(3.239.33.139) 您好!臺灣時間:2021/02/27 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱厚荏
研究生(外文):Hou-Jen Chiu
論文名稱:嵌入式非揮發性記憶體之設計與實作
論文名稱(外文):Design and Implementation of Embedded Non-Volatile Memory Cells
指導教授:林泓均
口試委員:林維亮劉堂傑
口試日期:2011-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:68
中文關鍵詞:低電壓非揮發性記憶體金氧半導體邏輯相容
外文關鍵詞:low voltagenon-volatile memorycmoslogic-compatible
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在積體系統晶片的發展上,嵌入式CMOS製程之非揮發性記憶體,可分為需要與不需要額外製程,前者較適合大容量記憶體,後者適合中小容量。本論文訴求以不需額外製程之標準0.18μm CMOS製程為主,提出嵌入式一次性寫入非揮發性記憶體與嵌入式可多次寫入非揮發性記憶體。在嵌入式一次性寫入非揮發性記憶體方面,針對以兩個N型金氧半場效應電晶體串聯所組成之ㄧ種簡單且記憶體元件面積小之嵌入式一次性寫入非揮發性記憶體的結構做研究,其操作模式因不同種類之記憶體元件而有所不同。
由於新製程的演進使氧化層之厚度持續減小,也造成一般儲存於浮動閘極中的載子容易流失,因此本論文另提出一相容於邏輯製程可多次寫入差動型非揮發性記憶體,此差動的優點是可以容許些微的漏電,且容易判別微小的電流差異,預期可能較適用於較新製程的嵌入式非揮發性記憶體。利用熱電洞注入完成寫入操作與熱電子注入完成抹除操作,其優點是操作電壓可以降低。當記憶體結構中的其中一邊浮動閘極被寫入後,導致浮動閘極0 (FG0)之電晶體和浮動閘極1 (FG1)之電晶體臨界電壓值的差異,使用感測放大器同時讀取浮動閘極0電晶體和浮動閘極1電晶體的通道電流值,產生一邏輯狀態輸出。


In the development of integrated system-on-chip, the CMOS embedded non-volatile memories can be categorized into with- and without- additional processes. The former is more suitable for large-capacity memories, while the latter is suitable for small- and medium-capacity memories. This thesis proposes embedded one-time programmable (OTP) non-volatile memory cells and embedded multiple-time programmable (MTP) non-volatile memory cells, which were fabricated by the standard 0.18μm CMOS technology without additional processes. For the OTP memories, a simple and small cell-size embedded OTP structure containing two N-type Metal-Oxide-Semiconductor Field Effect Transistors in series were investigated. The operation methods were varied for different types of transistors.
As the evolution of new processes continues to reduce the thickness of the gate oxide layers, the charges stored in the floating gate may be leaked faster. Therefore, this thesis also proposes a logic-compatible MTP differential non-volatile memory cell, which contains two floating gates in one cell. The advantage of the differential structure is allowing a slight leakage of the stored charges and easier to distinguish the small current difference. It is expected to be scalable for the advanced processes. Since hot-hole injection is used for program and hot-electron injection is applied for erase, the operating voltages can be reduced. When one floating gate is programmed, the threshold voltages of the floating gate 0 (FG0) transistor and the floating gate 1 (FG1) transistor are different. The sensing amplifier reads the channel currents of FG0 and FG1 transistors at the same time to determine a logic output.


