傅世宇. 2010. 可評估細胞氧化壓力之細胞晶片的開發. 國立中興大學生物產業機電工程學系碩士論文。吳惠芳. 2008. 整合微流體注入系統之微型Clark式氧氣晶片的研發. 國立中興大學生物產業機電工程學系碩士論文。袁佳吟. 2009. 結合圖案化細胞培養之溶氧電極陣列晶片於細胞呼吸活性的評估. 國立中興大學生物產業機電工程學系碩士論文。Abdelmoti, L. G. and Zamborini, F. P. 2010. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces. Langmuir. 26, 13511.
Amano, Y.; Okumura, C.; Yoshida, M.; Katayama, H.; Unten, S.; Arai, J.; Tagawa, T.; Hoshina, S.; Hashimoto, H.; Ishikawa, H. 1999. Measuring respiration of cultured cell with oxygen electrode as a metabolic indicator for drug screeing. Human Cell. 12, 3.
Avila, A.; Gregory, B. W.; Niki, K.; Cotton, T. M. 2000. An electrochemical approach to investigate fate electron transfer using a physiological model: cytchrome c immobilized on carboxylic acid-terminated alkaethiol self-assembled monolayers on gold electrodes. J. Phys. Chem. B. 104, 2759.
Bannister, J.; Bannister, W.; Wood, E. 1971. Bovine erythrocyte cupro-zinc protein. Eur. J. Biochem. 18, 178.
Bergveld, P. 1970. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE T. Bio-Mrd. Eng. 17. 70.
Beyer, R. E. 1992. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem. Cell Biol. 70, 165.
Bonk, S. M. and Lisdat, F. 2009. Layer-by-layer assembly of electro-active gold nanoparticle/cytochrome c multilayers. Biosens. Bioelectron. 25, 739.
Bos, M. A.; Shervani, Z.; Anusiem, A. C.I.; Giesbers, M.; Norde, W.; Kleijn, J. M. 1994. Influence of the electric potential of the interface on the adsorption of proteins. Collids Surfaces B. 3, 91.
Butler, J. and Halliwell, B. 1982. Reaction of iron-EDTA chelates with the superoxide radical. Arch. Biochem. Biophys. 218, 174.
Carmody, R.J. and Cotter, T.G. 2000. Oxidative stress induses caspaseindependent retinal apoptosis in vitro. Cell Death Differ. 7, 282.
Cerucat, C.; Vela, M. E.; Salvarezza. 2005. Self-assembled monolayers of alkanethiols on Au(111): surface structures, defects and dynamics. Phys. Chem. Chem. Phys. 7, 3258.
Chang, S. C.; Rodrigues, N. P.; Henderson, J. R.; Anthony, C.; Bedioui, F.; McNeil, C. J. 2005b. An electrochemical sensor array system for the direct, simultaneous in vitro monitoring of nitric oxide and superoxide production by cultured cells. Biosens. Bioelectron. 21, 917.
Chang, S. C.; Rodrigues, N. P.; Zurgil, N.; Henderson, J. R.; Bedioui, F.; McNeil, C. J.; Deutsch, M. 2005a. Simultaneous intra- and extracellular superoxide monitoring using an integrated optical and electrochemical sensor system. Biochem. Biophys. Res. Commun. 327, 979.
Chowdhury, Al-N.; Alam, M. T.; Okajima, T.; Ohsaka, T. 2009. Fabrication of Au(111) facet enriched electrode on glassy carbon. J. Electroanal. Chem. 466, 234.
Clark, L.C.; Wolf, R.; Granger, D.; Taylor, Z. 1953. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 6, 189.
Curtin, J. F.; Donovan, M.; Cotter, T. G. 2002. Regulation and measurement of oxidative stressin apoptosis. J. Immunol. Methods. 265, 49.
Deng, Z.; Rui, X.; Yin, X.; Liu, H.; Tian, T. 2008. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase. Anal. Chem. 80, 5839.
