跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建宏
研究生(外文):Chien-HongLin
論文名稱:無人直升機系統之滑動模式自主停懸的控制器設計與飛測驗證
論文名稱(外文):Autonomous Hovering Controller Design Using Sliding Mode Control Theory and Its Flight Test Verification for Small-scaled Unmanned Helicopter System
指導教授:蕭飛賓詹劭勳
指導教授(外文):Fei-Bin HsiaoFei-Bin Hsiao
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:119
中文關鍵詞:無人直升機自主停懸滑動模式控制
外文關鍵詞:Unmanned HelicopterAutonomous HoveringSliding Mode Control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無人直升機有別於固定翼之無人飛機,不需要大型平整跑道提供起降,且由於直升機具備定點停懸之獨特能力,較一般固定翼無人飛機更適合空中偵查、 交通監控、以及環境監測等任務。本文的研究目的是在於運用滑動模式控制理論在無人直升機系統上之自主停懸的控制器設計與飛測驗證。
在過去幾十年間滑動模式控制理論已在強健控制領域上被廣泛的注意。這些良好的特性是建立在所謂的理想滑動模式上,而此滑動模式是藉由一種不連續的訊號控制所達成。然而,由於實際的物理限制,在瞬間無限的快速切換訊號控制是難以被實現且會導致非期望的控制結果。其中雙滑動模式控制器的設計理念是將分離成兩條比例積分微分型滑動面,可降低系統狀態的軌跡產生顫抖現象,並提升控制器的響應,而且,由於新的無顫抖型雙滑動模式控制器的簡單組成,應用在實務時也不會造成使用者實用的困擾。為了顯示雙滑動模式控制器可提高系統的性能,本文開發一個實驗的無人直升機系統平台去評估控制器的性能。在模擬數據分析得知雙滑動模式控制器不僅追蹤誤差比較小,而且誤差收斂速度比傳統的滑動模式控制器快,因此,電腦模擬和實際飛行測試也成功驗證了無人直升機系統的橫向和縱向控制器。最後本文也經由實際飛行測試資料結果顯示飛測與模擬結果是符合的。

Unmanned helicopter has been demanding for certain applications due to its unique flight capability. The unmanned helicopter can take off and land within a limited space and it can hover and cruise at a very low speed. The autonomous hovering is one of the most significant flight maneuvering conditions for an unmanned helicopter and offers an unmanned helicopter a wide variety of applications. Thus, an autonomous hovering controller design based on sliding mode control (SMC) theory and its flight test verification for a small-scaled unmanned helicopter system are presented in this study.
Owing to its unique properties, SMC theory has attracted a wide attention in the robust control field and these features are based on the existence of the so-called ideal sliding mode, which is achieved with the aid of discontinuous control. However, due to its physical limitations, the infinitely fast switching is difficult to be realized and may lead to undesirable control results. Thus, the twin sliding mode controller (TSMC) is designed with two separate proportional-integral-derivative boundary surfaces in order to reduce the chattering and improve the controllers' responses. Due to the simplicity of the TSMC structure, the proposed TSMC will cause no difficulty for users to realize it practically. In order to show how the TSMC may improve the system performance, this study develops an experimental unmanned helicopter system test-bed to assess the performance of the proposed controller. The simulation results of this work has validated that the tracking error of the TSMC is not only smaller but also converges quicker than the conventional SMC. Unlike the conventional SMC method, the proposed TSMC is capable of achieving the desired control qualities and the tracking performance. As shown in the flight test results, the 2-distance-root-mean-squared (2DRMS) position error is less than 5m. The flight test results are presented in the dissertation and they are found to be consistent with the simulation results.

