|
[1]D. Burgreen and F.R. Nakache, Electrokinetic Flow in Ultrafine Capillary Silts, Journal of Physical Chemistry, Vol.68 (1964)pp. 1084-1091.
[2] C.L. Rice, R. Whitehead, Electrokinetic Flow in a Narrow Cylindrical Capillary, Journal of Physical Chemistry, Vol.69 (1965)pp. 4017–4024.
[3]S. Levine, J.R. Marriott, G. Neale, N. Epstein, Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta Potentials, Journal of Colloid and Interface Science ,Vol.52 (1975) pp.136–149.
[4]L.P. Hsu, C.Y. Kao, S.J. Tseng, Electrokinetic Flow Through an Elliptical Microchannel: Effects of Aspect Ratio and Electrical Boundary Conditions, Journal of Colloid and Interface Science, Vol.248 (2002)pp. 176–184.
[5]J. Yang, A. Bhattacharrya, J.H. Masliyah, D.Y. Kwok, Oscillating Laminar Electrokinetic Flow in Infinitely Extended Rectangular Microchannels, Journal of Colloid and Interface Science ,Vol.261 (2003) pp.21–31.
[6]S. Arulanandam, D. Li, Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping, Colloids and Surfaces, Vol.161 (2000)pp. 89–102.
[7]C. Yang, D. Li, Analysis of Electrokinetic Effects on Liquid Flow in Rectangular Microchannels, Journal of Colloid and Interface Science ,Vol.143 (1998) pp.339-353. [8]R. J. Yang, L. M. Fu, C. C. Hwang, Electroosmotic Entry Flow in a Microchannels, Journal of Colloid and Interface Science, Vol.244 (2001) pp.173-179.
[9]C.Yang, D.Li, J.H.Masliyah, Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects, International Journal of Heat and Mass Transfer, Vol.41 (1998) pp.4229-4249.
[10]D. Maynes, B.W. Webb, Fully-Developed Electro-osmotic Heat Transfer in Microchannels, International Journal of Heat and Mass Transfer,Vol.46 (2003) pp.1359–1369.
[11]D. Maynes, B.W. Webb, The Effect of Viscous Dissipation in Thermally Fully Developed Electro-osmotic Heat Transfer in Microchannels, International Journal of Heat and Mass Transfer,Vol. 47 (2004) pp.987–999.
[12]P. Dutta, A. Beskok, T. C. Warburton, Numerical Simulation of Mixed Electroosmotic/Pressure Driven Microflows, Numerical Heat and Transfer, Part A. Vol.41 (2002)pp. 131-148.
[13]Z. Yang, X.F. Peng, B.X. Wang, Fully Developed Electroosmotically and Hydrodynamically Induced Convection between Two Parallel Plates, Numerical Heat and Transfer, Part A. Vol.50 (2006)pp. 905-926.
[14]P. Dutta, K. Horiuchi, H.M.Yin, Thermal Characteristics of Mixed Electroosmotic and Pressure-Driven Microflows, Computers and Mathematics with Application ,Vol.52 (2006) pp.651–670.
[15]M.I. Char, W.J. Hsu, Heat Transfer of Mixed Electroosmotic and Pressure-Driven Flows in Microtubes with Isothermal Boundary Conditions, International Communications in Heat and Mass Transfer,Vol. 36 (2009) pp.498-502.
[16]J. C. Burns, T. Parks, Peristaltic Motion, Journal of Fluid Mechanics, Vol.29 (1967)pp.731-743.
[17]J.L. Goldstein, E.M. Sparrow, Heat/mass Transfer Characteristics for Flow in a Corrugated Wall Channel, ASME Journal of Heat Transfer, Vol.99 (1977) pp.187-195.
[18]C. C. Wang, C. K. Chen, Forced Convection in a Wavy-wall Channel, International Journal of Heat Mass Transfer ,Vol.45 (2002)pp. 2587-2595.
[19]D. Yang and Y. Liu, Numerical Simulation of Electroosmotic Flow in Microchannels with Sinusoidal Roughness, Colloids and Surface A: Physicochemical and Engineering Aspects Vol.328 (2008) pp.28-33.
[20]J. M. Molho,A. E. Herr, M. Desphande, J. R. Gilbert, M. G. Garguilo, P. H. Paul, P. M. John, T. M. Woudenberg, and C. Connel, Fluid Tranport Mechanisms in Micro Fluidic Devices, in Proc. 1998 ASME Micro-Electro-Mechanical-Systems(MEMS), Los Angeles, CA,(1998) pp. 69-75.