Di Gleria, K.; Hill, H. A. O.; Lowe, V. J.; Page, D. J. 1986. Direct electrochemistry of horse-heart cytochrome c at amino acid-modified gold electrodes. J. Electroanal. Chem. 213, 333.
Eberhardt, E.; Santos, E.; Schmickler, W. 1996. Impedance studies of restructured and non-reconstructed gold single crystal surfaces. J. Electroanal. Chem. 419, 23.
Egodage, K. L.; de Silva, B. S.; Wilson, G. S. 1997. Probing the conformation and orientation of adsorbed protein using monoclonal antibodies: cytochrome c3 films on a mercury electrode. J. Am. Chem. Soc. 119, 5295.
El- Deab, M. S; Arihara, K.; Ohsaka, T. 2004. Fabrication of Au(111)-like polycrystalline gold electrodes and their applications to oxygen reduction. J. Electrochem. Soc. 151, E213.
El-Deab, M. S. and Ohsaka, T. 2007. Direct electron transfer of copper-zinc superoxide dismutase (SOD) on crystallographically oriented Au nanoparticles. Electrochem. Comm. 9, 651.
El-Deab, M. S. and Ohsaka, T. 2002. An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem. Comm. 3, 446.
Endo, K.; Miyasaka, T.; Mochizuki, S.; Aoyagi, S.; Himi, N.; Asahara, H.; Tsujioka, K.; Sakai, K. 2002. Development of a superoxide sensor by immobilization of superoxide dismutase. Sens. Actuator. 83, 30.
Feynman, R. P. 1959. There’s a Plenty of Room at the Bottom. Annual meeting of the American Physical Society. California, USA.
Fromherz, P.; Offenhausser, A.; Vetter, T. 1991. A neuro-silicon junction: A retzius cell of the leech on an insulated-gated field-effect teansistor. Science. 252, 1290.
Garlick, P. B.; Davies, M. J.; Hearse, D. J.; Slater, T. F. 1987. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circulation Research. 61, 757.
Green, M. J.; Hill, H. A. O.; Tew, D. G. 1987. The rate of oxygen consumption and superoxide anion formation by stimulated human neutrophils. The effect of particle concentration and size. FEBS Lett. 216, 31.
Green, M. J.; Hill, H. A. O.; Tew, D. G.; Walton, N. J. 1984. An opsonised electrode: The direct electrochemical detection of superoxide generated by human neutrophils. FEBS Lett. 170, 69.
Greenbauma, J. and Nirmalanb, M. 2005. Acid-base balance: The traditional approach. Curr. Anaesth. Crit. Care. 16, 137.
Guo, S. J.; Wang, L.; Wang, E. 2007. Templateless, surfactaneless, simple electrochemical route to rapid synthesis of diameter-controlled 3D flowerlike gold microstructure with “clean” surface. Chem. Comm. 3163.
Hamelin, A.; Vitanov, T.; Sevastyanov, E.; Popov, A. 1983. The electrochemical double layer on sp metal single crystals. J. Electroanal. Chem. 145, 225.
Harman, D. 1956. Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology. 11, 298.
Hensley, K.; Robinson, K. A.; Gabbita, S. P.; Salsman, S.; Flotd, R. A. 2000. Reactive oxygen species, cell signaling, and cell injury. Free. Radic. Biol. Med. 28, 1456.
Hill, H. A. O.; Tew, D. G.; Walton, N. J. 1985. An opsomised microelectrode: Observation of the respiratory burst of a single human neutrophil. FEBS Lett. 191, 257.
Hodgkin, A. L.; Huxley, A. F. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449.
Imabayashi, S. I.; Inda, M.; hobara, D.; Feng, Z. Q.; Niki, K.; Kakiuchi, T. 1997. Reductive desorption of carboxylic-acid-terminated alkanethiol monolayers from Au(111)surfaces. J. Electroanal. Chem. 428, 33.
