(3.232.129.123) 您好!臺灣時間:2021/03/06 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:傅書豪
研究生(外文):Shu-Hao Fu
論文名稱:鋁吸雜應用於單晶矽晶圓的探討
論文名稱(外文):The Study of Aluminum Gettering Applied to Single Crystalline Silicon Wafer
指導教授:貢中元貢中元引用關係
指導教授(外文):Chung-Yuan Kung
口試委員:楊尚霖王珽玉吳德清
口試日期:2011-07-08
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:53
中文關鍵詞:鋁吸雜熱歷史預先熱處理載子生命期載子遷移率
外文關鍵詞:Aluminum GetteringThermal HistoryPreheat TreatmentCarrier Mobility and Lifetime
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是研究鋁吸雜效果及鋁吸雜的機制。使用的晶片類型有兩種,一種為P型Cz太陽能等級的晶片,類型為未經蝕刻切片(As-cut),電阻值範圍為1-100Ω-cm、生命期約為2µs、厚220µm;一種為N型Cz晶圓、類型為單面拋光、電阻值範圍為1-5Ω-cm、生命期約為20µs、厚250µm。實驗中,我們變化鋁膜的厚度、不同的吸雜溫度、不同熱歷程以研究在不同狀態下的吸雜效果。晶片品質的判定以量測少數載子生命期及多數載子遷移率為主。

在P型晶圓部分,研究發現,單面較厚的鋁膜有較好的吸雜效果,但雙面較厚(1µm)的鋁膜及單面較薄(0.3um)的鋁膜則無吸雜效果。在單面鋁膜的狀況下,經800℃緩升緩降吸雜處理的效果最佳,從未處理的晶片生命期2µs上升至吸雜後的20µs,提升了十倍,推測是由於降溫時熱應力的影響。而經過1100℃預先熱處理試片,經900℃吸雜處理後有較佳的吸雜效果,從處理前的晶片生命期約2µs上升至吸雜後的7µs,提升了近四倍。不同升降溫速率也會影響吸雜效果,研究發現,經過緩升緩降吸雜處理後的晶片品質最好,比起快升快降吸雜處理的試片,生命期高出兩至三倍。將處理後的試片製作PN接面,我們發現中性區擴散電流的斜率也高出兩倍。我們推論吸雜效果與氧凝聚物的大小有關。本研究也製作PN 接面以探討鋁吸雜的影響範圍,結果顯示鋁吸雜對於晶片的影響有20-80µm深。

在N型晶圓部分,研究發現,單面鋁膜及雙面鋁膜皆有較好的吸雜效果,在600℃的吸雜處理後,生命期從未處理前的20µs上升至吸雜後的200µs,提升十倍,但生命期會隨著吸雜處理溫度的升高而降低。






This thesis is to study the effect of aluminum gettering and its gettering mechanism. There are two types of wafers used; one is the P-type Cz solar grade wafers without etching (As-cut), resistivity range from 1-100Ω-cm, lifetime about 2μs, 220μm thick; Another one is N-type Cz wafers, single-sided polishing, resistivity range from 1 to 5Ω-cm, lifetime is about 20μs, 250μm thick. In this research, we varied the thickness of aluminum film, gettering temperature and thermal history in order to study the gettering effect under different conditions. The minority carrier lifetime and carrier mobility are mainly measured for characterizing the wafer quality after gettering.
For P-type wafers, we found that single-sided thicker aluminum film has better gettering effect, but double-sided thicker (1μm) and one-sided thinner (0.3μm) aluminum film doesn’t. In the single-layer aluminum condition, heat in 800℃ by slow ramping up and cooling down treatment is the best, and the lifetime has been raised from 2μs before gettering to 20μs after gettering, improved tenfold, presumably due to heat stress in cooling. Others, samples which being pre-annealing at 1100℃, revealed the better result at 900℃ gettering process. Lifetime of the samples raised nearly four times, increased from 2μs to 7μs. Different cooling rate will also affect the gettering efficient. We found that samples with slow ramping and slow cooling gettering revealed the best quality. Comparing with fast ramping and slow cooling, it has two to three times higher in lifetime. When dealing with post-production PN junction, the slope of diffusion current in the neutral region, fast ramping and slow cooling sample is also twice the fast ramping and fast cooling samples. We expect that there was a relationship between oxygen precipitates and gettering effect. This study also explored the extent of aluminum gettering in PN junction, the effect is in 20-80μm.
For N-type wafers, both one-sided and double-sided aluminum gettering have good effect. When heat at 600℃, the lifetime raised from 2μs to 20us, has ten times increase. But lifetime decreased with heat-treatment temperature increased.


摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 V
圖目錄 VI
第一章 緒論 1
第二章 文獻回顧與動機 2
2-1 文獻回顧 2
2-1-1 少數載子生命期理論 2
2-1-2 晶圓中的雜質 2
2-1-3 鋁吸雜 4
2-2 動機 7
第三章 實驗 8
3-1 樣品規格 8
3-2 實驗流程 8
3-3 儀器機台及測試原理簡介 13
第四章 結果與討論 17
4-1 P型晶圓 17
4-1-1 不同鋁膜厚度的晶片在不同吸雜溫度下的載子生命期變化 17
4-1-2 單面鍍鋁及雙面鍍鋁的晶片在不同吸雜溫度下的載子生命期變化 24
4-1-3有經過預先熱處理的試片 27
4-1-3-1 緩升緩降吸雜熱處理 27
4-1-3-2-2 快升快降吸雜熱處理 30
4-1-3-2-2 快升快降吸雜熱處理 32
4-1-4 不同吸雜熱歷程的比較 34
4-1-5 判定吸雜深度 36
4-2 N型晶圓 40
4-2-1 鋁膜單面雙面吸雜的比較 40
4-2-2 有經過預先熱處理的試片 44
4-2-3 P型與N型綜合討論 46
參考資料 47
第五章 結論 52



第一章
[1] http://www.semi.org/ch/Press/PV_news/CTR_037431
[2]太陽能光電產業發展趨勢分析
[3] Lawrence Kazmerski, Don Gwinner, Al Hicks (2007)
[4] J. S. Kang and D. K. Schroder, “Gettering in silicon”, J. Appl. Phys,65 2974-2985 (1988).
[5] A. Moehlecke, I. Zanesco, J. P. Souza, H. Boudinov and C. del Cañizo, “Low Cost Silicon Solar Cell Process Based on Gettering” 17th European Photovoltaic Solar Energy Conference Munich, Germany, 1873-1876 (2001)
[6] 吳耀銓、曾卿杰,”結合鎳金屬吸附的製程技術搭配具有加厚之汲/源極與薄通道低溫複晶矽薄膜電晶體之研究”,國立交通大學(2001)