[21] P . H. Paul, M. G. Graguilo, and D. J. Rakestraw, Imaging of Pressure and Electro-kinetically Driven Flows Through Open Capillaries, Analytical Chemistry, Vol. 70,(1998)pp.2459-2467.
[22] E. B. Cummings, S. K. Griffiths, R. H. Nilson, and P. H. Paul, Tissue Fluids in Microchannel Subjected to an Externally Applied Electric Potential, Conditions for Similitude Chemistry, Vol. 72,(2000)pp. 2526-2532.
[23] A. E. Herr, J. I. Molho, J. G. Santiago, M. G. Mungal, T. W. Kenny, and M. G. Gar-guilo, Electroosmotic Capillary Flow with Non Uniform Zeta Potenital, Analytical Chemistry, Vol. 72,(2000)pp. 1053-1057.
[24] S. C. Jacobson, T. E. McKnight, and J. M. Ramsey, Microfluidic Devices for Electro-Kinetically Driven Parallel and Serial Mixing, Analytical Chemistry, Vol. 71,(1999)pp.4455-4459.
[25] N. A. Polson and M. A. Hayes, Electroosmotic Flow Control of Fluids on a Capillary Electrophoresis Microdevice Using an Applied External Voltage, Analytical Chemistry, Vol. 72, no. 10,(2000)pp. 1088-1092.
[26] N. A. Patankar and H. H. Hu, Numerical Simulation of Electroosmotic Flow, Analytical Chemistry, Vol. 72,(1998)pp. 1870-1881.
[27] S. V. Ermakov, S. C. Jacobson, and J. C. Tamsey, Computer Simulation of Electro-kinetic Transport in Micro Fabricated Channel Structures, Analytical Chemistry, Vol. 70,(1998)pp. 4494-4504.
[28] F. Bianchi, R. Ferriagno, and H. H. Girault, Finite Element Simulation of an Electro- osmotic-Driven Flow Division at a T-junction of Microscale Dimension, Analytical Chemistry, Vol. 72,(2000)pp. 1987-1993.
[29] G. M. Mala, D. Li and J. D. Dale, Heat Transfer and Fluid Flow in Microchannesl, International Journal of Heat Mass Transfer, Vol.40, (1997)pp. 3079-3088.
[30]P.H. Paul, M.G. Garguilo, D.J. Rakestraw, Imaging of Pressure and Electrokinetically Driven Flows through Open Capillaries, Analytical Chemistry ,Vol.70(1998) pp.2459-2467.
[31]S. Zeng, C.G. Chen, J.C. Mikkelsen, J.G. Santiago, Fabrication and Characterization of Electroosmaotic Micro-pumps, Sensor. Actuator. B Chemistry, Vol.79 (2001)pp. 107-114.
[32]S. Zeng, C.H. Chen, J.G. Santiago, J.R. Chen, R.N. Zare,J.A. Tripp, F. Svec, J.M.J. Frechet, Electroosmotic Flow Pumps with Polymer Frits, Sensor. Actuator. B Chemistry, Vol.79 (2001)pp. 209-212.
[33]G. Wang, P. Vanka, Convective Heat Transfer in Periodic Wavy Passages, International Journal of Heat Mass Transfer, Vol.38 (1995) pp.3219.
[34]Keisuke Horiuchi, P. Dutta , Joule Heating Effects in Electroosmoticaaly Driven Microchannel Flows, International Journal of Heat and Mass Transfer,Vol.47(2004)pp.3085-3095.
[35] E.M. Sparrow, J.L. Novotny, S.H. Lin, Laminar Flow of a Heat-generating Fluid in a Parallel-Plate Channel, AICHE Journal ,Vol.9 (1963)pp. 797-804.
[36] D. Maynes, B.W. Webb, Fully Developed Electro-osmotic Heat Transfer in Microchannels, International Journal of Heat Mass Transfer ,Vol.46 (2003) pp. 1359-1369.
[37] P. Dutta and A. Beskok , Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels:Finite Debye Layer Effect, Analytical Chemistry,Vol.73 (2001), pp.1979-1986.