誌謝.......................................................i
摘要......................................................ii
Abstract.................................................iii
目次......................................................iv
表目次....................................................vi
圖目次...................................................vii
第一章 序論...............................................1
1.1非揮發性記憶體之簡介...................................1
1.2浮動閘極非揮發性記憶體元件技術之發展...................2
1.3研究動機...............................................3
1.4論文大綱...............................................4
第二章 嵌入式非揮發性記憶體元件之技術回顧.................8
2.1非揮發性記憶體操作的物理機制...........................8
2.1.1通道熱載子注入機制..................................8
2.1.2汲極累增崩潰產生熱載子注入機制......................8
2.1.3福樂-諾德漢穿隧效應.................................8
2.1.4帶對帶穿隧效應產生熱載子注入機制....................9
2.1.5碰穿效應產生熱載子注入機制..........................9
2.2矽化物複晶矽熔絲記憶體................................10
2.3單層複晶矽可電性寫入非揮發性記憶體....................10
2.4 XPM一次性寫入非揮發性記憶體..........................10
2.5可多次寫入差動型非揮發性記憶體........................11
第三章 嵌入式一次性寫入非揮發性記憶體元件................19
3.1元件結構..............................................19
3.2寫入操作原理..........................................19
3.3讀取操作原理..........................................20
3.4元件量測系統架構......................................21
3.5元件基本特性分析:1.8V Native NMOS Type OTP...........21
3.5.1初始特性分析.......................................21
3.5.2寫入特性分析.......................................22
3.6元件基本特性分析:3.3V Native NMOS Type OTP...........22
3.6.1初始特性分析.......................................22
3.6.2寫入特性分析.......................................22
3.7元件基本特性分析:3.3V Normal NMOS Type OTP...........23
3.7.1初始特性分析.......................................23
3.7.2寫入特性分析.......................................23
3.8相關技術之比較........................................24
第四章 嵌入式可多次寫入差動型非揮發性記憶體元件..........35
4.1元件結構..............................................35
4.2寫入操作原理..........................................35
4.3抹除操作原理..........................................36
4.4讀取操作原理..........................................36
4.5元件基本特性分析:操作模式(一)........................37
4.5.1初始特性分析.......................................37
4.5.2寫入邏輯0特性分析..................................37
4.5.3抹除邏輯0特性分析..................................38
4.5.4寫入邏輯1特性分析..................................38
4.5.5抹除邏輯1特性分析..................................39
4.6元件基本特性分析:操作模式(二)........................39
4.6.1初始特性分析.......................................40
4.6.2寫入邏輯0特性分析..................................40
4.6.3抹除邏輯0特性分析..................................40
4.6.4寫入邏輯1特性分析..................................41
4.6.5抹除邏輯1特性分析..................................42
4.7相關技術之比較........................................43
第五章 總結..............................................62
參考文獻..................................................64



[1]K. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” IEEE Transactions on Electron Devices, vol.14, pp.629-629, 1967.
[2]D. Frohman-Bentchkowsky, “A fully decoded 2048-bit electrically programmable MOS-ROM,” IEEE International Solid-State Circuits Conference, vol.14, pp.80-81, 1971.
[3]H. Iizuka, F. Masuoka, Tai Sato, and M. Ishikawa, “Electrically alterable avalanche-injection-type MOS READ-ONLY memory with stacked-gate structure,” IEEE Transactions on Electron Devices, vol.23, pp.379-387, 1976.
[4]Jin Bong and Kwyro Lee, “Three-Transistor one-time programmable (OTP) ROM cell array using standard CMOS gate oxide antifuse,” IEEE Electron Device Letters, vol.24, pp.589-591, 2003.
[5]H. Ito and T. Namekawa, “Pure CMOS one-time programmable memory using gate-ox anti-fuse,” IEEE Custom Integrated Circuits Conference, pp.469-472, 2004.
[6]Hyouk-Kyu Cha, Ilhyun Yun, Jinbong Kim, Byeong-Cheol So, Kanghyup Chun, I. Nam, and Kwyro Lee, “A 32-KB Standard CMOS Antifuse One-Time Programmable ROM Embedded in a 16-bit Microcontroller,” IEEE Journal of Solid-State Circuits, vol.41, pp.2115-2124, 2006.
