, superoxide dismutase (SOD) was directly adsorbed on GNS or on 3-mercaptoproponic acid (MPA)-modified GNS to construct a superoxide anion (O_2^(∙-))-sensing electrode. The effects of the potential of zero charge (pzc), the GNS facets and morphology on the SOD coverage and the electron transfer properties are discussed. The results show that cathodic transfer coefficient (αc) and electron transfer rate (ks) were affected by the GNS facets at the SOD direct-absorption electrodes. The (200) facet could facilitate the reaction of αc and ks, and the SOD coverage increased with the surface roughness. In terms of MPA-promoter SOD electrodes, the more positive pzc promoted more cathodic reaction of SOD. Moreover, the SOD coverage was proportional to the MPA coverage.
The SOD/MPA(10 mM for 24 h modification)/GNS(1+2+3) electrodes presented the highest SOD coverage of about(8.79 ± 0.63)×〖10〗^(-10) mol cm^(-2) and the largest αc of 0.66 and ks of 254.1 s-1. The sensitivity and linear range was 1.99 nA μM^(-1) cm^(-2) and 0.52–1.73 μM. The study proves that a third-generation SOD electrode has been successfully achieved for O_2^(∙-) detection.


摘要 I
Abstract II
圖目錄 VII
第一章 緒論 1
1.1研究背景 1
1.2細胞型生物感測器的定義、結構與發展 3
1.2.1細胞型生物感測器的定義 3
1.2.2細胞活性評估之生理意義 4
1.2.3 活性氧物質於體內之來源、影響及檢測技術 6
1.3超氧陰離子酵素感測器 13
1.3.1超氧陰離子安培法酵素感測器原理 13
1.3.2 超氧陰離子之細胞氧化壓力評估 17
1.4電化學製備金奈米結構的方法 18
1.4.1 底材效應 18
1.4.2 保護劑的運用 30
1.4.3 晶種成長(seed-mediated growth) 35
1.5 結合GNS之超氧陰離子酵素感測器 37
1.6表面電位對酵素的影響 40
1.7 研究目的與架構 42
第二章 實驗理論分析 44
2.1電極表面零電荷電位量測原理 44
2.2 酵素反應與酵素電極 50
2.2.1酵素動力學 50
2.2.2 酵素固定技術 52
第三章 材料與方法 54
3.1實驗設備 54
3.2 實驗藥劑 56
3.3感測晶片設計 60
3.4感測晶片製作 61
3.4.1 玻璃清潔 61
3.4.2 正光阻Lift-off製作 61
3.4.3絕緣層製作 63
3.4.4電沉積GNS結構 64
第4章 結果與討論 66
4.1 晶片架構 66
4.2 GNS電化學特性與表面結構 67
4.2.1 GNS結構特性 67
4.2.2 GNS電極電化學特性 75
4.2.3 奈米金表面結構特性 80
4.2.4 Potential of zero charge 分析GNS表面電位 82
4.3 SOD直接吸附型電極之電化學特性 84
4.3.1 SOD/GNS酵素電極電化學特性 85
4.3.2 SOD吸附於經MPA修飾之酵素電極 90
4.3.3 SOD-MPA-GNS酵素電極電化學反應特性整理 100
4.3.4 SOD酵素電極耐久性(durability) 101
4.4 SOD酵素電極O_2^(∙-)量測反應 105
第5章 結論 112
參考文獻 113


傅世宇. 2010. 可評估細胞氧化壓力之細胞晶片的開發. 國立中興大學生物產業機電工程學系碩士論文。
吳惠芳. 2008. 整合微流體注入系統之微型Clark式氧氣晶片的研發. 國立中興大學生物產業機電工程學系碩士論文。
袁佳吟. 2009. 結合圖案化細胞培養之溶氧電極陣列晶片於細胞呼吸活性的評估. 國立中興大學生物產業機電工程學系碩士論文。

Abdelmoti, L. G. and Zamborini, F. P. 2010. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces. Langmuir. 26, 13511.
