(3.235.11.178) 您好!臺灣時間:2021/03/05 15:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:白譽瑋
研究生(外文):Yu-Wei Bai
論文名稱:骨泥/骨柄介面性質對人工髖關節力學行為之影響性研究
論文名稱(外文):Investigation on the effect of the Cement/Stem interface characteristics on the mechanical behavior of artificial hip joint
指導教授:洪瑞斌洪瑞斌引用關係
指導教授(外文):Jui-Pin Hung
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:63
中文關鍵詞:人工髖關節置換術人工骨柄鍵結強度鍵結剛性
外文關鍵詞:Cemented hip prosthesisInterfacial strengthSurface finish
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
人工髖關節置換術為目前骨科臨床治療髖骨疾病的主要手術之一。此置換術是將人工骨柄植入到人體股骨髓腔內,以恢復原本髖關節之正常功能。但是臨床上發現,部分患者之人工骨柄會發生鬆脫的現象。因此,人工骨柄鍵結介面強度被認為是影響其長期性能重要的因素。人工關節長期性能與骨泥固定界面性質好壞有直接的關係,其固定介面的強度取決於骨泥製備技術、骨柄植入技術、幾何設計及其表面型態等因素。
骨泥/骨柄性質主要分為鍵結強度與鍵結剛性,本研究利用人工骨柄不同表面粗度去定義是否能夠穩固固定於骨髓腔內,並探討較佳的介面性質,將其探討之結果應用在人工骨柄表面上,以增加骨泥/骨柄鍵結介面性質之使用壽命。
本研究採用中碳鋼金屬與生醫級骨水泥製作成雙材質鍵結試片,分別進行拉伸與剪力實驗以獲得鍵結介面等性質,藉此分析金屬試片之表面粗度對骨水泥鍵結強度的影響。此外,為了使幾何型態更接近於實際受力的狀況,本研究將金屬試片改變成錐形狀,並進行壓縮實驗,再配合著有限元素分析的模擬比較,以評估錐形狀試件之表面粗度的力學效應分析。最後,將臨床上所使用的人工骨柄進行表面加工處理,並且將其植入在骨水泥內,做仿步態之動態實驗。此實驗是利用油壓缸施加壓力在人工骨柄上,再進行若干次壓力後,評估骨柄在骨水泥內下沉的狀況,將此結果與有限元素模型做分析比較,以提供臨床上之參考依據。實驗結果顯示,人工骨柄的粗糙度與骨水泥之鍵結強度,有直接且顯著的關係,並影響骨水泥/骨柄介面應力及破壞程度。

The integrity of the cemented fixation interface is responsible for the long-term longevity of prostheses used for artificial hip replacement. Metallic stems with roughened surfaces are considered to provide stronger adhesion with cement. However, clinical studies have reported that roughened stems show a lower survival rate than polished stems. Therefore, this study was conducted to investigate the mechanical effect of stem surface finish in cemented hip replacement. To accomplish this, a series of cement/metal specimens were tested under different loading configurations to assess the mechanical characteristics of the interface between cement and metal specimens with different surface finishes. A finite elemental model of cemented femoral prostheses was then created, in which the cement/stem interface was assumed to be in different bonding states according to the experimentally measured interface properties. The failure probabilities of the cement mantle and cemented interface generated under physiological loadings were evaluated. The experimental results indicated that the polished metal produced higher interfacial tensile and lower shearing strengths than the roughened metal. In addition, the polished stems were predicted to have a lower probability of cement mantle failure and higher integrity of the cement/stem interface when compared to the roughened stem. Overall, the results of this study provide significant evidence to support the clinical outcomes of cemented hip prostheses with different stem surface finishes.
摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
表 目 錄 VI
圖 目 錄 VII
符 號 說 明 IX
第一章 緒論 1
1.1 研究動機 1
1.2 髖關節構造 2
1.3 股骨構造 4
1.4 文獻回顧 5
1.5 論文架構 9
第二章 鍵結介面理論概述 10
2.1 前言 10
2.2 應力與應變的關係式 10
2.3 異質材料之介面力學分析 13
2.4 本構方程式(INTERFACE CONSTITUTIVE EQUATION) 15
2.5 柯西公式 17
2.6 介面破壞準則 18
第三章 骨泥/金屬鍵結介面性質實驗 19
3.1 前言 19
3.2 實驗製備 19
3.3 介面強度實驗 21
3.4 實驗試片檢視 22
3.5 結果與討論 25
3.6 本章結論 31
第四章 金屬骨柄-骨泥複合結構模型破壞分析 32
4.1 前言 32
4.2 骨泥/錐形金屬試件複合結構壓縮實驗 32
4.3 複合結構模型之有限元素簡化模擬 33
4.4 結果與討論 37
4.4.1 有限元素分析結果 37
4.4.2 壓縮實驗結果 37
4.5 本章結論 41
第五章 人工髖關節仿步態負荷實驗與分析 42
5.1 前言 42
5.2 人工骨柄複合結構之模型與實驗製備 42
5.3 有限元素分析與模型建立 48
5.4 結果與討論 50
5.4.1 仿步態負荷之靜態分析 50
5.4.2 動態實驗之結果 52
5.4 本章結論 56
第六章 總結與未來研究方向 57
6.1 結論 57
6.2 未來展望 57
參考文獻 59


