跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/02 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李珈毓
研究生(外文):Chia-Yu Lee
論文名稱:探討大蒜在不同濃度及溫度下對豬肉中豬霍亂沙門氏菌的抑制效力
論文名稱(外文):The antimicrobial effect of garlic on Salmonella Choleraesuis in pork under different concentration and temperature conditions
指導教授:張照勤張照勤引用關係
指導教授(外文):Chao-Chin Chang
口試委員:徐媛曼周崇熙
口試日期:2011-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:微生物暨公共衛生學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:37
中文關鍵詞:沙門氏菌大蒜豬肉豬霍亂沙門氏菌
外文關鍵詞:salmonellacholeraesuisgarlicpork
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
食物中的沙門氏菌可以造成人類及動物以腸胃症狀為主的疾病,雖然通常可以自行痊癒,但對免疫力較低的族群如老人、小孩或是免疫缺乏的病患,則可能造成嚴重的症狀,尤其近年來出現的抗藥性沙門氏菌治療不易,更使食品中潛在的沙門氏菌成為公共衛生的隱憂。醃製是為了增加肉品食物的風味而常於烹調前進行的調理過程,而過去許多研究中顯示作為常用醃製料之一的大蒜,富含能夠產生抗菌效果的硫化物。若食物在經過醃製後可以減少潛在的病原菌,應可降低沙門氏菌的意外感染。為了探討豬肉中豬霍亂沙門氏菌經過大蒜醃製後的抑制效果,本研究由超市購得豬肉,在作為醃製液的生理食鹽水中加入豬霍亂沙門氏菌後,以1:10及1:5比例加入壓碎大蒜進行醃製,並分成4oC冷藏及25oC室溫兩組。4oC組在醃製的第0、4、8、24、48小時取樣,25oC組在第0、2、4、8小時取樣,每次取10公克豬肉作總生菌數及沙門氏菌數的測量,評估細菌的生長抑制情形。結果發現1:10大蒜組在4oC醃製48小時後對總生菌數有1-1.5 log值的生長抑制,但對沙門氏菌的抑制效果不明顯;25oC醃製8小時後可以抑制總生菌數1.5-2.5 log值及沙門氏菌1.5-2 log值的生長;而1:5大蒜組在25oC時抑制效果比1:10組稍佳。總體而言,抗藥及非抗藥性沙門氏菌間之抑制效果沒有明顯差異,4oC下大蒜對沙門氏菌的效果因低溫抑制細菌生長而不明顯,大蒜濃度較高時能有較長的抑制時間。這些結果顯示在烹飪豬肉之前若以壓碎大蒜進行醃製,雖然無法有顯著殺菌作用而降低可能潛在的豬霍亂沙門氏菌菌量,但能抑制它們以及肉中菌叢的滋長,藉此減少民眾攝入更高量病原菌的機會。至於這些受大蒜抑制的細菌會否因此降低感染能力或毒力,進而減少民眾感染疾病的風險,則有待未來進一步的研究。

As antibiotic-resistant Salmonella makes the clinical treatment to be more difficult, these food-borne pathogens are raising greater public health concern. Pickling processes are the way to increase the flavor of meat. Previous studies have shown that garlic, a material often used in pickling, contains abundant sulfur-containing compounds that could inhibit bacterial growth. If pickling processes are able to reduce potential pathogens on meat, accidental infections caused by Salmonella may thus be prevented. The aim of this study is to explore the effect of pickling by adding garlic in pork against Salmonella Choleraesuis. The pork used in this study was purchased from a local supermarket. Aliquots of S. Choleraesuis were mixed with sterile saline containing crushed garlic by ratios of 1:10 or 1:5 for pickling pork meat. The pickles were then incubated under 4oC or 25oC condition and 10g meat was sampled at 0th, 4th, 8th, 24th and 48th hour or 0th, 2th, 4th and 8th hour for aerobic plate count and the most probable number of Salmonella to evaluate the garlic effect on bacterial growth inhibition. Results showed that aerobic bacterial growth was inhibited by a value of 1-1.5 log with 1:10 garlic at 48th hour under the 4oC condition. With 1:10 garlic treatment, inhibitions by a value of 1.5-2.5 log on aerobic bacterial growth and 1.5-2 log on Salmonella growth were observed at 8th hour under 25oC. Treatment with 1:5 garlic under 25oC showed more inhibition than that with 1:10 garlic. Overall, there was no substantial inhibition difference between antibiotic-resistant and -susceptible S. Choleraesuis strains. Under 4oC, growth inhibition of Salmonella was more related to the low temperature rather than the effect of garlic. A longer duration of inhibition was shown when higher concentration of garlic was added. The overall conclusion is that crushed garlic was able to show short-term inhibition with regard to the growth of S. Choleraesuis and other aerobic bacteria in pork, and could be applied to food preparation for preventing accidental S. Choleraesuis infection.