Amano, Y.; Okumura, C.; Yoshida, M.; Katayama, H.; Unten, S.; Arai, J.; Tagawa, T.; Hoshina, S.; Hashimoto, H.; Ishikawa, H. 1999. Measuring respiration of cultured cell with oxygen electrode as a metabolic indicator for drug screeing. Human Cell. 12, 3.
Avila, A.; Gregory, B. W.; Niki, K.; Cotton, T. M. 2000. An electrochemical approach to investigate fate electron transfer using a physiological model: cytchrome c immobilized on carboxylic acid-terminated alkaethiol self-assembled monolayers on gold electrodes. J. Phys. Chem. B. 104, 2759.
Bannister, J.; Bannister, W.; Wood, E. 1971. Bovine erythrocyte cupro-zinc protein. Eur. J. Biochem. 18, 178.
Bergveld, P. 1970. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE T. Bio-Mrd. Eng. 17. 70.
Beyer, R. E. 1992. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem. Cell Biol. 70, 165.
Bonk, S. M. and Lisdat, F. 2009. Layer-by-layer assembly of electro-active gold nanoparticle/cytochrome c multilayers. Biosens. Bioelectron. 25, 739.
Bos, M. A.; Shervani, Z.; Anusiem, A. C.I.; Giesbers, M.; Norde, W.; Kleijn, J. M. 1994. Influence of the electric potential of the interface on the adsorption of proteins. Collids Surfaces B. 3, 91.
Butler, J. and Halliwell, B. 1982. Reaction of iron-EDTA chelates with the superoxide radical. Arch. Biochem. Biophys. 218, 174.
Carmody, R.J. and Cotter, T.G. 2000. Oxidative stress induses caspaseindependent retinal apoptosis in vitro. Cell Death Differ. 7, 282.
Cerucat, C.; Vela, M. E.; Salvarezza. 2005. Self-assembled monolayers of alkanethiols on Au(111): surface structures, defects and dynamics. Phys. Chem. Chem. Phys. 7, 3258.
Chang, S. C.; Rodrigues, N. P.; Henderson, J. R.; Anthony, C.; Bedioui, F.; McNeil, C. J. 2005b. An electrochemical sensor array system for the direct, simultaneous in vitro monitoring of nitric oxide and superoxide production by cultured cells. Biosens. Bioelectron. 21, 917.
Chang, S. C.; Rodrigues, N. P.; Zurgil, N.; Henderson, J. R.; Bedioui, F.; McNeil, C. J.; Deutsch, M. 2005a. Simultaneous intra- and extracellular superoxide monitoring using an integrated optical and electrochemical sensor system. Biochem. Biophys. Res. Commun. 327, 979.
Chowdhury, Al-N.; Alam, M. T.; Okajima, T.; Ohsaka, T. 2009. Fabrication of Au(111) facet enriched electrode on glassy carbon. J. Electroanal. Chem. 466, 234.
Clark, L.C.; Wolf, R.; Granger, D.; Taylor, Z. 1953. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 6, 189.
Curtin, J. F.; Donovan, M.; Cotter, T. G. 2002. Regulation and measurement of oxidative stressin apoptosis. J. Immunol. Methods. 265, 49.
Deng, Z.; Rui, X.; Yin, X.; Liu, H.; Tian, T. 2008. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase. Anal. Chem. 80, 5839.
Di Gleria, K.; Hill, H. A. O.; Lowe, V. J.; Page, D. J. 1986. Direct electrochemistry of horse-heart cytochrome c at amino acid-modified gold electrodes. J. Electroanal. Chem. 213, 333.
Eberhardt, E.; Santos, E.; Schmickler, W. 1996. Impedance studies of restructured and non-reconstructed gold single crystal surfaces. J. Electroanal. Chem. 419, 23.