CONTENTS
CHINESE ABSTRACT i
ABSTRACT ii
EXTENDED CHINESE ABSTRACT iiv
ACKNOWLEDGMENT xi
LIST OF TABLES xv
LIST OF FIGURES xvi
NOMENCLATURE xix
1. Introduction 1
1.1 Unmanned Helicopter 2
1.2 Development of Unmanned Helicopter in RMRL 7
1.3 Motivation and Objectives 9
1.4 Dissertation Overview 10
2. Unmanned Helicopter Mathematical Model 11
2.1 Equations of Motion 11
2.2 Main Rotor Dynamics and Tail Rotor Dynamics 12
2.3 Overall Model 15
2.4 Interim Summary 16
3. Unmanned Helicopter System Architecture 17
3.1 Unmanned Helicopter System 17
3.2 Onboard Avionics System 19
3.2.1 System Architecture Description 19
3.2.2 Attitude Heading and Reference System 21
3.2.3 Global Positioning System 23
3.2.4 Servo Circuit Board Design 23
3.2.5 Power Distribution and Altimeter Sensor Board 24
3.2.6 Wireless Module and Panel Antenna 24
3.2.7 Onboard Computer and Coding Programs 25
3.3 Ground System 28
3.3.1 Ground Control Station 28
3.3.2 Video System 30
3.3.3 Weather System 31
3.4 Interim Summary 32
4. System Identification 33
4.1 Unmanned Helicopter System Identification 33
4.1.1 Building Parametric Model 33
4.1.2 Flight Data Collection and System Identification
Rules 34
4.2 Levnberg-Marquardt Identification Method 35
4.3 Identification Results 36
4.4 Model Validation 40
4.5 Interim Summary 43
5. Controller Design for Autonomous Hovering 44
5.1 Sliding Mode Control 45
5.2 Integral Sliding Mode Control 52
5.3 Proportional-Integral Sliding Mode Control 55
5.4 Twin Sliding Mode Control 58
5.5 Examples of Numerical Simulations 61
5.5.1 Numerical Simulation Results of SMC Method 62
5.5.2 Numerical Simulation Results of ISMC Method 64
5.5.3 Numerical Simulation Results of PISMC Method 66
5.5.4 Numerical Simulation Results of TSMC Method 68
5.5.5 Comparison and Analysis of Tracking Performance
and Responses 70
5.6 Simulation Results for Hovering Controller
Design 73
5.6.1 SMC Design 73
5.6.2 PISMC Design 75
5.6.3 TSMC Design 77
5.6.4 Simulation Results and Discussions 78
5.7 Flight Test Results and Discussions 82
5.7.1 Comparison Between Control Signal Given by
Pilot and Post-process of the Signal by
Controller 84
5.7.2 SMC Results 85
5.7.3 PISMC Results 90
5.7.4 TSMC Results 96
5.7.5 Hovering at a Target Point with a Distant
Initial Point 101
5.8 Controller Verification From Flight Test
Restults 103
6. Conclusions 105
6.1 Summary of Contributions 106
6.2 Future Work 108
REFERENCES 109
VITA 117
PUBLICATION LIST 118


REFERENCES
1.Shimo, Y., Development of power transmission line
inspection system by unmanned helicopter, CIGRE,. 2006.
p. 1-8.
2.Fabiani, P., Fuertes, V., Piquereau, A., Mampey, F. and
Teichteil, K.F., Autonomous flight and navigation of VTOL
UAVs: from autonomous to sot-of-sight flights, Aerospace
Science and Technology, 2007. 11. p. 183-192.
3.Cai, G., Chien, B. N. and Lee, T.H., An overview on
development of miniature unmanned rotorcraft system,
Electr. Electron. Eng., China, 2009. p. 1-14.
4. Gavrilets, V., Frazzoil, E., Metter, B., Piedmonte, M.
and Feron, E., Aggressive maneuvering of small autonomus
helicopters: Ahuman-cetered approach, The International
Journal of Robotics Research, 2009. p. 795-805.
5. Johnson, E. N. and Schrang, D. P., System integration
operation of a reach unmanned aerial vehicle, AIAA
Journal of Aerospace Computing, Information and
Communication, 2004. p. 1-36.
6. Adolf, F., Andert, F., Lorenz, S. Goormann, L. and
Dittrich, J., An unmanned helicopter for autonomous in
urban terrain., Advances in Robotics Research., 2009. p.
275-285.
7. Martions, I., Experiments in real time path planning for
a small unmanned helicopter using mixed integer linear
programming, Master Thesis, Department of Aeronautics
and Astronautics, Massachusetts Institute of
Technology., 2003. p. 1-57.