Ji, X.; Ren, J.; Nakamura, T. 2007. A sensor for superoxide in aqueous and organic/aqueous media based on immobilized cytochrome c on binary self-assemble monolayers. Biosens. Bioelectron. 23, 241.
Kaya, T.; Torisawa, Y.; Oyamatsu, D.; Nishizawa, M.; Matsue, T. 2003. Monitoring the cellular activity of a cultured single cell by scanning electrochemical microscopy. A comparison with fluorescence viability monitoring. Biosens. Bioelectrom. 18, 1379.
Kehrer, J. P. 2000. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 149, 43.
Koppenol, W. H.; Butler, J. and van Leeuwen, J. W. 1978. The Haber-Weiss cycle. Photochem. Photobiol. 28, 655.
Kuznetsov, B. A.; Byzova, N. A.; Shumakovich, G. P. 1994. The effect of the orientation of cytochrome c molecules covalently attached to the electrode surface upon their electrochemical activity. J. Electroanal. Chem. 371, 85.
Laviron, E. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19.
Lecomte, S.; Hildebrandt, P.; Soulimane, T. 1999. Dynamics of the heterogeneous electron-transfer reaction of cytochrome c552 from Thermus thermophilus. A time-resolved surface-enhanced resonance Raman spectroscopic study. J. Phys. Chem. B. 103, 10053.
Liu, H. Q.; Tiam, Y.; Xia, P. P. 2008. Pyramidal, rodlike spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: application to superoxide anion biosensors. Langmuir. 24, 6359.
Liu, H. Q.; Tian, T.; Deng, Z. F. 2007. Morphology-dependent electrochemistry and electrocatalytical activity of Cytochrome c. Langmuir. 23, 9487.
Liu, S. Q. and Ju, H. X. 2003. Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and collidal gold. Analyst. 128, 1420.
Liu, S. Q. and Ju, H. X. 2003. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens. Bioelectron. 19, 177.
Liu, S. Q.; Yu, J. H.; Ju, H. X. 2003. Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. J. Electroanal. Chem. 540, 61.
Liu, S.F.; Li, X. H.; Li, Y. C.; Li, Y. F.; Li, J. R.; Jianf, L. 2005. The influence of gold nanoparticle modified electron on the structure of mercaptopropionic acid self-assembly monolayer. Electrochim. Acta. 51, 427.
Lopez, N. and Nørskov, J. K. 2002. Catalytic CO Oxidation by a Gold Nanoparticle: A Density Functional Study. J. Am. Chem. Soc. 124, 11262.
Lvovich, V. and Scheeline, A. 1997. Amperometric sensors for simultaneous superoxide and hydrogen peroxide detection. Anal. Chem. 69,454.
Lvovich, V. and Scheeline, A. 1997. Simultaneous superoxide and hydrogen peroxide detection in peroxide/NADH oscillator. Anal. Chim. Acta. 354, 315.
Majid, E.; Harpovic, S.; Liu, Y.; Male, K.B.; Luong, J. H. T. 2006. Electrochemical determination of As using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal. Chem. 78, 762.
Manning, P.; McNeil, C. J.; Cooper, J. M.; Hillhouse, E.E. 1998. Direct, real-time sensing of free radical production by activated human glioblastoma cells. Free Rad. Biol. Med. 24, 1304.
McConkey, D. J. 1998. Biochemical determinants of apotosis and necrosis. Toxicol. Lett. 99, 157.
McNeil, C. J.; Athey, D.; Ho, W.O. 1995. Direct electron transfer bioelectronic interfaces; application to clinical analysis. Biosens. Bioelectrom. 10, 75.
McNeil, C. J.; Chang, S. C.; Pereira-Rodrigues, N.; Henderson, J. R.; Cole, A.; Bedioui, F. 2005. An electrochemical sesor array system for the direct, simultaneous in vitro monitoring of nitric oxide and superoxide production by cultures cells. Biosens. Bioelectron. 21, 917.
McNeil, C. J.; Henderson, J. R.; Fulton, D. A.; Manning, P. 2009. The development and in vitro characterisation of an intracellular nanosensor responsive to reactive oxygen species. Biosens. Bioelectron. 24, 3608.