Egodage, K. L.; de Silva, B. S.; Wilson, G. S. 1997. Probing the conformation and orientation of adsorbed protein using monoclonal antibodies: cytochrome c3 films on a mercury electrode. J. Am. Chem. Soc. 119, 5295.
El- Deab, M. S; Arihara, K.; Ohsaka, T. 2004. Fabrication of Au(111)-like polycrystalline gold electrodes and their applications to oxygen reduction. J. Electrochem. Soc. 151, E213.
El-Deab, M. S. and Ohsaka, T. 2007. Direct electron transfer of copper-zinc superoxide dismutase (SOD) on crystallographically oriented Au nanoparticles. Electrochem. Comm. 9, 651.
El-Deab, M. S. and Ohsaka, T. 2002. An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem. Comm. 3, 446.
Endo, K.; Miyasaka, T.; Mochizuki, S.; Aoyagi, S.; Himi, N.; Asahara, H.; Tsujioka, K.; Sakai, K. 2002. Development of a superoxide sensor by immobilization of superoxide dismutase. Sens. Actuator. 83, 30.
Feynman, R. P. 1959. There’s a Plenty of Room at the Bottom. Annual meeting of the American Physical Society. California, USA.
Fromherz, P.; Offenhausser, A.; Vetter, T. 1991. A neuro-silicon junction: A retzius cell of the leech on an insulated-gated field-effect teansistor. Science. 252, 1290.
Garlick, P. B.; Davies, M. J.; Hearse, D. J.; Slater, T. F. 1987. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circulation Research. 61, 757.
Green, M. J.; Hill, H. A. O.; Tew, D. G. 1987. The rate of oxygen consumption and superoxide anion formation by stimulated human neutrophils. The effect of particle concentration and size. FEBS Lett. 216, 31.
Green, M. J.; Hill, H. A. O.; Tew, D. G.; Walton, N. J. 1984. An opsonised electrode: The direct electrochemical detection of superoxide generated by human neutrophils. FEBS Lett. 170, 69.
Greenbauma, J. and Nirmalanb, M. 2005. Acid-base balance: The traditional approach. Curr. Anaesth. Crit. Care. 16, 137.
Guo, S. J.; Wang, L.; Wang, E. 2007. Templateless, surfactaneless, simple electrochemical route to rapid synthesis of diameter-controlled 3D flowerlike gold microstructure with “clean” surface. Chem. Comm. 3163.
Hamelin, A.; Vitanov, T.; Sevastyanov, E.; Popov, A. 1983. The electrochemical double layer on sp metal single crystals. J. Electroanal. Chem. 145, 225.
Harman, D. 1956. Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology. 11, 298.
Hensley, K.; Robinson, K. A.; Gabbita, S. P.; Salsman, S.; Flotd, R. A. 2000. Reactive oxygen species, cell signaling, and cell injury. Free. Radic. Biol. Med. 28, 1456.
Hill, H. A. O.; Tew, D. G.; Walton, N. J. 1985. An opsomised microelectrode: Observation of the respiratory burst of a single human neutrophil. FEBS Lett. 191, 257.
Hodgkin, A. L.; Huxley, A. F. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449.
Imabayashi, S. I.; Inda, M.; hobara, D.; Feng, Z. Q.; Niki, K.; Kakiuchi, T. 1997. Reductive desorption of carboxylic-acid-terminated alkanethiol monolayers from Au(111)surfaces. J. Electroanal. Chem. 428, 33.
Ji, X.; Ren, J.; Nakamura, T. 2007. A sensor for superoxide in aqueous and organic/aqueous media based on immobilized cytochrome c on binary self-assemble monolayers. Biosens. Bioelectron. 23, 241.
Kaya, T.; Torisawa, Y.; Oyamatsu, D.; Nishizawa, M.; Matsue, T. 2003. Monitoring the cellular activity of a cultured single cell by scanning electrochemical microscopy. A comparison with fluorescence viability monitoring. Biosens. Bioelectrom. 18, 1379.