第一章 文獻探討
第一節 沙門氏菌簡介 1
第二節 沙門氏菌之抗藥性 1
第三節 豬霍亂沙門氏菌之流行病學 1
第四節 可食用植物中的抗菌物質 2
第五節 大蒜抗菌的機制 2
第二章 材料與方法
第一節 材料 4
第二節 方法
(一) 菌液製備 4
(二) 大蒜的處理 4
(三) 肉品醃製 4
(四) 取樣 5
(五) 總生菌數 5
(六) MPN試驗 5
(七) 統計分析 5
第三章 結果
第一節 4oC下測試結果
(一) 大蒜1:10組
(1) 總生菌數之比較 6
(2) 沙門氏菌數之比較 6
(二) 大蒜1:5組
(1) 總生菌數之比較 6
(2) 沙門氏菌數之比較 7
第二節 25oC下測試結果
(一) 大蒜1:10組
(1) 總生菌數之比較 7
(2) 沙門氏菌數之比較 7
(二) 大蒜1:5組
(1) 總生菌數之比較 8
(2) 沙門氏菌數之比較 8
第四章 討論
第一節 抗藥性菌株與非抗藥性菌株對大蒜的敏感性差異 9
第二節 溫度的影響 9
第三節 大蒜濃度的影響 10
第四節 大蒜對總生菌數的影響 10
第五節 本研究的限制 11
第六節 結論 11
參考文獻 12

表目次

表1. Most Probable Number (MPN) 三管試驗法對照表 17
表2. 於不同溫度及時間點大蒜1:10組總生菌數log值(平均值±標準誤)比較 18
表3. 於不同溫度及時間點大蒜1:5組總生菌數log值(平均值±標準誤)比較 19
表4. 於不同溫度及時間點大蒜1:10組沙門氏菌MPN之log值(95%信賴值下限及上限)比較 20
表5. 於不同溫度及時間點大蒜1:5組沙門氏菌MPN之log值(95%信賴值下限及上限)比較 21

圖目次

圖1 22
圖2 23
圖3 24
圖4 25
圖5 26
圖6 27
圖7 28
圖8 29
圖9 30
圖10 31
圖11 32
圖12 33
圖13 34
圖14 35
圖15 36
圖16 37

