|
[1] IEEE std. 802.11a-1999, “Part11: wireless lan medium access control (MAC) and physical layer(PHY) specifications︰high-speed physical layer in the 5 GHz band,” IEEE std. 802.11a-1999, Dec.1999. [2] D-Link 技術團隊,無線區域網路技術白皮書,松岡,2005。 [3] Electromagnetic compatibility and Radio spectrum Matters (ERM);Short Range Devices;Road Transport and Traffic Telematics (RTTT);Short range radar equipment operating in the 24 GHz range;Part1: Technical requirements and methods of measurement, ETSI Std. ETSI EN 302 288-1 V1.2.1. [4] C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60GHz millimeter-wave WPAN, and Zigbee,” IEEE Wireless Commun., vol. 14, no. 4, pp.70-78, Aug.2007. [5] B. Razavi, “RF Microelectronics,” Prentice Hall, 1997. [6] D. M. Pozar,微波工程,高立圖書,民國95年4月。 [7] B. Gilbert, “The MICROMIXER: A Highly Linear Variant of the Gilbert Mixer Using a Bisymmetric Class-AB Input Stage,” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp. 1412 - 1413, Sept. 1997. [8] K. L. Fong, C. D. Hull, and R. G. Meyer, “Monolithic RF active mixer design,” IEEE Trans. Circuits and Systems II, vol. 46, no. 3, pp. 231 - 239, Mar. 1999. [9] H. Darabi, and A.A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15 - 25, Jan. 2000. [10] M. T. Terrovitis, and R. G. Meyer, “Noise in current-commutating CMOS mixers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 772 - 783, June. 1999. [11] S.-G. Lee, and J.-K. Choi, “Current-reuse bleeding mixer,” IEEEElectron. Lett., vol. 36, no. 8, pp. 696 - 697, Apr. 2000. [12] L. A. NacEachern, and T. Manku, “A charge-injection method for Gilbert cell biasing,” IEEE Canadian Conf. Elect. Comp. Eng., vol. 1, pp. 365–368, May 1998. [13] E. A. M. Klumperink, S. L. J. Gierkink, A. P. van derWel, and B. Nauta, “Reducing MOSFET 1/f noise and power consumption by switched biasing,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 994–1001, Jul. 2000. [14] C. C. Boon, M. A. Do, K. S. Yeo, J. G. Ma, and X. L. Zhang, “RF CMOS low-phase-noise LC oscillator through memory reduction tail transistor,” IEEE Trans. Circuits and Systems II,, vol. 51, no. 2, pp. 85–90, Feb. 2004. [15] H. Darabi, and J. Chiu, “A noise cancellation technique in active RF-CMOS mixers,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628 - 2632, Dec. 2000. [16] S. S. K. HO, and C.E. Saavedra, “A CMOS Broadband Low-Noise Mixer with Noise Cancellation,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1126 - 1132, May 2010. [17] C. H. Chen, P. Y. Chiang, and C.F. Jou, “A Low Voltage Mixer With Improved Noise Figure,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 92 - 94, Feb. 2009. [18] J. Park, C. H. Lee, B.S. Kim, and J. Laskar, “Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4372 - 4380, Dec. 2006. [19] J. H. Kim, H. W. An, and T.Y. Yun, “A Low-Noise WLAN Mixer Using Switched Biasing Technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 650 - 652, Oct. 2009. [20] M. F. Huang, C. J. Kuo, and S. Y. Lee, “A 5.25-GHz CMOS Folded-Cascode Even-Harmonic Mixer for Low-Voltage Applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 660 - 669, Feb. 2006. [21] B. Razavi, “Design of Integrated Circuits for Optical Communications,” McGraw Hill, 2003. [22] D. Ahn, D. W. Kim, and S. Hong, “A K-Band High-Gain Down-Conversion Mixer in 0.18μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 227 - 229, Apr. 2009. [23] J. Yoon, H. Kim, C. Park, J. Yang, H. Song, S. Lee, and B. Kim, “A New RF CMOS Gilbert Mixer With Improved Noise Figure and Linearity,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 626 - 631, Mar. 2008. [24] M. D. Tsai, and H. Wang, “A 0.3–25-GHz Ultra-Wideband Mixer Using Commercial 0.18μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 522 - 524, Nov. 2004. [25] D. Manstretta, R. Castello, and F. Svelto, “Low 1/f Noise CMOS Active Mixers for Direct Conversion,” IEEE Trans. Circuits and Systems II, vol. 48, no. 9, pp. 846 - 850, Sept. 2001. [26] B. Razavi,類比CMOS積體電路設計,滄海書局,民國97年3月。 [27] T. A. Phan, C. W. Kim, M. S. Kang, S. G. Lee, and C. D. Su, “Low Noise And High Gain CMOS Down Conversion Mixer,” ICCCAS, vol. 2, no. 8, pp. 1191 - 1194, June 2004. [28] A. Verma, L. Gao, K. K. O, and J. Lin, “A K-Band Down-Conversion Mixer With 1.4-GHz Bandwidth in 0.13μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 8, pp. 493 - 495, Aug. 2005. [29] R. M. Kodkani, and L.E. Larson, “A 24-GHz CMOS Direct-Conversion Sub-Harmonic Downconverter,” IEEE RFIC symposium, pp. 485 - 488, June 2007. [30] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745 - 759, May 1997. [31] X. Fan, H. Zhang, and E. S. Sinencio, “A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588 - 599, Mar. 2008. [32] H. Zhang, X. Fan, and E. S. Sinencio, “A Low-Power Linearized Ultra- Wideband LNA Design Technique,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320 - 330, Feb. 2009. [33] S. Joo, T. Y. Choi, and B. Jung, “A 2.4-GHz Resistive Feedback LNA in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3019 - 3029, Nov. 2009. [34] C. F. Liao, and S. I. Liu, “A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329 - 339, Feb. 2007. [35] C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and S. G. Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3–5-GHz UWB System,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544 - 547, Feb. 2005. [36] Y. H. Chen, H. H. Hsieh, and L. H. Lu, “A 24-GHz Receiver Frontend With an LO Signal Generator in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1043 - 1051, May 2008. [37] X. Guan, and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368 - 373, Feb. 2004. [38] A. Mazzanti, M. Sosioand, M. Repossi, and F. Svelto, “A 24GHz Subharmonic Direct Conversion Receiver in 65nm CMOS,” IEEE Trans. Circuits and Systems I, vol. 58, no. 1, pp. 88 - 97, Jan. 2011. [39] J. Lee, Y. Chen, and Y. Huang, “A Low-Power Low-Cost Fully-Integrated 60-GHz Transceiver System With OOK Modulation and On-Board Antenna Assembly,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 264 - 275, Feb. 2010. [40] B. Razavi, “A 60-GHz CMOS Receiver Front-End,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 17 - 22, Jan. 2006. [41] B. Razavi, “A Millimeter-Wave CMOS Heterodyne Receiver With On-Chip LO and Divider,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 477 - 485, Feb. 2008. [42] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated circuits,” Cambridge University Press, 2004. [43] J. H. Tsai, P. S. Wu, C. S. Lin, T. W. Huang, J. G. J. Chern, and W. C. Huang, “A 25–75 GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247 - 249, Apr. 2007. [44] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A 60-GHz Down-Converting CMOS Single-Gate Mixer,” IEEE RFIC symposium, pp. 163 - 166, June 2005. [45] F. R. Shahroury, and C. Y. Wu, “The Design of Low LO-Power 60-GHz CMOS Quadrature-Balanced Self-Switching Current-Mode Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 692 - 694, Oct. 2008.
|