Kehrer, J. P. 2000. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 149, 43.
Koppenol, W. H.; Butler, J. and van Leeuwen, J. W. 1978. The Haber-Weiss cycle. Photochem. Photobiol. 28, 655.
Kuznetsov, B. A.; Byzova, N. A.; Shumakovich, G. P. 1994. The effect of the orientation of cytochrome c molecules covalently attached to the electrode surface upon their electrochemical activity. J. Electroanal. Chem. 371, 85.
Laviron, E. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19.
Lecomte, S.; Hildebrandt, P.; Soulimane, T. 1999. Dynamics of the heterogeneous electron-transfer reaction of cytochrome c552 from Thermus thermophilus. A time-resolved surface-enhanced resonance Raman spectroscopic study. J. Phys. Chem. B. 103, 10053.
Liu, H. Q.; Tiam, Y.; Xia, P. P. 2008. Pyramidal, rodlike spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: application to superoxide anion biosensors. Langmuir. 24, 6359.
Liu, H. Q.; Tian, T.; Deng, Z. F. 2007. Morphology-dependent electrochemistry and electrocatalytical activity of Cytochrome c. Langmuir. 23, 9487.
Liu, S. Q. and Ju, H. X. 2003. Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and collidal gold. Analyst. 128, 1420.
Liu, S. Q. and Ju, H. X. 2003. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens. Bioelectron. 19, 177.
Liu, S. Q.; Yu, J. H.; Ju, H. X. 2003. Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. J. Electroanal. Chem. 540, 61.
Liu, S.F.; Li, X. H.; Li, Y. C.; Li, Y. F.; Li, J. R.; Jianf, L. 2005. The influence of gold nanoparticle modified electron on the structure of mercaptopropionic acid self-assembly monolayer. Electrochim. Acta. 51, 427.
Lopez, N. and Nørskov, J. K. 2002. Catalytic CO Oxidation by a Gold Nanoparticle: A Density Functional Study. J. Am. Chem. Soc. 124, 11262.
Lvovich, V. and Scheeline, A. 1997. Amperometric sensors for simultaneous superoxide and hydrogen peroxide detection. Anal. Chem. 69,454.
Lvovich, V. and Scheeline, A. 1997. Simultaneous superoxide and hydrogen peroxide detection in peroxide/NADH oscillator. Anal. Chim. Acta. 354, 315.
Majid, E.; Harpovic, S.; Liu, Y.; Male, K.B.; Luong, J. H. T. 2006. Electrochemical determination of As using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal. Chem. 78, 762.
Manning, P.; McNeil, C. J.; Cooper, J. M.; Hillhouse, E.E. 1998. Direct, real-time sensing of free radical production by activated human glioblastoma cells. Free Rad. Biol. Med. 24, 1304.
McConkey, D. J. 1998. Biochemical determinants of apotosis and necrosis. Toxicol. Lett. 99, 157.
McNeil, C. J.; Athey, D.; Ho, W.O. 1995. Direct electron transfer bioelectronic interfaces; application to clinical analysis. Biosens. Bioelectrom. 10, 75.
McNeil, C. J.; Chang, S. C.; Pereira-Rodrigues, N.; Henderson, J. R.; Cole, A.; Bedioui, F. 2005. An electrochemical sesor array system for the direct, simultaneous in vitro monitoring of nitric oxide and superoxide production by cultures cells. Biosens. Bioelectron. 21, 917.
McNeil, C. J.; Henderson, J. R.; Fulton, D. A.; Manning, P. 2009. The development and in vitro characterisation of an intracellular nanosensor responsive to reactive oxygen species. Biosens. Bioelectron. 24, 3608.