8. Lai, Y. C., Jan, S. S. and Hsiao, F. B. “Development of
a Low-Cost Attitude and Heading Reference System Using a
Three-Axis Rotating Platform, Sensors, Vol. 10, No. 4,
pp. 2472-2491, 2010
9. Matsuoka, M., Chen, A., Singh, S. P. N., Ng, Y. N., and
Thrun, S., Autonomous helicopter tracking and
localization using a self-surveying camera array, The
International Journal of Robotics Research., 2007. 26
(2). P. 1-12.
10.Spinka, O., Kroupa, S. and Hanzalek, Z., Control system
for unmanned aerial vehicles, IEEE International
Conference on Intelligent Robots and Systems, 2007. p. 1-
6.
11.Spinka, O. and Hanzalek, Z., Low-cost reconfigurable
control system for small UAVs, IEEE Transactions on
Industrial electronics, 2009. p. 1-9.
12.Shin, J., Nonami, K., Fujiwara, D. and Hazawa, K., Model-
based optimal attitude and control of small-scale
unmanned helicopter, Robotica, 2005. 23. p. 51-63.
13.Hazawa, K., Shin, J., Fujiwara, D., Fernando, D. and
Nonami, K., Autonomous flight control of Hobby-class
small unmanned helicopter, IEEE International Conference
on Intelligent Robots and Systems, 2004. p. 754-760.
13.Bhandari, S. and Colgren, R., Six-DoF Dynamic Modeling
and Flight Testing of a UAV Helicopter, AIAA Modeling
and Simulation Technologies conference and Exhibit,
2005. p. 1-17.
14.Gonzaiez, A., Mahtani, R., Bejar, M. and Ollero, A.,
Control and stability analysis of autonomous helicopter,
IEEE Automation Congress, 2004. p. 399-404.
15.Sanchez, A. N., Becerra, H.M. and Velez, C. M.,
Combining fuzzy, PID and regulation control for an
autonomous mini-helicopter, Information Sciences, 2007.
p. 1999-2022.
16.Verdult, V., Lovera, M. and Verhaegen, M.,
Identification of linear parameter-varying state-space
models with application to helicopter rotor dynamics,
International Journal of Control, 2004. 77(13). p.1149-
1159.
17.Godfrey, A.R., Barker, H. A. and Tucker, A. J.,
Comparison of perturbation signals for linear system
identification in the frequency domain, IEE Proc.-
Control Theory Appl., 1999. 146(6). P.535-548.
18.Bogdanov, A. and Wan, E., SDRE control with nonlinear
feed-forward compensation for small unmanned helicopter,
American Institute of Aeronautics and Astronautics,
2003. p.1-10.
19.Godfrey, K.R., Tan, A. H. and Barker, H. A., A survey of
readily accessible perturbation signals for system
identification in the frequency domain, 2005. 13. p.1391-
1402.
20.Backmann E. D. and Borges, G. A., Nonlinear modeling,
identification and control for a simulated miniature
helicopter, IEEE Latin American Robotic Symposium, 2008.
p.53-58.
21.Mettler, B., Kanade, T. and Tischler, M. B., System
identification modeling of a model-scale helicopter,
Journal of the American Helicopter Society, 2007. p.1-25.
22.Mettler, B., Tischler, M. B. and Kanade, T., System
identification of small-size unmanned helicopter
dynamics, Journal of the American Helicopter Society,
1999. p.1-12.
23.Raptis, I. A., Valavanis, K. P. and Moreno, W. A.,
System identification and discrete nonlinear control of
miniature helicopters using back-stepping, Journal of
Intelligent Robot Systems, 2008. 55. p.223-243.
24.Zillinger, P. J. H., Model predicative control to
autonomous helicopter flight, Ph.D. thesis, Department
Mechanical Engineering, Technics Universities ., 2003.
p. 1-57.
25.Lorenz, S. and Chowdhary, G., Nonlinear model
identification for a miniature rotorcraft- preliminary
results, Journal of the American Helicopter Society,
2005. p.1-16.
26.Cunha, R. and Silvestre, C., SimModHeli: A dynamic
simulator for model-scale helicopter, Institute for
Systems and Robotics, 2003. p.1-6.