Ankri, S., Miron, T., Rabinkov, A., Wilchek, M., & Mirelman, D. (1997). Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica. Antimicrob Agents Chemother, 41(10), 2286-2288.
Barone, F. E., & Tansey, M. R. (1977). Isolation, purification, identification, synthesis, and kinetics of activity of the anticandidal component of Allium sativum, and a hypothesis for its mode of action. Mycologia, 69(4), 793-825.
Blodgett, R. (2010). Appendix 2 : Most Probable Number from Serial Dilutions. Bacteriological Analytical Manual, from http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/ucm109656.htm
Bolder, N. M. (1997). Decontamination of meat and poultry carcasses. Trends in Food Science & Technology, 8(7), 221-227.
Centers for Disease Control and Prevention. (2007). National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): human isolates final report, 2004. Retrieved from http://www.cdc.gov/narms/.
Chiu, C. H., Su, L. H., & Chu, C. (2004). Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment. Clin Microbiol Rev, 17(2), 311-322.
Chiu, C. H., Tang, P., Chu, C., Hu, S., Bao, Q., Yu, J., et al. (2005). The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res, 33(5), 1690-1698.
Chiu, C. H., Wu, T. L., Su, L. H., Chu, C., Chia, J. H., Kuo, A. J., et al. (2002). The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype Choleraesuis. N Engl J Med, 346(6), 413-419.
Cohen, J. I., Bartlett, J. A., & Corey, G. R. (1987). Extra-intestinal manifestations of Salmonella infections. Medicine (Baltimore), 66(5), 349-388.
Cutler, R. R., & Wilson, P. (2004). Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br J Biomed Sci, 61(2), 71-74.
Duggan, S. J., Mannion, C., Prendergast, D. M., Leonard, N., Fanning, S., Gonzales-Barron, U., et al. (2010). Tracking the Salmonella Status of Pigs and Pork from Lairage through the Slaughter Process in the Republic of Ireland. Journal of Food Protection, 73(12), 2148-2160.
Eggenberger-Solorzano, L., Niebuhr, S. E., Acuff, G. R., & Dickson, J. S. (2002). Hot water and organic acid interventions to control microbiological contamination on hog carcasses during processing. J Food Prot, 65(8), 1248-1252.
Ellmore, G. S., & Feldberg, R. S. (1994). Alliin lyase localization in bundle sheaths of garlic clove (Allium sativum). American Journal of Botany, 81(1), 89-95.
Feldberg, R. S., Chang, S. C., Kotik, A. N., Nadler, M., Neuwirth, Z., Sundstrom, D. C., et al. (1988). In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob Agents Chemother, 32(12), 1763-1768.
Focke, M., Feld, A., & Lichtenthaler, K. (1990). Allicin, a naturally occurring antibiotic from garlic, specifically inhibits acetyl-CoA synthetase. FEBS Lett, 261(1), 106-108.
Foley, S. L. (2007). Current and future Salmonella challenges: Prevalence in swine and poultry and potential pathogenicity of their isolates. Journal of Animal Science, 85, 138-138.
Fromtling, R. A., & Bulmer, G. S. (1978). In vitro effect of aqueous extract of garlic (Allium sativum) on the growth and viability of Cryptococcus neoformans. Mycologia, 70(2), 397-405.
Frost, J. A., Kelleher, A., & Rowe, B. (1996). Increasing ciprofloxacin resistance in salmonellas in England and Wales 1991-1994. J Antimicrob Chemother, 37(1), 85-91.
Gorski, L., Parker, C. T., Liang, A., Cooley, M. B., Jay-Russell, M. T., Gordus, A. G., et al. (2011). Prevalence, Distribution, and Diversity of Salmonella enterica in a Major Produce Region of California. Appl Environ Microbiol, 77(8), 2734-2748.
Griggs, D. J., Gensberg, K., & Piddock, L. J. (1996). Mutations in gyrA gene of quinolone-resistant Salmonella serotypes isolated from humans and animals. Antimicrob Agents Chemother, 40(4), 1009-1013.
Hamilton, D., Holds, G., Lorimer, M., Kiermeier, A., Kidd, C., Slade, J., et al. (2010). Slaughterfloor decontamination of pork carcases with hot water or acidified sodium chlorite - a comparison in two Australian abattoirs. Zoonoses Public Health, 57 Suppl 1, 16-22.
Hancock, D., Besser, T., Gay, J., Rice, D., Davis, M., & Gay, C. (2000). The global epidemiology of multiresistant Salmonella enterica serovar Typhimurium DT104. In C. Brown & C. Bolin (Eds.), Emerging diseases of animals (pp. 217-243 ). Washington, DC, USA: ASM Press.
Hendriksen, R. S., Bangtrakulnonth, A., Pulsrikarn, C., Pornruangwong, S., Noppornphan, G., Emborg, H. D., et al. (2009). Risk Factors and Epidemiology of the Ten Most Common Salmonella Serovars from Patients in Thailand: 2002-2007. Foodborne Pathogens and Disease, 6(8), 1009-1019.
Herikstad, H., Hayes, P., Mokhtar, M., Fracaro, M. L., Threlfall, E. J., & Angulo, F. J. (1997). Emerging quinolone-resistant Salmonella in the United States. Emerg Infect Dis, 3(3), 371-372.
Hyeon, J. Y., Chon, J. W., Hwang, I. G., Kwak, H. S., Kim, M. S., Kim, S. K., et al. (2011). Prevalence, antibiotic resistance, and molecular characterization of Salmonella serovars in retail meat products. J Food Prot, 74(1), 161-166.
Iwalokun, B. A., Ogunledun, A., Ogbolu, D. O., Bamiro, S. B., & Jimi-Omojola, J. (2004). In vitro antimicrobial properties of aqueous garlic extract against multidrug-resistant bacteria and Candida species from Nigeria. J Med Food, 7(3), 327-333.