McNeil, C. J.; Manning, P.; M.Cooper, J.; W. Hillhouse, E., 1998. Direct, real-time sensing of free radical production by activated human glioblastoma cells. Free Radic. Bio. Med. 24, 1304.
Mesaros, S.; Vankova, Z.; Mesarosova, A.; Tomcik, P.; Grunfeld, S. 1998. Electrochemical sensors, biosensors and their biomedical applications. Bioelectrochem. Bioenerg. 46, 33.
Mitchhell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 191, 144.
Nasaka, A.Y.; Natsui, H.; Sasagawa, M. 2006. Electron spin resonance studies on the oxidation mechanism of sterically hindered cyclic amines in TiO2 photocatalytic systems. J.Phys. Chem. B. 110, 12993.
Natio, K.; Tachikawa, T.; Fujitsuka, M.; Majima, T., 2008. Real-time single-molecule imaging of the spatial and temporal distribution of reactive oxygen species with fluorescent probes: applications to TiO2 photocatalysts. J. Phys. Chem. 112, 1048.
Nishizawa, M.; Takoh, K.; Matsue, M. 2002. Micropatterning of HeLa cells on glass substrates and evaluation of respiratory activity using microelectrodes. Langmuir. 18, 3645.
Ohsaka, T.; Shintani, Y.; Matsumoto, F.; Okajima, T.; Tokuda, K. 1995. Mediated electron transfer of polyethylene oxide-modified superoxide dismutase by methyl viologen. Bioelectrochem. Bioengerg. 37, 73.
Oyama, T.; Okajima, T.; Ohsaka, T. 2007. Electrodeposition of gold at glassy carbon electrodes in room-temperature ionic liquids. J. Electrochem. Soc. 154, D322.
Parce, J. W. and Owicki, J. C. 1989. Detection of cell-affecting agents with a silicon biosensor. Science. 246, 243.
Qin, Y.; Lu, M.; Gong, X. 2008. Dihydrohodmine 123 is superior to 2,7-dichlorodihydrofluorescine diacetate and dihydrorhodamine 6G in detecting intracellular hydrogen peroxide in tumor cells. Cell Biol. Int. 32, 224.
Rahman, R. M.; Okajima, T.; Ohsaka, T. 2010. Fabrication of Au(111) nanoparticle-like electrode through a seed-meediated groeth. Chem. Comm. 46, 5172.
Sakai, N.; Fujiwara, Y.; Arai, M.; Yu, K. F.; Tatsuma. T. 2009. Electrodeposition of gold nanoparticles on ITO: Control of morphology and Plasmon resonance-based absorption and scattering. J. Electroanal. Chem. 628, 7.
Sano, T.; Umeda, F.; Hashimoto, T.; Nawata, H.; Utsumi, H. 1998. Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia. 41, 1355.
Scheller, W.; Jin, W.; Ehrentreich-Förster, E.; Ge, B.; Lidat, F.; Büttemeier, R.; Wollenberger, U.; Scheller, F. W. 1999. Cytochrome C based superoxide sensor for in vivo application. Electroanalysis. 11, 10.
Song, M. I.; Vankova, Z.; Grunfel, S.; Mesarosova, A.; Malinski, T. 1998. Preparation and optimization of superoxide microbiosensor. Anal. Chim. Acta. 358, 27.
Sutton, H. C. and Winterbourne, C. C. 1984. Role of metal chelating agents as catalysts in a hydroxyl radical forming process- a comparison with the Haber-Weiss reaction. Oxygen Radicals in Chemistry and Biology. pp.177. Walter de Gruyter and Co, Berlin.
Suzuki, H.; Kojima, N,; Sugama, A.; Takei, F. 1990. Development of a miniature Clark-type oxygen electrode using semiconductor techniques and its improvement for practical application. Sens. Actuator B: Chem. 2, 185.
