(54.236.58.220) 您好!臺灣時間:2021/02/28 09:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴錫銘
研究生(外文):Shyi-Ming Lai
論文名稱:實驗室進回風口位置對微塵粒子排除的研究
論文名稱(外文):Study on eliminating particle in proportion to air inlet and outlet position of laboratory
指導教授:宋文沛宋文沛引用關係
指導教授(外文):Wen-Pei Sung
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:冷凍空調系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:52
中文關鍵詞:微塵粒子送風口排氣口拉格朗日抑制與排除效果
外文關鍵詞:ParticleAir SupplyAir ExhaustLagrangianRestraint and Removal Effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
  本研究係以數值模擬的方式,探討不同進回風口位置對實驗室內污染物被排除的效果及氣流狀態之影響,與微塵粒徑大小受重力效應影響下在實驗室中的抑制效果、排除效果、淨空時間、與各出風口的排除比例。前者使用之統御方程式包括連續方程式、動量方程式、能量方程式與粒子運動方程式,其紊流模式採用標準 紊流模式,統御方程式之對流項採用upwind方法解離;後者利用拉格朗日粒子軌跡追蹤法與CFD模擬研究。分析結果顯示:當進風口置於靠近門處,可防止污染物大量進入實驗室內,卻無法有效的將原存於實驗室內之污染粒子排除;若進風口置於實驗室中間,雖無法有效抑制污染粒子進入,但可將汙染粒子帶至各角落之排風口予以排除;倘進風口遠離門處,則對污染粒子不論是抑制或排除效果皆不理想。另外,送風口位置對不同粒徑大小之微塵粒子的抑制率與移除率的研究結果顯示:送風口以最靠近門處的抑制率為最高,以房間正中央處的排除效果為最好,且送風口位置離門愈遠,其抑制與排除效果有越不明顯的趨勢。後續找出最適當之送風口位置後,繼續對不同粒徑大小之粒子進行分析,結果顯示:粒徑愈大,受重力效應之影響則愈大,較快沉澱到地面上而經由排風口排除,反之則容易受氣流所帶動漂浮在半空中。另外,抑制率與排除率因粒徑大小而有明顯之趨勢。
The efficiency of restraining particles and particle removal from laboratory, installed air supply and air exhaust in various positions were investigated by numerical method to simulate the flow conditions, accompanied by a Lagrangian particle-tracking method to calculate the trajectories of the particles in the laboratory. Three cases with air supplied from different locations in the laboratory were used to investigate the restraint and removal effects in the study. The equation of continuity, momentum equation, energy equation and particle’s equation of motion are considered in governing equation. model is adopted in Turbulence Models. The convection term of governing equation is used upwind method to solve, then, Lagrangian particle-tracking method and CFD simulation method is introduced to simulate all conditions. The analysis results indicate that when air supply is located on the ceiling near the door, the efficiency of restraining particles from entrance of the laboratory is the best of these three cases. Nevertheless, the existing particle removal efficiency of this case can not remove contaminated particles effectively. Although the contaminated particles can not be removed effectively, but they cannot be spread out in laboratory when the air supply is located in the ceiling center of laboratory. If the air supply is located in the distant place of laboratory, the inhibition and elimination efficiency of the contaminated particles are not obvious. Otherwise, the analysis results of the inhibition and elimination efficiency of the contaminated particles the different outlet positions in proportion to various diameters of particles reveal that the inhibition efficiency of the contaminated particles is the best when outlet is located in the entrance of laboratory and the elimination efficiency of the contaminated particles is the best when outlet is located in the center ceiling of laboratory. Then, the analysis results of the inhibition and elimination efficiency of the various contaminated particles indicate that the bigger diameters of particles are affected by the more gravity, when they settle to ground, they will be discharged by outlet. Contrarily, the smaller particles are easily affected by airflow to float in mid air. The inhibition and elimination efficiency of the various contaminated particles are obviously influenced by size of particles.
第一章 緒論 1
 1.1 前言 1
 1.2 文獻回顧 1
 1.3 研究目的 2
第二章 物理模式 3
 2.1 物理模型 3
 2.2 物理模型使用之假設 4
 2.3 邊界條件 4
第三章 數值方法 7
 3.1 數值方法 7
 3.2 網格建立 7
第四章 結果與討論 8
 4.1 進風口靠近門(case1) 10
 4.2 進風口位於中間(case2) 23
 4.3 進風口遠離門(case3) 38
4.4 不同粒徑粒子的流動狀態 42
4.5 不同粒徑大小粒子,對抑制率的影響 43
4.6 不同粒徑大小粒子,對移除率的影響 45
4.7 各個排風口的移除率 46
第五章 結論 50
參考文獻 52

[1] Hua Qian, Yuguo Li, Peter V. Nielsen, Carl E. Hyldgaard, “Dispersion of exhalation pollutants in a two-bed hospital ward with a downward ventilation system”, Building and Environment 43 (2008) 344-354.
[2] Bin Zhao, Jun Wu, “Particle deposition in indoor environments: Analysis of influencing factors”, Journal of Hazardous Materials 147 (2007) 439-448.
[3] Bin Zhao, Ping Guan, “Modeling particle dispersion in personalized ventilated room”, Building and Environment 42 (2007) 1099-1109.
[4] Farhad Memarzadeh, Jane Jiang, “Methodology for minimizing risk from airborne organisms in hospital isolation rooms”, ASHRAE Transactions: Symposia Vol.106, pt2, 2000, 731-747.
[5] 邱正吉, “隔離病房內部動態氣流模擬分析”, 碩士論文, 國立台北科技大學, 2004.
[6] Ooi Yongson, Irfan Anjum Badruddin, Z.A. Zainal, P.A. Aswatha Narayana, “Airflow analysis in an air conditioning room”, Building and Environment 42 (2007) 1531-1537.
[7] Xu Jie, Kang Yan Ming, Zhong Ke, “Numerical simulation of the concentration variation under different pollutant sources in a displacement ventilating room”, 洁净与空调技术CC&AC 2008年第一期, p.12-p.16.
[8] T.T. Chow, A. Kwan, Z. Lin, W. Bai, “Conversion of operating theatre from positive to negative pressure environment”, Journal of Hospital Infection (2006) 64, 371-378.
[9] N.P. Gao, J.L. Niu, “Modeling particle dispersion and deposition in indoor environments”, Atmospheric Environment 41 (2007) 3862-3876.
[10] Z. Zhang, Q. Chen, “Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms”, Atmospheric Environment 40 (2006) 3396-3408.
[11] FLUENT 6.3 User’s Guide.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