[7]J. Peng, G. Rosendale, M. Fliesler, D. Fong, J. Wang, C. Ng, Z. S. Liu, and H. Luan, “A Novel Embedded OTP NVM Using Standard Foundry CMOS Logic Technology,” IEEE Non-Volatile Semiconductor Memory Workshop, pp.24-26, 2006.
[8]Maybe Chen, Chia-En Huang, Yuan-Heng Tseng, Ya-Chin King, and Chrong-Jung Lin, “A New Antifuse Cell With Programmable Contact for Advance CMOS Logic Circuits,” IEEE Electron Device Letters, vol.29, pp.522-524, 2008.
[9]J. Raszka, M. Advani, V. Tiwari, L. Varisco, N. D. Hacobian, A. Mittal, M. Han, A. Shirdel, and A. Shubat, “Embedded flash memory for security applications in 0.13μm CMOS logic process,” IEEE International Solid-State Circuits Conference, vol.1, pp.46-512, 2004.
[10]Liu Dong-Sheng, Zou Xue-Cheng, Zhang Fan, and Deng Min, “Embedded EEPROM Memory Achieving Lower Power New design of EEPROM memory for RFID tag IC,” IEEE Circuits and Devices Magazine, vol.22, pp.53-59, 2006.
[11]Bin Wang, Hoc Nguyen, Yanjun Ma, and Ron Paulsen, “Highly Reliable 90-nm Logic Multitime Programmable NVM Cells Using Novel Work-Function-Engineered Tunneling Devices,” IEEE Transactions on Electron Devices, vol.54, pp.2526-2530, 2007.
[12]Bin Wang, M. Niset, Yanjun Ma, Hoc Nguyen, and R. Paulsen, “Scaling tunneling oxide to 50 Å in floating-gate logic NVM at 65 nm and beyond,” IEEE International Integrated Reliability Workshop Final Report, pp.48-51, 2007.
[13]Bin Wang and Yanjun Ma, “Opportunities and Challenges in Multi-Times-Programmable Floating-Gate Logic Non-Volatile Memories,” Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design, pp.22-25, 2008.
[14]Yanjun Ma, Rui Deng, H. Nguyen, Bin Wang, A. Pesavento, M. Niset, and R. Paulsen, “Floating-Gate Nonvolatile Memory With Ultrathin 5-nm Tunnel Oxide” IEEE Transactions on Electron Devices, vol.55, pp.3476-3481, 2008.
[15]Te-Liang Lee, Yi-Hung Tsai, Wun-Jie Lin, Hsiao-Lan Yang, Chiu-Wang Lien, Chrong Jung Lin, and Ya-Chin King, “A New Differential P-Channel Logic-Compatible Multiple-Time Programmable (MTP) Memory Cell With Self-Recovery Operation,” IEEE Electron Device Letters, vol.32, pp.587-589, 2011.
[16]P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in N-channel IGFET’s,” IEEE Transactions on Electron Devices, vol.26, pp.520-533, 1979.
[17]Chenming Hu, “Lucky-Electron Model of channel hot electron emission,” International Electron Devices Metting, vol.25, pp.22-25, 1979.
[18]Simon Tam, Ping-Keung Ko, and Chenming Hu, “Lucky-electron model of channel hot-electron injection in MOSFET’s,” IEEE Transactions on Electron Devices, vol.31, pp.1116-1125, 1984.
[19]E. Takeda, H. Kume, T. Toyabe, and S. Asai, “Submicrometer MOSFET structure for minimizing hot carrier generation,” IEEE Transactions on Electron Devices, vol.29, pp.611-618, 1982.
[20]E. Takeda, Y. Nakagome, H. Kume, and S. Asai, “New hot-carrier injection and device degradation in submicron MOSFETs,” IEE Proceedings I Solid-State and Electron Devices, vol.130, pp.144-150, 1983.
[21]I. C. Chen, J. Y. Choi, T. Y. Chan, T. C. Ong, and C. Hu, “The effect of channel hot carrier stressing on gate oxide integrity in MOSFET,” International Reliability Physics Symposium, pp.1-7, 1988.