Tammeveski, K.; Tenno, T. T.; Mashirin, A. A.; Hillhouse, E. W.; Manning, P.; McNeil, C. J. 1998. Superoxide electrode based on covalently immobilized cytochrome c: modeling studies. Free Rad. Biol. Med.25, 973.
Tsai, M. C. and Chem, P. Y. Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media. Talanta. 76, 533.
Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. 1996. Electrochemical biosensors: Proposed definitions and classification. Synopsis of Report. Sens. Actuator B: Chem. 30, 81.
Thomas, C.A.; Springer, J. R.; Loeb, P. A. 1972. A miniature microelectrode array to minitor the bioelectric activity of cultured cells. Exp. Cell Res. 74, 61.
Tian, Y.; Liu, H. Q.; Zhao, G. H.; Tatsuma, T. 2006. Shape-controlled electrodeposition of gold nanostructures. J. Phys. Chem. B. 110, 23478.
Tian, Y.; Mao, L.; Okajima, T.; Ohsaka, T. 2002a. Superoxide dismutase-based third-generation biosensor for superoxide anion. Anal. Chem.74, 2428.
Tian, Y.; Mao, L.; Okajima, T.; Ohsaka, T. 2004. Electrochemistry and electrocatalytic activities of superoxide dismutases at gold electrodes modified with a self-assembled monolayer. Anal. Chem. 76, 4162.
Tian, Y.; Shioda, M.; Kasahara, S.; Okajima, T.; Mao, L.; Hisabori, T.; Ohsaka, T. 2002b. A facilitated electron transfer of copper-zinc superoxide dismutase (SOD) based on a cysteine-brideg SOD electrode. Biochim. Biophys. Acta. 1569, 151.
Torisawa, Y.; Ohara, N.; Nagamine, K.; Kasai, S.; Yasukawa, T.; Shiku, H.; Matsue, T. 2006. Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system. Anal. Chem. 78, 7625.
Torisawa, Y.; Takagi, A.; Nashimoto, Y.; Yasukawa, T.; Shiku, H.; Matsue, T. 2007. A multicellular spheroid array to realize spheroid formantion, culture, and viability assay on a chip. Biomaterials. 28, 559.
Wang, L. P.; Mao, W.; Ni, D. D.; Di, J. W.; Wu, Y.; Tu, Y. F. 2008. Direct electrodeposition of gold particles onto intium/tin oxide film coated glass and its application for electrochemical biosensor. Electrochem. Commun. 10, 673.
Wang, L.; Guo, S.; Hu, X.; Dong, S. 2008. Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface. Electrochem. Commun. 10, 95.
Wu, C. C.; Yasukawa, T.; Shiku, H.; Matsue, M. 2005. Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sens. Actuator B: Chem. 110, 342.
Xiao, Y.; Ju, H. X.; Chhen, H. Y. 2000. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal. Biochem. 278, 22.
Xu, X.; Jia, J.; Yang, X.; Dong, S. 2010. A templateless, simple electrochemical route to a dendritic gold nanostructure and its application to oxygen reduction. Langmuir. 26, 7627.
Ye, W.; Yan, J.; Ye, Q.; Zhou, F. 2010. Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures growth and their multiple applications. J. Phys. Chem. C. 114, 15617.
Zhao, Y. R.; Wu Y.; Zhang, Y.; Chen, Z.; Cao, Z.; Di, J.; Yang, J. 2009. Electrocatalytic behavior and amperometric detection of morphine on ITO electrode modified with directly electrodeposited gold nanoparticles. Electroanalysis. 21, 939.
Zhang, D.; Wilson, G.; Nlkl, K. 1994. Electrochemistry of adsorbed cytochrome c3 on mercury, glassy carbon, and gold electrodes. Anal. Chem. 66, 3873.
Zhang, H.; Xu, J. J.; Chen, H. Y. 2008. Shape-controlled gold nanoarchitectures: synthesis, superhydrophobicity, and electrocatalytic properties. J. Phys. Chem. 112, 13886.