Lawson, L. D. (1998). Garlic: a review of its medicinal effects and indicated active compounds. In L. D. Lawson & R. Bauer (Eds.), Phytomedicines of Europe: Chemistry and Biological Activity (pp. 176–209). Washington, DC, USA: American Chemical Society.
Le Minor, L., & Popoff, M. Y. (1987). Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella. International Journal of Systematic Bacteriology, 37(4), 465-468.
Mahon, B. E., Ponka, A., Hall, W. N., Komatsu, K., Dietrich, S. E., Siitonen, A., et al. (1997). An international outbreak of Salmonella infections caused by alfalfa sprouts grown from contaminated seeds. J Infect Dis, 175(4), 876-882.
Molbak, K., Baggesen, D. L., Aarestrup, F. M., Ebbesen, J. M., Engberg, J., Frydendahl, K., et al. (1999). An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype Typhimurium DT104. N Engl J Med, 341(19), 1420-1425.
Morria, C. A., Lucia, L. M., Savell, J. W., & Acuff, G. R. (1997). Trisodium Phosphate Treatment of Pork Carcasses. Journal of Food Science, 62(2), 402-403.
Nannapaneni, R., Chalova, V. I., Story, R., Wiggins, K. C., Crandall, P. G., Ricke, S. C., et al. (2009). Ciprofloxacin-sensitive and ciprofloxacin-resistant Campylobacter jejuni are equally susceptible to natural orange oil-based antimicrobials. J Environ Sci Health B, 44(6), 571-577.
Olsen, S. J., DeBess, E. E., McGivern, T. E., Marano, N., Eby, T., Mauvais, S., et al. (2001). A nosocomial outbreak of fluoroquinolone-resistant Salmonella infection. New England Journal of Medicine, 344(21), 1572-1579.
Ozolin, O. N., Uteshev, T. A., Kim Iu, A., Deev, A. A., & Kamzolova, S. G. (1990). [Specific modification of the alpha-subunit of Escherichia coli Rna polymerase by monomercuric derivative of fluorescein mercuric acetate]. Mol Biol (Mosk), 24(4), 1057-1066.
Piddock, L. J., Griggs, D. J., Hall, M. C., & Jin, Y. F. (1993). Ciprofloxacin resistance in clinical isolates of Salmonella Typhimurium obtained from two patients. Antimicrob Agents Chemother, 37(4), 662-666.
Rabinkov, A., Miron, T., Konstantinovski, L., Wilchek, M., Mirelman, D., & Weiner, L. (1998). The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochim Biophys Acta, 1379(2), 233-244.
Rahman, S., Parvez, A. K., Islam, R., & Khan, M. H. (2011). Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh. Ann Clin Microbiol Antimicrob, 10, 10.
Rattanachaikunsopon, P., & Phumkhachorn, P. (2009). Shallot (Allium ascalonicum L.) oil: Diallyl sulfide content and antimicrobial activity against food-borne pathogenic bacteria. African Journal of Microbiology Research, 3(11), 747-750.
Sallam, K. I., & Samejima, K. (2004). Effects of Trisodium Phosphate and Sodium Chloride Dipping on the Microbial Quality and Shelf Life of Refrigerated Tray-packaged Chicken Breasts. Food Sci Biotechnol, 13(4), 425-429.
Schwartz, K. J. (1999). Salmonellosis. In B. E. Straw, S. D''Allaire, W. L. Mengeling & D. Taylor (Eds.), Diseases of Swine (pp. 535-551). Ames, Iowa: Iowa State University Press.
Sirichote, P., Bangtrakulnonth, A., Tianmanee, K., Unahalekhaka, A., Oulai, A., Chittaphithakchai, P., et al. (2010). Serotypes and antimicrobial resistance of Salmonella enterica ssp in central Thailand, 2001-2006. Southeast Asian J Trop Med Public Health, 41(6), 1405-1415.
Snijders, J. M., van Logtestijn, J. G., Mossel, D. A., & Smulders, F. J. (1985). Lactic acid as a decontaminant in slaughter and processing procedures. Vet Q, 7(4), 277-282.
Su, L. H., & Chiu, C. H. (2007). Salmonella: clinical importance and evolution of nomenclature. Chang Gung Med J, 30(3), 210-219.
Sumiyoshi, H., & Wargovich, M. J. (1989). Garlic (Allium sativum): a review of its relationship to cancer. Asia Pacific Journal of Pharmacology, 4, 133-140.
Thomson, M., & Ali, M. (2003). Garlic [Allium sativum]: a review of its potential use as an anti-cancer agent. Curr Cancer Drug Targets, 3(1), 67-81.
Tsao, S. M., Hsu, C. C., & Yin, M. C. (2003). Garlic extract and two diallyl sulphides inhibit methicillin-resistant Staphylococcus aureus infection in BALB/cA mice. Journal of Antimicrobial Chemotherapy, 52(6), 974-980.
Visscher, C. F., Klein, G., Verspohl, J., Beyerbach, M., Stratmann-Selke, J., & Kamphues, J. (2011). Serodiversity and serological as well as cultural distribution of Salmonella on farms and in abattoirs in Lower Saxony, Germany. Int J Food Microbiol, 146(1), 44-51.
Westrell, T., Ciampa, N., Boelaert, F., Helwigh, B., Korsgaard, H., Chriel, M., et al. (2009). Zoonotic Infections in Europe in 2007: A Summary of the Efsa-Ecdc Annual Report. Eurosurveillance, 14(3), 21-23.
Wills, E. D. (1956). Enzyme inhibition by allicin, the active principle of garlic. Biochem J, 63(3), 514-520.
Yucel Sengun, I., & Karapinar, M. (2005). Effectiveness of household natural sanitizers in the elimination of Salmonella Typhimurium on rocket (Eruca sativa Miller) and spring onion (Allium cepa L.). Int J Food Microbiol, 98(3), 319-323.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top