第二章
[1] 楊德仁等著,”半導體材料測試與分析”,北京科學出版社(2010)
[2] Scotten W. Jones, “Diffusion in silicon,“ IC knowledge LLC,33(2000)
[3] 陳力俊主編,”微電子材料與製程(Microelectronics materials and processing)”,中國材料科學學會 (2000)。
[4] J. S. Kang and D. K. Schroder,” Gettering in silicon”, J. Appl. Phys., 65, (1989)
[5] S. P. Phang and Macdonald, “Boron, Phosphorous and aluminum gettering of iron in crystalline silicon: Experiments and modeling”, Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE,000352 - 000356 (2010)
[6] A.A. EFREMOV, N.I. KLYUI, V.G. LITOVCHENKO, VG POPOV, A. B. ROMANYUK, and B. N. ROMANYUK, “Development of Gettering processes for the preparation of the solar silicon material”, OPTO-ELECTRONICS REVIEW, 8, 410-413(2000)
[7] http://www.siliconfareast.com/gettering.htm
[8] J. Hampel, E. Schmich, F. M. Boldt, N. Wiehl, G. Hampel, J. V. Kratz and S. Reber,“Gettering of Metallurgical Grade Silicon by HCL gas”,Presented at the 24th European PV Solar Energy Conference and Exhibition (2009).
[9] Subhash M. Joshi, Ulrich M. Gosele and The Y. Tan, “Gold Diffusion in Silicon During Gettering By An Aluminum Layer”, 117-122 (1998).
[10] S. P. Phang and D. Macdonald, “Direct comparison of boron, phosphorus and aluminum gettering of iron in crystalline silicon”, J. Appl. Phys., 109, (2011).
[11] 趙秀玲,陽春明,宋晶,任丙彥,”氧對多晶硅太陽電池磷鋁吸雜效應的影響”,河北工業大學學報 (2008)。
[12] A. Rohatgi, P. Sana, M. S. Ramanachalam, J. Salami, and W. B. Carter,”Investigation of the Effects of Aluminum Treatment on Silicon solar cells”, IEEE, Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE, 10-14 May 1993
[13] M. Seibt, A. Sattler., C. Rudolf, O. Voß, V. Kveder, W. Schröter, “Gettering in silicon photovoltaics: current state and future perspectives”, 203 ,696-713 (2006)
[14] 石湘波、施正荣、朱拓、汪义川,”铝吸杂对多晶硅太阳电池的影响”,江南大学学报(自然科学版),5,(2006)。
[15] S. Martinuzzi, O. Porre, I. Périchaud and M. Pasquinelli, “Aluminum Gettering in Silicon Wafer”,J. Phys. III France (1995).
[16] T. Terakawa, D. Wang and H. Nakashim, “Fe Gettering by p+ layer in bifacial Si solar cell fabraction”, Physica B: Condensed Matter,376-377,231-235 (2006).
[17] Abdelazize Laades, Kevin Lauer, Michael Blech, Christian Maier, Dorothea Alber, Mario Bähr, Alexander Lawerenz, “Iron Gettering in CZ Silicon solar cell”
[18] A. Ben Jaballah, M. Hassen, H. Rahmouni, M. Hajji, A. Selmi and H. Ezzaouia,“ Impacts of phosphorus and aluminum gettering with porous silicon damage for p-type Czochralski silicon used in solar cells technology”, Thin solid films, 511-512, 377-380(2006).
[19]Yelundur, Vijay, Rohatgi. Ajeet, Jeong.Ji-Weon, Gabor, A. M., Hanoka, J. I., Wallace, R. L., “PECVD SiNx Induced Hydrogen Passivation in string ribbon silicon”,Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, 91-94 (2000)
[20]赵慧、徐征、励旭东、李海玲、许颖、赵玉文、王文敬等,”磷铝吸杂在多晶硅太阳电池中的应用”,半导体学报,26,341-344 (2005)。
[21] Andre´s Cuevas, Matthew Stocks, Stephane Armand, Michael Stuckings, and Andrew Blakers,” High minority carrier lifetime inphosphorus-gettered multicrystalline silicon”, Appl. Phys. Lett., 70, 1017-1019 (1997)
[22] Perichaud I, “Understanding defects in semiconductor as key to advancing Devices technology[J],” Physica B, 340-342 , 1-14 (2003)
[23] 楊德仁,”太陽電池材料”,五南文化 (2008)
[24] V. D. Mihailetchi, L. J. Geerligs, S. De Iuliis, “N-type silicon solar cell with Al back junction: results and Modelling”,
[25]林明獻,”太陽電池技術入門(修訂版)”,全華圖書 (2008)

第三章
[1]林明獻編著,矽晶圓半導體材料技術,林明獻編著,全華圖書,2007
[2]A. W. Stephen and M. A. Green, “Effectiveness of 0.08 molar iodine in ethanol solution as a means of chemical surface passivation for photoconductance decay measurements,” Solar Energy Materials and Solar Cell, 45 255-265(1997)
[3]Renee T. Mo et al., “Atomic-Scale Mechanistic Study of Iodine/Alcohol Passivated Si(100)”, Stanford Linear Accelerator Center, Stanford University, Stanford.
[4]陳秉群,"使用非真空鍍膜製程之矽晶太陽能電池開發",國立台灣科技大學光電工程所,民國九十七年四月
[5]林坤立,”單晶矽太陽電池製程及其頻譜響應之研究”,雲林科技大學(2004)
[6]楊德仁等著,”半導體材料測試與分析”,北京科學出版社(2010)
[7] Donald A. Neamen, “An Introduction to Semiconductor,” McGraw Hill (2007)
[8]施敏,張鼎張,伍國玨,劉柏村等,”半導體元件物理學”,國立交通大學 (2008)
[9]http://elearning.stut.edu.tw/caster/3/no7/7-3.htm
[10]張勁燕,”半導體製程設備”,五南出版 (2009)