27.Gavrilets, V., Mettler, B. and Feron, E., Dynamic model
for a miniature aerobatic helicopter, Tech. Rep. 2003.
p.1-22.
28.Verdult, V., Nonlinear system identification: A state
space approach, Ph.D. thesis, University of Twente,
2002. p.1-279.
29.Loreaz, G. and Chowdhary, G., Non-linear model
identification for a miniature rotorcraft preliminary
results, Journal of the American Helicopter Society,
2005. p.1-14.
30.Budiyono, A., Design and development of autonomous
uninhabited air vehicles at ITB: Challenges and progress
status, Aerospace Indonesia Meeting, 2005. p. 1-10.
31.Hong, W. E., Lee, J. S. and Kang, S. J., Embedded real- time software architecture for unmanned autonomous
helicopters, Journal of Semiconductor and Science, 2005.
p. 243-248.
32.Buskey, G., Roberts, J., Corke, P. I. and Wyeth, G.,
Sensing and control for a small-size helicopter,
Springer Tracts in Advanced Robotics, 2003. p.476-485.
33.Corke, P. I., Sikka, P. and Roberts, J., Height
estimation for an autonomous helicopter, Tech. Rep.
2000. p.1-10.
34.Roberts, J. M., Corke, P. I. and Buskey, G., Low-cost
flight control system for small autonomous helicopter,
Robotics and Automations, 2002. p.71-76.
35.Taamallah, S., Reus, A. J. C. and Boer, J. F.,
Development of a rotorcraft Mini-UAV system, IEEE
Digital Avionics Systems Conference, 2005. p.1-14.
36.Corban, J. E., Flight evaluation of an adaptive velocity
command system for unmanned helicopters, American
Institute Aeronautic Astronautics, 2003. p.1-10.
37.Shim, D. H., Kim, H. J. and Sastry, S., Hierarchical
control system synthesis for rotorcraft-based unmanned
aerial vehicles, AIAA Guidance, navigation, and control
conference, 2000. p.1-9.
38.Sprague, K., Gavrilets, V., Dugail, B. and Feron, E.,
Design and applications of an avionics system for a
minnature acrobatic helicopter, IEEE Digital Avionics
System, 2001. p. 1-10.
39.Garcia, R.D., Valavanis, P. K. and Kandel, A.,
Autonomous Helicopter Navigation during a tail rotor
failure utilizing fuzzy logic, IEEE Control and
Automation, 2007. p.1-6.
40.Fuh, C. C., Variable Thickness boundary layers for
sliding mode control, Journal of Marine Science and
Technology, 2008. 16(4). P.288-294.
41.Hedrick, J. K. and Gopalswamy, S., Nonlinear flight
control design via sliding methods, American Institute
of Aeronautics and Astronautics, 1990. p.850-858.
42.Lee, H., Kim, E., Kang, H. J. and Park, M., A new
sliding mode control with fuzzy boundary layer, Fuzzy
set and Systems, 2001. 120. p.135-143.
43.Su, J. P. and Liang, C. Y., A new approach to the design
of a fuzzy sliding mode controller, Fuzzy Set and
Systems, 2003. 139. p.111-124.
44.Su, J. P. and Wang, C. C., Complementary sliding mode
control of non-linear systems, International Journal of
Control, 2002, 75. p.306-368.
45.Su, J. P. and Huang, C. T., Sigma adaptive fuzzy sliding
mode control of a calss of nonlinear system,
International Journal of Systems Science, 2000, 31(8).
p.949-959.
46.Chen, H. M., Su, J. P. and Renn, J. C., A novel sliding
mode control of an electrohydraulic, Institute of
Electronics, Information, and Communication Engineers,
2002. p.1928-1936.
47.Utkin, V. I., Variable structure systems with sliding
modes, IEEE Transactions on Automatic Control, 1977.
p.212-222.
48.Hess, R. A., Wells, S. R. and Vetter, T. K., MIMO
sliding mode control as an alternative to reconfigurable
flight control design, American Control Conference,
2002. p.3637-3643.
49.Hess, R. A. and Wells, S. R., Sliding mode control
applied to reconfigurable flight control design,
American Institute of Aeronautics and Astronautics,
2003. p.1-12.