McNeil, C. J.; Manning, P.; M.Cooper, J.; W. Hillhouse, E., 1998. Direct, real-time sensing of free radical production by activated human glioblastoma cells. Free Radic. Bio. Med. 24, 1304.
Mesaros, S.; Vankova, Z.; Mesarosova, A.; Tomcik, P.; Grunfeld, S. 1998. Electrochemical sensors, biosensors and their biomedical applications. Bioelectrochem. Bioenerg. 46, 33.
Mitchhell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 191, 144.
Nasaka, A.Y.; Natsui, H.; Sasagawa, M. 2006. Electron spin resonance studies on the oxidation mechanism of sterically hindered cyclic amines in TiO2 photocatalytic systems. J.Phys. Chem. B. 110, 12993.
Natio, K.; Tachikawa, T.; Fujitsuka, M.; Majima, T., 2008. Real-time single-molecule imaging of the spatial and temporal distribution of reactive oxygen species with fluorescent probes: applications to TiO2 photocatalysts. J. Phys. Chem. 112, 1048.
Nishizawa, M.; Takoh, K.; Matsue, M. 2002. Micropatterning of HeLa cells on glass substrates and evaluation of respiratory activity using microelectrodes. Langmuir. 18, 3645.
Ohsaka, T.; Shintani, Y.; Matsumoto, F.; Okajima, T.; Tokuda, K. 1995. Mediated electron transfer of polyethylene oxide-modified superoxide dismutase by methyl viologen. Bioelectrochem. Bioengerg. 37, 73.
Oyama, T.; Okajima, T.; Ohsaka, T. 2007. Electrodeposition of gold at glassy carbon electrodes in room-temperature ionic liquids. J. Electrochem. Soc. 154, D322.
Parce, J. W. and Owicki, J. C. 1989. Detection of cell-affecting agents with a silicon biosensor. Science. 246, 243.
Qin, Y.; Lu, M.; Gong, X. 2008. Dihydrohodmine 123 is superior to 2,7-dichlorodihydrofluorescine diacetate and dihydrorhodamine 6G in detecting intracellular hydrogen peroxide in tumor cells. Cell Biol. Int. 32, 224.
Rahman, R. M.; Okajima, T.; Ohsaka, T. 2010. Fabrication of Au(111) nanoparticle-like electrode through a seed-meediated groeth. Chem. Comm. 46, 5172.
Sakai, N.; Fujiwara, Y.; Arai, M.; Yu, K. F.; Tatsuma. T. 2009. Electrodeposition of gold nanoparticles on ITO: Control of morphology and Plasmon resonance-based absorption and scattering. J. Electroanal. Chem. 628, 7.
Sano, T.; Umeda, F.; Hashimoto, T.; Nawata, H.; Utsumi, H. 1998. Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia. 41, 1355.
Scheller, W.; Jin, W.; Ehrentreich-Förster, E.; Ge, B.; Lidat, F.; Büttemeier, R.; Wollenberger, U.; Scheller, F. W. 1999. Cytochrome C based superoxide sensor for in vivo application. Electroanalysis. 11, 10.
Song, M. I.; Vankova, Z.; Grunfel, S.; Mesarosova, A.; Malinski, T. 1998. Preparation and optimization of superoxide microbiosensor. Anal. Chim. Acta. 358, 27.
Sutton, H. C. and Winterbourne, C. C. 1984. Role of metal chelating agents as catalysts in a hydroxyl radical forming process- a comparison with the Haber-Weiss reaction. Oxygen Radicals in Chemistry and Biology. pp.177. Walter de Gruyter and Co, Berlin.
Suzuki, H.; Kojima, N,; Sugama, A.; Takei, F. 1990. Development of a miniature Clark-type oxygen electrode using semiconductor techniques and its improvement for practical application. Sens. Actuator B: Chem. 2, 185.