第四章
[1] E.R. Weber, S.A. Mc Hugo and H. Hielsmair, Solid State Phenomena, 47–48, 165(1995).
[2] S.A. McHugo, H. Hieslmair and E.R. Weber,“Gettering of metallic impurities in photovoltaic silicon”, Appl. Phys. A, 64, 127-137 (1997).
[3] M.A. Falkenberg, D. Abdelbarey, Vitaly V. Kveder and Michael Seibt, “Comparison of Efficiency and kinetics of phosphorous and aluminum gettering of metal impurities “, Solid State Phenomena, 156 – 158, 229-234 (2010).
[4] S. P. Phang and D. Macdonald, “Boron, Phosphorous and aluminum gettering of iron in crystalline silicon: Experiment and modeling”, Photovoltaic Specialists Conference (PVSC)- 2010 35th IEEE, 352 -356 (2010).
[5] J. S. Kang and D. K. Schroder,“Gettering in silicon”, J. Appl. Phys,65 2974-2985(1988).
[6] M. Blazek, W. Kwapil, J. Schön and W. Warta, “Gettering Efficiency of Backside Aluminium Layer and Al-Si-Eutectic”, Presented at the 23rd European Photovoltaic Solar Energy Conference and Exhibition, 1 -5 September 2008, Valencia,Spain, 1637 – 1643(2008)
[7]石湘波、施正荣、朱拓、汪义川, ”铝吸杂对多晶硅太阳电池的影响”,江南大学学报(自然科学版),5,(2006)。
[8] Jan Schmidt, Karsten Bothe,“Structure and transformation of the metastable boron- and oxygen-related center in crystalline silicon”, Phys. Rev., B, 69, 02417 (2004)
[9] A. Ben Jaballah, M. Hassen, H. Rahmouni, M. Hajji, A. Selmi and H. Ezzaouia, “Impacts of phosphorus and aluminum gettering with porous silicon damage for p-type Czochralski silicon used in solar cells technology”, Thin Solid Films, 511-512, 377-380 (2006).
[10] Richard A. Nyquist, Curtis L. Putzig,M. Anne Leugers, “The Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts: Volume 1”, Elsevier, 151(1997).
[11] Yinqiao Peng, Jicheng Zhou, Baoxing Zhao, Xiaochao Tan and Zhichao Zhang, “Effect of annealing temperature and composition on photoluminescence properties of magnetron sputtered SiCN films”, Thin Solid Films, 519, 2083–2086 (2011).
[12] K. Kusaka, T. Hanabusa, M. Nishida, F. Inoko, “Residual stress and in-situ thermal stress measurement of aluminum film deposited on silicon wafer”, Thin Solid Films,290-291,248-253 (1996).
[13]陳力俊主編,”微電子材料與製程(Microelectronics materials and processing)”,中國材料科學學會 (2000)。
[14] Varker, CJ , Whitfield and JD, Fejes, PL, “Defects of Oxygen Precipitation on Minority Carrier Lifetime in Silicon Crystals”,
[15] Haizhi SUN, Caichi LIU, Qiuyan HAO and Lijian WANG, “Effect of oxygenprecipitatesin solar grade silicon on minority carrier lifetime and efficiency of solar cells”, Rare Metals, 25, 141-145 (2006)
[16] 楊德仁著,半導體材料測試與分析,中國科學出版社(2010)
[17] 施敏、伍國(王玉)著,張鼎張、劉柏村譯,”半導體元件物理學(上冊)”,國立交通大學出版社 (2008)。
[18] Abdelazize Laades, Kevin Lauer,Michael Blech,Christian Maier, Dorothea Alber, Mario Bähr and Alexander Lawerenz, “Iron Gettering in CZ Silicon solar cell”,
[19] A. K. SINHA and T. T. SHENG, “The Temperature Dependence of Stresses in Aluminum Films on Oxidized Silicon Substrates” ,Thin Solid Films, 48,117-126(1978).
[20] V. Kveder, W. Schroter, A. Sattler,M. Seibt, “Simulation of Al and phosphorous diffusion gettering in silicon”, Materials Science and Engineering, 71, 175-181(2000).
[21] SubhashM. Joshi, Ulrich M. GöseleandTeh Y. Tan, “Improvement of minority carrier diffusion length in Si by Al gettering”, Journal of Applied Physics, 77, 3858 – 3863 (1994).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