[22]M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” Journal of Applied Physics, vol.40, pp.278-283, 1969.
[23]B. Ricco and M. V. Fischetti, “Temperature dependence of the current in SiO2 in the high field tunneling regime,” Journal of Applied Physics, vol.55, pp.4322-4329, 1984.
[24]K. Yoshikawa, S. Mori, E. Sakagami, Y. Ohshima, Y. Kaneko, and N. Arai, “Lucky-hole injection induced by band-to-band tunneling leakage in stacked gate transistors,” International Electron Devices Metting, pp.577-580, 1990.
[25]T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka, and H. Miyoshi, “Novel Electron Injection Method Using Band-to-Band Tunneling Induced Hot Electron (BBHE) for Flash Memory with a P-channel Cell,” International Electron Devices Metting, pp.279-282, 1995.
[26]T. Ohnakado, H. Onoda, O. Sakamoto, K. Hayashi, N. Nishioka, H. Takada, K. Sugahara, N. Ajika, and S. Satoh, “Device characteristics of 0.35μm P-channel DINOR flash memory using band-to-band tunneling-induced hot electron (BBHE) programming,” IEEE Transactions on Electron Devices, vol.46, pp.1866-1871, 1999.
[27]K. Gopalakrishnan, R. Woo, R. Shenoy, Y. Jono, P. B. Griffin, and J. D. Plummer, “Novel very high IE structures based on the directed BBHE mechanism for ultralow-power flash memories,” IEEE Electron Device Letters, vol.26, pp.212-215, 2005.
[28]N. Akil, M. van Duuren, D. S. Golubovic, M. Boutchich, and R. van Schaijk, “New Punch-through Assisted Hot Holes Programming Mechanism for Reliable SONOS FLASH Memories with Thick Tunnel Oxide,” IEEE Non-Volatile Semiconductor Memory Workshop, pp.92-93, 2007.
[29]M. van Duuren, N. Akil, M. Boutchich, and D. S. Golubovic, “New writing mechanism for reliable SONOS embedded memories with thick tunnel oxide,” IEEE International Conference on Integrated Circuit Design and Technology and Tutorial, pp.181-184, 2008.
[30]M. Iellina, P. Palestri, N. Akil, M. J. van Duuren, F. Driussi, D. Esseni, and L. Selmi, “A Simulation Study of the Punch-Through-Assisted Hot Hole Injection Mechanism for Nonvolatile Memory Cells,” IEEE Transactions on Electron Devices, vol.57, pp.1055-1062, 2010.
[31]C. Kothandaraman, S. K. Iyer, and S. S. Iyer, “Electrically programmable Fuse (eFUSE) using electromigration in silicides,” IEEE Electron Device Letters, vol.23, pp.523-525, 2002.
[32]Ching-Yuan Lin, Chung-Hung Lin, Chien-Hung Ho, Wei-Wu Liao, Shu-Yueh Lee, Ming-Chou Ho, Shih-Chen Wang, Shih-Chan Huang, Yuan-Tai Lin, and Charles Ching-Hsiang Hsu, “Embedded OTP Fuse in CMOS Logic Process,” IEEE International Workshop on Memory Technology, Design, and Testing, pp.13-15, 2005.
[33]Kung-Hong Lee and Ya-Chin King, “New single-poly EEPROM with cell size down to 8F2 for high density embedded nonvolatile memory applications,” Symposium on VLSI Technology, pp.93-94, 2003.
[34]Ying-Je Chen, Chia-En Huang, Hsin-Ming Chen, Han-Chao Lai, J. R. Shih, K. Wu, Ya-Chin King, and Chrong Jung Lin, “A Novel 2-Bit/Cell p-Channel Logic Programmable Cell With Pure 90-nm CMOS Technology,” IEEE Electron Device Letters, vol.29, pp.938-940, 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