|
Banfield, J. D. and Raftery, A. E. (1993) “Model-based Gaussian and non-Gaussian clustering,” Biometrics, 49, 803–821. Celeux, G. and Govaert, G. (1995) “Gaussian parsimonious clustering models,” Pattern Recognition, 28, 781–793. Day, N. E. (1969) Estimating the Component s of a Mixture of Normal Dist ributions. Biomet rika , 56 (3) :463–474 Dempster, A. ,Laird, N. , Rubin, D. (1977) Maximum Likehood Estimation f rom Incomplete Data via the EM Algo2 rithm. J . Royal Statistical Soc. B , 39 :1–38 Diebolt, J., Robert, C.P. (1994) Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society. Series B 56, 363–375. Fraley, C. and Raftery, A.E. (1998) How many clusters? Which clustering methods? Answers via model-based cluster analysis. Computer Journal, 41, 578–588. Fraley, C., Raftery, A.E. (2002) Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97, 611–612. Ghahramani, Z., Hinton, G.E. (1997) The EM algorithm for mixtures of factor analyzers (Tech. Report No. CRG-TR-96-1), University of Toronto. Healy, M.J.R. (1968) Multivariate normal plotting. Applied Statistics 17, 157–161. Jain, A.K. , Duin, R.P.W. , Mao, J. (2000) Statistical Pattern Rec2 cognition :A Review. IEEE Transactions on Pattern A2 nalysis and Machine Intelligence , 22 (1) :4–48 Kim, J. O., and Curry, J. (1977) The treatment of missing data in multivariate analysis. Social. Meth. Res. 6, 215–240. Lin, T.I. (2009) Maximum likelihood estimation for multivariate skew normal mixture models. Journal of Multivariate Analysis 100, 257–265. Lin, T.I., Lee, J.C., Ho, H.J. (2006) On fast supervised learning for normal mixture models with missing information. Pattern Recognition 39, 1177–1187. Lin, T.C., Lin, T.I. (2010) Supervised learning of multivariate skew normal mixture models with missing information. Computational Statistics 25, 183–201. Liu, C.H., Rubin D.B. (1994) The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81, 633–648. Liu C.H., Rubin D.B. (1995) ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statistica Sinica 5, 19–39. Little, R. J. A. and Rubin, D. B. (1987) Statistical analysis with missing data. New York:Wiley. M. Nishida and T. Kawahara (2005) “Speaker Model Selection Based on the Bayesian Information Criterion Applied to Unsupervised Speaker Indexing”, IEEE Trans. On Speech and Audio Processing, Vol. 13, No. 4. McLachlan, G. J. and Basford, K. E. (1988) Mixture models: Inference and applications to clustering, New York: Marcel Dekker Inc. McLachlan, G.J. and D. Peel. (2000) Finite Mixture Models. New York: John Wiley and Sons INC. McLachlan, G.J., Krishnan, T. (2008) The EM Algorithm and Extensions, 2nd edn, John Wiley and Sons, New York. McNicholas P.D., Murphy T.B. (2008) Parsimonious Gaussian mixture models. Statistics and Computing 18, 285–296. McNicholas, P.D. (2010) Model-based classification using latent Gaussian mixture models. Journal of Statistical Planning and Inference 140, 1175–1181. McNicholas, P.D., Murphy, T.B., McDaid, A.F., Frost, D. (2010) Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Computational Statistics and Data Analysis 54, 711–723. Meng, X.L., Rubin, D.B. (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267–78. Meng, X.L., van Dyk, D. (1997) The EM algorithm-an old folk-song sung to a fast new tune. Journal of the Royal Statistical Society. Series B 59, 511–567. Schwarz, G. (1978) Estimating the dimension of a model. The Annuals of Statistics, 6:461–464. Tipping, M.E., Bishop, C.M. (1999) Mixtures of probabilistic principal component analyzers. Neural Computation 11, 443–482. Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.E. (2000) SMEM algorithm for mixture models. Neural Computation 12, 2109–2128. Zhao, J.H., Yu, P.L.H. (2008) Fast ML Estimation for the Mixture of Factor Analyzers via an ECM Algorithm. IEEE Transactions on Neural Networks 19, 1956–1961. Zhao, J.H., Yu, P.L.H., Jiang Q. (2008) ML estimation for factor analysis: EM or non-EM? Statistics and Computing 18, 109–123.
|