1. http://health.big5.enorth.com.cn/system/2009/07/10/004120769.shtml

2. S.J. Hall,“ Basic Biomechanics”, third edition, The McGraw-Hill company.

3. M. Nordin, , V.H. Frankel,“Basic biomechanics of the musculoskeletal system”, third edition, Lippincott Williams &Wilkims.

4. http://www.zjtcm.net/wljx/Basic/jp/image/t64.jpg

5. CW Colwell, MA Ritter,“Cementing techniques for primary total hip arthroplasty”, Operative Tech. Orthop. 1995;5(4):316-324.

6. RS Majkowski, AW Milles, GC Bannister,“Bone surface preparation in cemented joint replacement”, J. Bone joint surg. Br. 1993; 75-B: 459-463.

7. QZ Chena, CT Wongb, WW Lub, KMC Cheungb, YC Leongb, KDK Lukb,“Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo”Biomaterials, 2004;25: 4243–4254.

8. VA Demarest, EP Lautenschalager, RL Wixson,“Vaccum mixing of acrylic bone cement”, In: Proceedings of the Ninth Annual Meeting of the Society for Biomaterials, Birmingham, (Alabana), April 27-May 1, 1983:37.

9. JP Davies, WH Harris,“Optimazation and comparison of three vacuum mixing system for porosity reduction of Simplex P cement”, Clin. Orthop. Relat. Res., 1990;254:261-269.

10. SP James, M Jasty, J Mdavies, H Piehler, WH Harris,“A fractograpgic investigation of PMMA bone cement focusing on the relationship between porosity and increased fatigue life”, J. Biomed. Mater. Res., 1992;26:651-662.

11. EW Ritsch,“Static and fatigue properties of two new bone viscosity PMMA bone cements improved by vaccum mixing”, J. Biomed. Mater. Res., 1996;31:451-456.

12. G Lewis,“Effect of mixing method and storage temperature of cement”, J. Biomed. Mater. Res., 1999;48:143-149.

13. K Masaki, T Jiro, S Shuichi, K Keiichi, N Masashi, Tadashi K, “Interfacial tensile strength between polymethyl methacrylate based bioactive bone cement and bone”, J. Biomed. Mater. Res. 2002;63(5):564-571.

14. S Wang, WR Lacefield, JE Lemons,“Interfacial shear strength and histology of plasma sprayed and sintered hydroxypatite implants in vivo”, Biomaterials. 1996;17:1945-1970.

15. M F Shepard, J M Kabo, J R Lieberman,“Influence of cement technique on the interface strength of femoral components”, Clin. Orthop. 2000;381:26–35.

16. X Wang, A Subramanian, R Dhanda, M. Agrawal, “Testing of bone-biomaterial interfacial bonding strength: a comparison of different techniques”, J. Biomed. Mater. Res. (Applied Biomaterials) 1996;33:133–138.

17. K A Mann, D C Ayers, F W Werner, R J Nicoletta, and M D Fortino, “Tensile strength of the cement-bone interface depends on the amount of the bone interdigitation with PMMA cement”, J. Biomechanics. 1997;30(4):339-346.