50.Wells, S. R. and Hess, R. A., Multi-Input/Multi-Output
sliding mode control for a tailless fighter aircraft,
Journal of Guidance, Control, and Dynamics, 2003. p.463-
473.
51.Wells, S. R. and Hess, R. A., MIMO sliding mode control
for a tailless fighter aircraft, an alternative to
reconfigurable architectures, AIAA Guidance, Navigation,
and Control, 1998. p.1-48.
52.Lin, C. H., Tenn, H.K., Tseng, L. C. and Hsiao, F.B.,
Autonomous Hovering Control of an Unmanned Helicopter
Using Fuzzy Logic Control with Single Antenna GPS and
Rate Gyroscopes, Journal of Aeronautics Astronautics and
Aviation, Vol. 41, pp255-262, 2009.
53.Lin., C. H., Jan, S. S. and Hsiao, F.B., Autonomous
Hovering of an Experimental Unmanned Helicopter System
with Proportional-Integral Sliding Mode Control, ASCE’s
Journal of Aerospace Engineering .(Accepted, 2010/06/30)
54.Hsiao, F.B., Jan, S. S., Chian, C. H., Lin, C. H., Lai,
Y. C., Chen,C. C. and Yang, T.Y., System Integration,
Verifications and Applications of Military’s Unmanned
Aerial Vehicle System, National Defense Conference,
Taoyuan, Taiwan, November 2009.
55.Hsiao, F.B., Jan, S. S., Chian, C. H., Lin, C. H., Lai,
Y. C., Yang, T.Y. and Chen,C. C., The Development of
Advanced Technology, System Integration and their
Verifications and Applications for Military’s Unmanned
Aerial Vehicle System, In 18st National Defense
Conference, Taoyuan, Taiwan, November 2009.
56.Hsiao, F.B., Liu, Y. N., Lin, C. H. and Chen, C. C.,
Vision-based moving Target tracking and estimation for
unmanned helicopter, The Fifth Taiwan-Japan-Workshop on
Mechanical and Aerospace Engineering Le Midi Hotel of
Chi-Tou, Nantou, Taiwan October, 2009.
57.Hsiao, F. B., Lin, C. H., Ding, Y. R. and Liu, N. Y.,
Unmanned aerial helicopter autonomous flight research:
attitude stabilization robustness of hovering flight,
Taoyuan, Taiwan , 2008.
58.Tenn, H. K., Lin, C. H., Tseng, L. C., Cheng, Y. H. and
Hsiao, F. B, The Development of H-LING Unmanned
Helicopter System, CAFA Conference., Kaohsiung, Taiwan,
ROC, October, 2007.
59.Hsiao, F. B., Ding, Y. R., Tenn,Y. H., Tseng, L. C.,
Tenn, H. K. and Lin, C. H., 3-D path planning and visual
image servo control for unmanned helicopter, Taoyuan,
Taiwan , 2007.
60.Jan, S. S., Lin, C. H., Tseng , L.C., Hsiung, C. F.,
Tenn, H. K. and Lin, Y. H., High bandwidth controller
design for unmanned aerial helicopter, Taoyuan, Taiwan ,
2007.
61.Lin, C. H., Tseng , L.C., Tenn, H. K. and Hsiao, F. B.,
Attitude control of unmanned helicopter system by
composite sliding mode controller, CAFA Conference.,
Kaohsiung, Taiwan, 2007.
62.Hsiao, F. B., Juang, J. C., Jan, S. S., Hsiao, F. Y.,
Tenn, H. K., Lin, C. H., Tseng , L.C., Hsiung, C. F.,
Tseng , J. H. and Lu, T. C., Development of Unmanned
Helicopter Autonomous Hovering and Optical Target
Tracking System, Taoyuan, Taiwan , 2006.
63.Slotine, J. J.E. and Li, W., Applied nonlinear control
(Prentice-Hall, New Jersey, 1991)
64.Edwards, C. and Spurgeon, S.K., Sliding mode control:
theory and applications (Taylor and Francis Publishers,
1998)
65.Mettler, B., Identification modeling and characteristics
of miniature rotorcraft, (Kluwer Academic Publishers,
Boston, 2003)
66.Lee, C. S., Hsiao, F. B. and Jan, S. S., Design and
implementation of linear-quadratic-Gaussian stability
augmentation autopilot for UAV, The aeronautical
journal, 2009. 113(1143). p. 275-290.