Tammeveski, K.; Tenno, T. T.; Mashirin, A. A.; Hillhouse, E. W.; Manning, P.; McNeil, C. J. 1998. Superoxide electrode based on covalently immobilized cytochrome c: modeling studies. Free Rad. Biol. Med.25, 973.
Tsai, M. C. and Chem, P. Y. Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media. Talanta. 76, 533.
Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. 1996. Electrochemical biosensors: Proposed definitions and classification. Synopsis of Report. Sens. Actuator B: Chem. 30, 81.
Thomas, C.A.; Springer, J. R.; Loeb, P. A. 1972. A miniature microelectrode array to minitor the bioelectric activity of cultured cells. Exp. Cell Res. 74, 61.
Tian, Y.; Liu, H. Q.; Zhao, G. H.; Tatsuma, T. 2006. Shape-controlled electrodeposition of gold nanostructures. J. Phys. Chem. B. 110, 23478.
Tian, Y.; Mao, L.; Okajima, T.; Ohsaka, T. 2002a. Superoxide dismutase-based third-generation biosensor for superoxide anion. Anal. Chem.74, 2428.
Tian, Y.; Mao, L.; Okajima, T.; Ohsaka, T. 2004. Electrochemistry and electrocatalytic activities of superoxide dismutases at gold electrodes modified with a self-assembled monolayer. Anal. Chem. 76, 4162.
Tian, Y.; Shioda, M.; Kasahara, S.; Okajima, T.; Mao, L.; Hisabori, T.; Ohsaka, T. 2002b. A facilitated electron transfer of copper-zinc superoxide dismutase (SOD) based on a cysteine-brideg SOD electrode. Biochim. Biophys. Acta. 1569, 151.
Torisawa, Y.; Ohara, N.; Nagamine, K.; Kasai, S.; Yasukawa, T.; Shiku, H.; Matsue, T. 2006. Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system. Anal. Chem. 78, 7625.
Torisawa, Y.; Takagi, A.; Nashimoto, Y.; Yasukawa, T.; Shiku, H.; Matsue, T. 2007. A multicellular spheroid array to realize spheroid formantion, culture, and viability assay on a chip. Biomaterials. 28, 559.
Wang, L. P.; Mao, W.; Ni, D. D.; Di, J. W.; Wu, Y.; Tu, Y. F. 2008. Direct electrodeposition of gold particles onto intium/tin oxide film coated glass and its application for electrochemical biosensor. Electrochem. Commun. 10, 673.
Wang, L.; Guo, S.; Hu, X.; Dong, S. 2008. Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface. Electrochem. Commun. 10, 95.
Wu, C. C.; Yasukawa, T.; Shiku, H.; Matsue, M. 2005. Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sens. Actuator B: Chem. 110, 342.
Xiao, Y.; Ju, H. X.; Chhen, H. Y. 2000. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal. Biochem. 278, 22.
Xu, X.; Jia, J.; Yang, X.; Dong, S. 2010. A templateless, simple electrochemical route to a dendritic gold nanostructure and its application to oxygen reduction. Langmuir. 26, 7627.
Ye, W.; Yan, J.; Ye, Q.; Zhou, F. 2010. Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures growth and their multiple applications. J. Phys. Chem. C. 114, 15617.
Zhao, Y. R.; Wu Y.; Zhang, Y.; Chen, Z.; Cao, Z.; Di, J.; Yang, J. 2009. Electrocatalytic behavior and amperometric detection of morphine on ITO electrode modified with directly electrodeposited gold nanoparticles. Electroanalysis. 21, 939.
Zhang, D.; Wilson, G.; Nlkl, K. 1994. Electrochemistry of adsorbed cytochrome c3 on mercury, glassy carbon, and gold electrodes. Anal. Chem. 66, 3873.
Zhang, H.; Xu, J. J.; Chen, H. Y. 2008. Shape-controlled gold nanoarchitectures: synthesis, superhydrophobicity, and electrocatalytic properties. J. Phys. Chem. 112, 13886.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