18. J Graham, M Ries, Pruitt,“Effect of Bone Porosity on the Mechanical Integrity of the Bone-Cement Interface”, J. Bone & Joint Surg., American Volume, 2003; 85(10):1901-1909.

19. KA Mann, FW Werner, DC Ayers,“Mechanical strength of the cement-bone interface is greater in shear than in tension”,J. Biomechanics,1999;32(11):1251-1254.

20. Q.I. Gang, F.W. Steven, K.A. Mann, B. Zhang, G. Lewis,“Random damage and characteristics of debris particles are two important and yet ignored factors in the mechanical integrity of the stem-cement interface of a total hip replacement: influence of the surface finish of the metal stem”, Mater Med (2010) 21:1385-1392.

21. H.S. Martin, W. Rosemary, I.G. Stother,“Bond strength between cements and metals used for endodontic posts”Dent Mater 1998;14:312–320.

22. H. Martin Stone, W. Rosemary, IG. Stother,“Some factors affecting the strength of the cement-metal interface”J Bone Joint Surg, 1989;71(B)(2):217-221.

23. A. Race, M. A. Miller, D. C. Ayers, R. J. Cleary, K. A. Mann,“The influence of surface roughness on stem-cement gaps”J Bone Joint Surg, 2002;84(B):1199-1204.

24. N. E. Bishop, S. Ferguson, S. Tepic,“Porosity reduction in bone cement at the cement-stem interface”J Bone Joint Surg, 1996; 78(B )(3): 349-356.

25. W.R. Walsha, M.J. Svehlaa, J. Russella, M. Saitob, T. Nakashimac, R.M. Gilliesa,W. Brucea, R. Horid,“Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness”, Biomaterials, 2004;25:4929–4934.

26. D.W. Burke, D.O. O'Connor, E.B. Zalenski, M. Jasty, W.H. Harris, “Micromotion of cemented and uncemented femoral components”, J Bone Joint Surg, 1991 ;73(B)(1):33-37.

27. V.J. Rasquinha, C.S. Ranawat, V. Dua, A.S. Ranawat, J.A. Rodriguez,“A prospective, randomized, double-blind study of smooth versus rough stems using cement fixation: Minimum 5-year follow-up”J Arthroplasty. 2004;19(Suppl 2):2–9.

28. R.C. Gardiner, W.J. Hozack,“Failure of the cement-bone interface. A consequence of strengthening the cement-prosthesis interface?”J Bone Joint Surg 1994;76(B): 49-52.

29. http://wikipedia.tw/

30. K A Mann, D C Ayers, F W Werner, R J Nicoletta, and M D Fortino,“Tensile strength of the cement-bone interface depends on the amount of the bone interdigitation with PMMA cement”J. Biomechanics. 1997;30(4):339-346.

31. V L Fornasier, H U Cameron,“The femoral stem/cement mechanisms of stress generation could only be determined interface in total hip replacement”Clin. Orthop. 1976;116:248-252.

32. T A Gruen, G M McNeice, H C Amstutz,“Modes of failure of cemented stem-type femoral components: a radiographic analysis of loosening” Clin. Orthop. 1979;141:17-27.

33. C G Mohler, J J Cllaghan, D K Collis, R C Johnston,“Early femoral component loosening following contemporary cemented total hip replacement”AAOS Final Program 298;1994.

34. M Paterson, P Fulford, R Denham,“Loosening of the femoral component after total hip replacement”J. Bone Joint Surg. 1986;68B:392-397.

35. A.B. Lennon, P.J. Prendergast,“Evaluation of Cement Stresses in Finite Element Analyses of Cemented Orthopaedic Implants”Journal of Biomechanical Engineering. December 2001,Vol. 123:623-628.

36. Z Hashin,“Failure criteria for unidirectional fiber composites”, J. Applied Mechanics 1980;47:329-323.

37. http://cht.uoc.com.tw/products/

38. 陳克紹、曹永偉,“感測器原理與應用技術”,全華,1988。

39. 林憲陽,“精密位移量測”,2006。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