[38]Mohamed Gad-el-Hak, The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture, Journal of Fluids Engineering, Vol.121(1999), pp5-33.
[39] S. Blancher, R. Creff, L.L. Quere, Mixed Convective Flow of Immiscible Viscous Fluids, International Journal of Heat Fluid Flow, Vol.19(1998), pp.39-48.
[40] S. Selvarajan, E.G. Tulapurkara, V.V. Ram, A Numerical Study of Flow through Wavy-walled Channels, International Journal of Numerical Mechanical Fluids ,Vol.26 (1998) , pp.519-531.
[41] M. Greiner, R.F. Chen, R.A. Wirtz, Enhanced Heat transfer/Pressure Drop Measured from a Flat Surface in a Grooved Channels, ASME Journal of Heat Transfer, Vol.113(1991), pp.498-500.
[42]R.A. Wirtz, F. Huang, M. Greiner, Correlation of Fully Developed Heat Transfer and Pressure Drop in a Symmetrically Grooved Channel, ASME Journal of Heat Transfer, Vol.121 (1999), pp.236-239.
[43]E.B. Arkilic, Mass Flow and Tangential Momentum Accommodation in Silicon Micro machined Channels, Journal of Fluid Mechanics,Vol.437,(2001),pp.29-43
[44]Yu S. and Ameel T. A., Slip Flow Heat Transfer in Rectangular Microchannels, International Journal of Heat and Mass Transfer, Vol.44(2001), pp.4225-4234.
[45]R.J. Yang, L.M. Fu, Y.C. Lin, Electroosmotic Flow in Microchannels, Journal of Colloid Interface Science, Vol. 239 (2001), pp. 98-105.
[46]R,J. Yang, L.M. Fu, C.C. Hwang, Electroosmotic Entry Flow in a Microchannel, Journal of Colloid Interface Science, Vol.244 (2001), pp. 173-179. [47]L. Ren, D. Li, Electroosmotic Flow in Getrogeneous Microchannels, Journal of Colloid Interface Science, Vol.243 (2001), pp. 255-261.
[48]N.A. Patankar, H.H. Hu, Numerical Simulation of Elecrtroosmotic Flow, Analytical Chemistry, Vol.70 (1998), pp. 1870-1881.
[49]P. Dutta, A. Beskok, T.C. Warburton, Electroosmotic Flow Control in Complex Microgeometries, Journal of Microelectromech. Systems Vol.11(2002), pp.36-44.
[50]C.Y. Yang, D. Li,J.H. Masliyah, Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects, International Journal of Heat Mass Transfer ,Vol.41 (1998) , pp.4229-4249.
[51]D. Maynes, B.W. Webb, Fully Developed Electro-osmotic Heat Transfer in Microchannels, International Journal of Heat Mass Transfer, Vol.46(2003), pp.36-44.
[52]D. Maynes, B.W. Webb, Fully Developed Thermal Transport in Combined Pressure and Electro-osmotically Driven Flow in Microchannels, Journal of Heat Transfer, Vol.125(2003), pp.889-895.
[53]D, Maynes, B.W. Webbm The Effect of Viscous Dissipation in Thermally Fully Developed Electro-osmotic Heat Transfer in Microchannels, International Journal of Heat Mass Transfer ,Vol.47 (2004), pp. 987-999.
[54]X.Y. Chen, K.C. Toh, C. Yang, J.C. Chai, Numerical Computation of Hydrodynamically and Thermally Developing Liquid Flow in Microchannels with Electrokinetic Effects, Journal of Heat Transfer, Vol.126(2004), pp.70-75
[55]S. Chakraborty, Analytical Solutions of Nusselt Number for Thermally Fully Developed Flow in Microtubes under a Combined Action of Electroosmaotic Forces and Imposed Pressure Gradients, International Journal of Heat Mass Transfer, Vol.49 (2006), pp.810-813.
[56]A,Q, Zade,M.T.Manzari, S.K. Hannani, An Analytical Solution for Thermally Fully Developed Combined Pressure-Electroosmotically Driven Flow in Microchannels, International Journal of Heat Mass Transfer, Vol.50(2007), pp.1087-1096.
[57]C.Y. Soong, S.H. Wang, Theoretical Analysis of Electrokinetic Flow and Heat Transfer in a Microchannel under Asymmetric Boundary Conditions, Journal of Colloid Interface Science, Vol.265(2003), pp. 202-213.
|