67.Sira-Ramirez, H. and Zribi, M., Ahmad, S., Dynamical
sliding mode control approach for vertical flight
regulation in helicopters, IEE Proc., Control Theory
Appl., 1994. 194(1), p. 19-24.
68.Yang, C.D. and Kung, C.C., Nonlinear H∞ flight control
of general six-degree-of freedom motions, Journal of
Guidance, Control, and Dynamics., 2000. 23(2), p. 278-
288.
69.Baik, I. C., Kim, K. H. and Youn, M. J., Robust
nonlinear speed control of PM synchronous motor using
boundary layer integral sliding mode control technique,
IEEE Trans Automatic on Control Systems Technology,
2000. 8(1), p. 47-54.
70.Yahaya, M. S., Osman , J. H. S. and Ghani, M. R. A., A
class of proportional-integral sliding mode control with
application to active suspension system, Systems and
Control Letters., 51, 2004. p. 217–223.
71.Waslander, S. L., Hoffmann, G. M., Jang, J. S. and C. J.
Tomlin., Multi-agent quad-rotor test-bed control design:
integral sliding mode vs. reinforcement learning,
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2005. p. 468-473.
72.Bouabdallah, S. and Siegwart, R., Back-stepping and
sliding mode techniques applied to an indoor micro quad-
rotor, IEEE International Conference on Robotics and
Automation, 2005. p. 2259-2264.
73.Chen, C.A., Chiang, H. K. and Lin, B.R., The Novel
Adaptive Sliding Mode Position Control Synchronous
Reluctance Motor Drive, Journal of the Chinese Society
of Mechanical Engineers, 2008. 29(3), p.241-247.
74.Hu, Q., Cao, J. and Zhang, Y., Robust back-stepping
sliding mode attitude tracking attitude tracking and
vibration damping of flexible spacecraft, Journal of
aerospace engineering, 2009. 22 (2), p. 139-152

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 7. 吳若萱(2000),「派遣勞動如何重塑雇傭關係與企業用人政策」,勞工行政,(147),頁34-41。
2. 3. 成之約(2004),「派遣勞動及其發展的探討:工會觀點」,萬國法律,第138期,頁2-26。
3. 22. 焦興鎧(2000),「論勞動派遣之國際勞動基準」,輔仁法學,第19期,頁203-252。
4. 14. 孫茄綾(2001),「人力派遣的利基」,管理雜誌,第320期,頁76-79。
5. 3. 成之約(2004),「派遣勞動及其發展的探討:工會觀點」,萬國法律,第138期,頁2-26。
6. 2. 成之約(2000),「派遣勞動及其對勞資關係與人力 資源管理之意函與因應」,空大行政學報,第10期,頁1-26。
7. 22. 焦興鎧(2000),「論勞動派遣之國際勞動基準」,輔仁法學,第19期,頁203-252。
8. 14. 孫茄綾(2001),「人力派遣的利基」,管理雜誌,第320期,頁76-79。
9. 13. 邱駿彥(2000),「勞動契約關係存否之法律上判斷標準(以特別看護與醫院間之勞動契約為例)」,政大法學評論,第63期,頁359-372。
10. 13. 邱駿彥(2000),「勞動契約關係存否之法律上判斷標準(以特別看護與醫院間之勞動契約為例)」,政大法學評論,第63期,頁359-372。
11. 2. 成之約(2000),「派遣勞動及其對勞資關係與人力 資源管理之意函與因應」,空大行政學報,第10期,頁1-26。
12. 1. 成之約(1998),「淺論派遣勞動及其對勞資關係的影響」,就業與訓練,第16卷6期,頁3-11。
13. 1. 成之約(1998),「淺論派遣勞動及其對勞資關係的影響」,就業與訓練,第16卷6期,頁3-11。
14. 11. 林振賢(1997),「談派遣公司的問題」,中國勞工,第965期,頁16-21。
15. 11. 林振賢(1997),「談派遣公司的問題」,中國勞工,第965期,頁16-21。